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ABSTRACT
For next-generation technology nodes, multiple patterning lithog-
raphy (MPL) has emerged as a key solution, e.g., triple pat-
terning lithography (TPL) for 14/11nm, and quadruple pat-
terning lithography (QPL) for sub-10nm. In this paper, we
propose a generic and robust layout decomposition framework
for QPL, which can be further extended to handle any general
K-patterning lithography (K>4). Our framework is based on
the semidefinite programming (SDP) formulation with novel
coloring encoding. Meanwhile, we propose fast yet effective
coloring assignment and achieve significant speedup. To our
best knowledge, this is the first work on the general multiple
patterning lithography layout decomposition.

Categories and Subject Descriptors
B.7.2 [Hardware, Integrated Circuit]: Design Aids

General Terms
Algorithms, Design, Performance

Keywords
Multiple Patterning Lithography, Layout Decomposition

1. INTRODUCTION
As the minimum feature size further decreases, multiple pat-

terning lithography (MPL) has become one of the most viable
solutions to sub-14nm half-pitch patterning, along with ex-
treme ultra violet lithography (EUVL), electric beam lithog-
raphy (EBL), and directed self-assembly (DSA) [1,2]. Last few
years have seen extensive researches on MPL technology such
as double patterning [3], and triple patterning [4]. Continu-
ing growth of technology node is expected to shrink further
down to 11nm or beyond. Such advance is, nonetheless, mak-
ing conventional patterning processes barely sufficient for the
next generation.

Quadruple patterning lithography (QPL) is a natural ex-
tension along the paradigm of double/triple patterning. In
the QPL manufacturing, there are four exposure/etching pro-
cesses, through which the initial layout can be produced. Com-
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Figure 1: (a) A common native conflict from triple
patterning lithography; (b) The conflict can be re-
solved through quadruple patterning lithography.

pared with triple patterning lithography, QPL introduces one
more mask. Although increasing the number of processing
steps by 33% over triple patterning, there are several rea-
sons/advantages for QPL. Firstly, due to the delay or uncer-
tainty of other lithography techniques, such as EUVL, semi-
conductor industry needs CAD tools to be prepared and un-
derstand the complexity/implication of QPL. Even from the-
oretical perspective, studying the general multiple patterning
is valuable. Secondly, it is observed that for triple pattern-
ing lithography, even with stitch insertion, there are several
common native conflict patterns. As shown in Fig. 1 (a),
contact layout within the standard cell may generate some 4-
clique patterns, which are indecomposable. This conflict can
be easily resolved if four masks are available (see Fig. 1 (b)).
Thirdly, with one more mask, some stitches may be avoided
during manufacturing. By this way it is potential to resolve
the overlapping and yield issues derived from the stitches.

The process of QPL brings up several critical yet open de-
sign challenges, such as layout decomposition, where the orig-
inal layout is divided into four masks (colors). Double/triple
patterning layout decomposition with conflict and stitch min-
imization has been well studied for full-chip layout [3–12] and
cell based design [13–15]. The problem can be optimally solved
through expensive integer linear programming (ILP) [3–5]. To
overcome the long runtime problem of ILP solver, for double
patterning, partitioning/matching based methods have been
proposed [6,7]; while for triple patterning, some speedup tech-
niques, e.g., semidefinite programming (SDP) [4,10], and heuris-
tic coloring assignment [8, 9] have been proposed. However,
how to effectively solve the quadruple patterning, or even gen-
eral multiple patterning problems, is still an open question.

In this paper, we deal with the quadruple patterning lay-
out decomposition (QPLD) problem. Our contributions are
highlighted as follows. (1) To our best knowledge, this is the
first layout decomposition research for QPLD problem. We
believe this work will invoke more future research into this
field thereby promoting the scaling of technology node. (2)
Our framework consists of holistic algorithmic processes, such
as semidefinite programming based algorithm, linear color as-



signment, and novel GH-tree based graph division. (3) We
demonstrate the viability of our algorithm to suit with gen-
eral K-patterning (K≥4) layout decomposition, which could
be advanced guidelines for future technology.

The rest of the paper is organized as follows. In Section 2, we
give the problem formulations and the overall decomposition
flow. In Section 3 and Section 4 we propose the color assign-
ment algorithms and graph division techniques, respectively.
Section 5 extends our methodologies to general K-patterning
problem. Section 6 presents the experiment results, followed
by conclusion in Section 7.

2. PRELIMINARIES

2.1 Problem Formulation
Given input layout which is specified by features in polyg-

onal shapes, a decomposition graphs [4, 5] is constructed by
Definition 1.

Definition 1 (Decomposition Graph). A decomposition
graph is an undirected graph {V,CE, SE} with a single set
of vertices V , and two edge sets CE and SE containing the
conflict edges (CE) and stitch edges (SE), respectively. Each
vertex v ∈ V represents a polygonal shape, an edge e ∈ CE
exists iff the two polygonal shapes are within minimum col-
oring distance mins, and an edge e ∈ SE iff there is a stitch
candidate between the two vertices which are associated with
the same polygonal shape.

Now we give the problem formulation of quadruple pattern-
ing layout decomposition (QPLD).

Problem 1 (QPLD). Given an input layout which is speci-
fied by features in polygonal shapes and minimum coloring dis-
tance mins, the decomposition graph is constructed. Quadru-
ple patterning layout decomposition (QPLD) assigns all the
vertices into one of four colors (masks) to minimize conflict
number and stitch number.

The QPLD problem can be extended to general K-patterning
layout decomposition problem as follows.

Problem 2 (K-Patterning Layout Decomposition).
Given an input layout, the decomposition graph is constructed.
Each vertex in graph would be assigned into one of K colors
(masks) to minimize conflict number and stitch number.

2.2 Overview of Layout Decomposition Flow
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Figure 2: Proposed layout decomposition flow.

The overall flow of our layout decomposition is summarized
in Fig. 2. We first construct decomposition graph to trans-
form the original geometric patterns into a graph model. By

this way, the QPLD problem can be formulated as 4 color-
ing on the decomposition graph. To reduce the problem size,
graph division techniques (see Section 4) are applied to par-
tition the graph into a set of components. Then the color
assignment problem can be solved independently for each com-
ponent, through a set of algorithms discussed in Section 3.

3. COLOR ASSIGNMENT IN QPLD
Given decomposition graph G = {V,CE, SE}, color assign-

ment would be carried out to assign each vertex into one of
four colors (masks), to minimize both the conflict number and
the stitch number. In this section, we propose two color assign-
ment algorithms, i.e., semidefinite programming (SDP) based
algorithm, and linear color assignment.

3.1 SDP Based Color Assignment
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Figure 3: Four vectors correspond to four colors.

Semidefinite programming (SDP) has been successfully ap-
plied to triple patterning layout decomposition [4, 10]. Here
we will show that SDP formulation can be extended to solve
QPLD problem. To represent four different colors (masks), as
illustrated in Fig. 3, four unit vectors are introduced [16]:
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We construct the vectors in such a way that inner product
for any two vectors ~vi, ~vj satisfying: ~vi · ~vj = 1 if ~vi = ~vj ;
~vi · ~vj = − 1

3
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Based on the vector definition, the QPLD problem can be
formulated as the following vector programming:
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where the objective function is to minimize the conflict number
and the stitch number. α is a user-defined parameter, which is
set as 0.1 in this work. After relaxing the discrete constraints
in (1) and removing the constant in objective function, we
redraw the following semidefinite programming (SDP) formu-
lation.

min
∑

eij∈CE

~vi · ~vj − α
∑

eij∈SE

~vi · ~vj (2)

s.t. ~vi · ~vi = 1, ∀i ∈ V

~vi · ~vj ≥ −
1

3
, ∀eij ∈ CE

After solving the SDP, we get a set of continuous solutions
in matrix X, where each value xij in matrix X corresponds
to vi · vj . If xij is close to 1, vertices vi, vj are tend to be



in the same mask (color). A greedy mapping algorithm [4]
can be directly applied here to get color assignment solution.
However, the performance of greedy method may not be good.

Algorithm 1 SDP + Backtrack

Input: SDP solution xij , threshold value tth;
1: for all xij ≥ tth do
2: Combine vertices vi, vj into one larger vertex;
3: end for
4: Construct merged graph G′ = {V ′, CE′, SE′};
5: BACKTRACK(0, G′);
6: return color assignment result in G′;

7: function BACKTRACK(t, G′)
8: if t ≥ size[G′] then
9: if Find a better color assignment then

10: Store current color assignment;
11: end if
12: else
13: for all legal color c do;
14: G′[t]← c;
15: BACKTRACK(t+ 1, G′);
16: G′[t]← −1;
17: end for
18: end if
19: end function

To overcome the limitation of the greedy method, in our
framework a backtrack based algorithm (see Algorithm 1) is
proposed to consider both SDP results and graph information.
The backtrack based method accepts two arguments of the
SDP solution {xij} and a threshold value tth. In our work
tth is set as 0.9. As discussed above, if xij is close to be 1,
two vertices vi and vj tend to be in the same color (mask).
Therefore, we scan all pairs, and combine some vertices into
one larger vertex (lines 1 − 3). After the combination, the
vertex number can be reduced, thus the graph has be simplified
(line 4). The simplified graph is called merged graph [10]. On
the merged graph, BACKTRACK algorithm is presented to
search an optimal color assignment (lines 7− 19).

3.2 Linear Color Assignment
Backtrack based method may still involve runtime overhead,

especially for complex case where SDP solution cannot provide
enough merging candidates. Therefore, an efficient color as-
signment is required. At first glance, the color assignment for
quadruple patterning can be solved through four color map
theorem [17] that every planar graph is 4-colorable. However,
in emerging technology node, the designs are so complex that
we observe many K5 or K3,3 structures, where K5 is the com-
plete graph on five vertices, while K3,3 is the complete bipar-
tite graph on six vertices. Due to Kuratowski’s theorem [18],
the decomposition graph is not planar, thus classical four col-
oring techniques [19] is hard to be applied.

Here we propose an efficient color assignment algorithm.
Note that our method is targeting general graph, not just pla-
nar graph. In addition, different from classical four coloring
method that needs quadratic runtime [19], our color assign-
ment is a linear runtime algorithm.

The details of linear color assignment is summarized in Al-
gorithm 2, which involves three stages. The first stage is iter-
atively vertex removal. For each vertex vi, we denote its con-
flict degree dconf (vi) as number of conflict edges incident to vi,

Algorithm 2 Linear Color Assignment

Input: Decomposition graph G = {V,CE, SE}, Stack S;
1: while ∃vi ∈ V s.t. dconf (vi) < 4 & dstit(vi) < 2 do
2: S.push(vi);
3: G.delete(vi);
4: end while
5: Construct vector vec;
6: C1 = SEQUENCE-COLORING(vec);
7: C2 = DEGREE-COLORING(vec);
8: C3 = 3ROUND-COLORING(vec);
9: C = best coloring solution among {C1, C2, C3};

10: POST-REFINEMENT(vec);
11: while !S.empty() do
12: vi = S.pop();
13: G.add(vi);
14: c(vi)← a legal color;
15: end while
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Figure 4: (a) Decomposition graph; (b) Greedy color-
ing with one conflict; (c) a is detected as color-friendly
to d; (d) Coloring considering color-friendly rules.

while its stitch degree dstit(vi) as number of stitch edges. The
main idea is that the vertices with conflict degree less than 4
and stitch degree less than 2 are identified as non-critical, thus
can be temporarily removed and pushed into stack S (lines 1-
4). After coloring remaining vertices, each vertex in stack S
would be pop up one by one and assigned one legal color (lines
11-15). This strategy is safe in terms of conflict number. In
other words, when a vertex is pop up from S, there is always
one color available without introducing new conflict.

In the second stage (lines 5-9), all remaining vertices would
be assigned colors one by one. However, color assignment
through one specific order may be stuck at local optimum
which stems from the greedy nature. For example, given a
decomposition graph in Fig. 4 (a), if the coloring order is
a-b-c-d-e, when vertex d is greedily selected grey color, the
following vertex e cannot find any color without conflict (see
Fig. 4 (b)). In other words, vertex ordering significantly im-
pacts the coloring result.

To alleviate the impact of vertex ordering, two strategies are
proposed. The first strategy is called color-friendly rules, as
in Definition 2. In Fig. 4 (c), all conflict neighbors of pattern d
are labeled inside a grey box. Since the distance between a and
d is within the range of (mins,mins + hp), a is color-friendly
to d. Interestingly, we discover a rule that for a complex/dense
layout, color-friendly patterns tend to be with the same color.
Based on these rules, during linear color assignment, to de-
termine one vertex color, instead of just comparing its con-



flict/stitch neighbors, the colors of its color-friendly vertices
would also be considered. Detecting color-friendly vertices is
similar to the conflict neighbor detection, thus it can be fin-
ished during decomposition graph construction without much
additional efforts.

Definition 2 (Color-Friendly). A pattern a is color-friendly
to pattern b, iff their distance is larger than mins, but smaller
than mins + hp. Here hp is the half pitch.

Our second strategy is called peer selection, where three
different vertex orders would be processed simultaneously, and
the best one would be selected as the final coloring solution
(lines 6-8). Although color assignment is solved thrice, since
for each order the coloring is in linear time, the total compu-
tational time is still linear.

In the third stage (line 10), post-refinement greedily checks
each vertex to see whether the solution can be further im-
proved.

For a decomposition graph with color-friendly information
and n vertices, in the first stage vertex removal/pop up can be
finished in O(n). In the second stage, as mentioned above the
coloring needs O(n). In post-refinement stage, all vertices are
traveled once, which requires O(n) time. Therefore, the total
complexity is O(n).

4. GRAPH DIVISION FOR QPLD
Graph division is a technique that partitions the whole de-

composition graph into a set of components, then the color
assignment on each component can be solved independently.
In our framework, the techniques extended from previous work
are summarized as follows, (1) Independent Component Com-
putation [4–10, 13]; (2) Vertex with Degree Less than 3 Re-
moval [4,8–10] 1; (3) 2-Vertex-Connected Component Compu-
tation [8–10].

4.1 GH-Tree based 3-Cut Removal
Another technique, cut removal, has been proven powerful

in double/patterning layout decomposition [4, 7, 8]. A cut of
a graph is an edge whose removal disconnects the graph into
two components. The definition of cut can be extended to 2-
cur (3-cut), which is a double (triplet) of edges whose removal
would disconnect the graph. However, different from the 1-
cut and 2-cut detection that can be finished in linear time [8],
3-cut detection is much more complicated. In this subsection
we propose an effective 3-cut detection method. Besides, our
method can be easily extended to detect any K-cut (K ≥ 3).
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Figure 5: An example of 3-cut detection and removal.

1In QPLD problem, the vertices with degree less than 4 would
be detected and removed temporally.
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Figure 6: (a) Decomposition graph; (b) Correspond-
ing GH-tree; (c) Components after 3-cut removal.

Fig . 5 (a) shows a graph with a 3-cut (a−d, b−e, c−f), and
two components can be derived by removing this 3-cut. After
color assignment on two components, for each cut edge, if the
colors of the two endpoints are different, the two components
can be merged directly. Otherwise, a color rotation operation
is required to one component. For vertex v in graph, we denote
c(v) as its color, where c(v) ∈ {0, 1, 2, 3}. Vertex v is said to
be rotated by i, if c(v) is changed to (c(v) + i)%4. It is easy
to see that all vertices in one component should be rotated by
the same value, so no additional conflict is introduced within
the component. An example of such color rotation operation is
illustrated in Fig. 5 (b)-(c), where conflict between vertices c, f
would be removed to interconnect two components together.
Here all the vertices in component 2 are rotated by 1 (see Fig.
5 (c)). We have the following Lemma:

Lemma 1. In QPLD problem, color rotation after intercon-
necting 3-cut does not increase the conflict number.

In addition, to detect all 3-cuts, we have the following Lemma:

Lemma 2. If the minimum cut between two vertices vi and
vj is less than 4, then vi, vj belong to different components
that divided by a 3-cut.

Based on Lemma 2, we can see that if the cut between ver-
tices vi, vj is larger or equal to 4 edges, vi, vj should belong
to the same component. One straightforward 3-cut detection
method is to compute the minimum cuts for all the {s − t}
pairs. However, for a decomposition graph with n vertices,
there are n(n − 1)/2 pairs of vertices. Computing all these
cut pairs may spend too long runtime, which is impractical
for complex layout design.

Gomory and Hu [20] showed that the cut values between all
the pairs of vertices can be computed by solving only n − 1
network flow problems on graph G. Furthermore, they showed
that the flow values can be represented by a weighted tree T
on the n vertices, where for any pair of vertices (vi, vj), if e
is the minimum weight edge on the path from vi to vj in T ,
then the minimum cut value from vi to vj in G is exactly
the weight of e. Such a weighted tree T is called Gomory-Hu
tree (GH-tree). For example, given the decomposition graph
in Fig. 6 (a), the corresponding GH-tree is shown in Fig. 6
(b), where the value on edge eij is the minimum cut number
between vertices vi and vj . Because of Lemma 2, to divide
the graph through 3-cut removal, all the edges with value less
than 4 would be removed. The final three components are in
Fig. 6 (c).

The procedure of the 3-cut removal is shown in Algorithm 3.
Firstly we construct GH-tree based on the algorithm by [21]
(line 1). Dinic’s blocking flow algorithm [22] is applied to help
GH-tree construction. Then all edges in the GH-tree with
weights less than four are removed (line 2). After solving the
connected component problem (line 3), we can assign colors to



Algorithm 3 GH-tree based 3-Cut Removal

Input: Decomposition graph G = {V,CE, SE};
1: Construct GH-tree as in [21];
2: Remove the edges with weight < 4;
3: Compute connected components on remaining GH-tree;
4: for each component do
5: Color assignment on this component;
6: end for
7: Color rotation to interconnect all components;

each component separately (lines 4−5). At last color rotation
is applied to interconnect all 3-cuts back (line 6).

5. GENERAL K-PATTERNING LAYOUT DE-
COMPOSITION

In this section, we demonstrate that our layout decomposi-
tion framework is generalizable to K-patterning layout decom-
position, where K > 4.

Theorem 1: SDP formulation in (3) can provide vi · vj pairs
for K-patterning color assignment problem.

min
∑

eij∈CE

(~vi · ~vj +
1

k − 1
) + α

∑
eij∈SE

(1− ~vi · ~vj) (3)

s.t. ~vi · ~vi = 1, ∀i ∈ V

~vi · ~vj ≥ −
1

k − 1
, ∀eij ∈ CE

We can see that if K = 4, formulation (3) equivalents to
(2). Rephrasing both the SDP formulation in (3) and back-
track method in Algorithm 1, the color assignment problem
for K-patterning can be resolved. In addition, the linear color
assignment algorithm in Section 3.2 can be extended to general
K-patterning problem as well.

All the graph division techniques in Section 4 can be ex-
tended here. Besides, we draw the following Theorem:

Theorem 2: For K-patterning layout decomposition problem,
dividing graph through (K−1)-cut does not increase the final
conflict number.

The proof can be provided by extending Lemma 1. Based on
Theorem 2, GH-tree based cut removal in Section 4 can be ap-
plied here to search all (K−1)-cuts. That is, after constructing
GH-tree, all edges with weight less than K are removed.

6. EXPERIMENTAL RESULTS
We implemented the proposed layout decomposition algo-

rithms in C++, and tested on a Linux machine with 2.9GHz
CPU. We choose GUROBI [23] as the integer linear program-
ming (ILP) solver, and CSDP [24] as the SDP solver. The
benchmarks in [4,8] are used as our test cases. We scale down
the Metal1 layer to 20nm half pitch. Both the minimum fea-
ture width wm and the minimum spacing between features
sm are 20nm. From Fig. 7 we can see that when minimum
coloring distance mins = 2 · sm + wm = 60nm, even one di-
mension regular patterns can be a K5 structure, which is not
4-colorable or planar [18]. In our experiments, for quadruple
patterning mins is set as 2 · sm + 2 · wm = 80nm, while for
pentuple patterning mins is set as 3 · sm + 2.5 ·wm = 110nm.
When larger mins is applied, there are too many native con-
flicts in layouts, as the benchmarks are not multiple patterning
friendly.

(a)

2 · sm + wm

wm

sm

(b)

Figure 7: mins = 2 · sm + wm may cause K5 structure.

6.1 Quadruple Patterning
First we compare different color assignment algorithms for

quadruple patterning, and the results are listed in Table 1.
“ILP”, “SDP+Backtrack”, “SDP+Greedy” and “Linear”
denote ILP formulation, SDP followed by backtrack mapping
(Section 3.1), SDP followed by greedy mapping, and linear
color assignment (Section 3.2), respectively. Here we imple-
ment an ILP formulation extended from the triple patterning
work [4]. In SDP+Greedy, a greedy mapping from [4] is ap-
plied. All the graph division techniques, including GH-tree
based division, are applied. The columns “cn#” and “st#” de-
note the conflict number and the stitch number, respectively.
Column “CPU(s)” is color assignment time in seconds.

From Table 1 we can see that for small cases the ILP for-
mulation can achieve best performance in terms of conflict
number and stitch number. However, for large cases (S38417,
S35932, S38584, S15850) ILP suffers from long runtime prob-
lem that none of them can be finished in one hour. Compared
with ILP, SDP+Backtrack can achieve near-optimal solutions,
i.e., in every case the conflict number is optimal, while only in
one case 2 more stitches are introduced. SDP+Greedy method
can achieve 2× speedup against SDP+Backtrack. But the
performance of SDP+Greedy is not good that for complex de-
signs hundreds of additional conflicts are reported. The linear
color assignment can achieve around 200× speedup against
SDP+Backtrack, while only 15% more conflicts and 8% more
stitches are reported.

6.2 Pentuple Patterning
We further compare the algorithms for pentuple patterning,

that is, K = 5. To our best knowledge there is no exact ILP
formulation for pentuple patterning in literature. Therefore we
consider three baselines, i.e., SDP+Backtrack, SDP+Greedy,
and Linear. All the graph division techniques are applied.
Table 2 evaluates six most dense cases. We can see that com-
pared with SDP+Backtrack, SDP+Greedy can achieve around
8× speedup, but 15% more conflicts are reported. In terms of
runtime, linear color assignment can achieve 500× and 60×
speedup, against SDP+Backtrack and SDP+Greedy, respec-
tively. In terms of performance, linear color assignment re-
ports the best conflict number minimization, but more stitches
may be introduced.

Interestingly, we observe that when a layout is multiple pat-
terning friendly, color-friendly rules can provide a good guide-
line, thus linear color assignment can achieve high performance
in terms of conflict number. However, when a layout is very
complex or involving many native conflicts, linear color as-
signment reports more conflicts than SDP+Backtrack. One
possible reason is that the color-friendly rules are not good
in modeling global conflict minimization, but both SDP and
backtrack provide a global view.

7. CONCLUSIONS
In this paper we have proposed the first layout decompo-



Table 1: Comparison for Quadruple Patterning

Circuit
ILP SDP+Backtrack SDP+Greedy Linear

cn# st# CPU(s) cn# st# CPU(s) cn# st# CPU(s) cn# st# CPU(s)
C432 2 0 0.6 2 0 0.24 2 0 0.02 2 1 0.001
C499 1 4 0.7 1 4 0.16 1 4 0.05 1 4 0.001
C880 1 0 0.3 1 0 0.02 1 0 0.02 1 2 0.001
C1355 0 4 0.6 0 4 0.1 0 4 0.04 0 4 0.001
C1908 2 3 1.0 2 3 0.28 2 3 0.09 2 4 0.001
C2670 0 6 1.1 0 6 0.16 0 6 0.1 0 7 0.001
C3540 1 3 1.1 1 3 0.09 2 2 0.05 1 3 0.001
C5315 1 13 2.8 1 13 0.6 2 12 0.24 1 15 0.002
C6288 9 0 2.3 9 0 0.36 9 0 0.17 9 1 0.001
C7552 2 13 3.4 2 13 0.6 3 12 0.22 2 18 0.003
S1488 0 6 0.7 0 6 0.05 4 2 0.01 0 6 0.001
S38417 20 549 1226.7 20 551 6.6 142 429 2.7 21 576 0.03
S35932 N/A N/A >3600 50 1745 28.7 460 1338 16.4 64 1927 0.15
S38584 N/A N/A >3600 41 1653 21.1 470 1224 10.4 47 1744 0.12
S15850 N/A N/A >3600 42 1462 18 420 1084 7.8 48 1571 0.11

avg. - - >802.7 11.5 364.0 5.14 101.2 274.7 2.56 13.3 392.2 0.03
ratio - - >156.3 1.0 1.0 1.0 8.83 0.75 0.49 1.15 1.08 0.005

Table 2: Comparison for Pentuple Patterning

Circuit
SDP+Backtrack SDP+Greedy Linear

cn# st# CPU(s) cn# st# CPU(s) cn# st# CPU(s)
C6288 19 2 2.4 19 2 0.49 19 5 0.005
C7552 1 1 0.3 1 1 0.05 1 4 0.001
S38417 0 4 1.45 0 4 0.21 0 4 0.001
S35932 5 20 8.11 5 20 0.62 5 25 0.009
S38584 3 4 1.66 7 3 0.3 3 6 0.008
S15850 6 5 2.7 7 5 0.4 5 15 0.007

avg. 5.7 6.0 2.77 6.5 5.83 0.35 5.5 9.8 0.005
ratio 1.0 1.0 1.0 1.15 0.97 0.12 0.97 1.64 0.002

sition framework for quadruple patterning and beyond. Ex-
perimental evaluations have demonstrated that our algorithm
is effective and efficient to obtain high quality solution. As
continuing scaling of technology node to sub-10nm, MPL may
be a promising manufacturing solution. We believe this pa-
per will stimulate more future research into this field, thereby
facilitating the advancement of MPL technology.
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