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Highlights

The first endeavor to apply controllable text generation to engineering

optimization challenges, i.e. in Electronic Design Automation (EDA).

The first downstream task-driven method for Verilog generation by adopting

the generative discriminator.

BetterV demonstrates the capacity to generate Verilog that surpasses GPT-4

when evaluated on the VerilogEval benchmark.

Background

LLMs based Verilog Generation

Given the natural language descriptions as input, the large language models

(LLMs) try to output the Verilog code. The generated Verilog is expected to be

syntactically and functionally correct.

Syntactic correctness. The Verilog obeys the rules and structure defined by

the Verilog language specification.

Functional correctness. The Verilog satisfies the requirements from the

natural language descriptions.
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Figure 1. The Flow of LLMs based Verilog Generation

Existing Solutions

Existing Verilog generation works focus on fine-tuning the LLMs with customized

datasets and developing evaluation benchmarks.

Some problem-sets are constructed as requirements to the generation, and

some testbenches are used to evaluate the functionality [thakur2023benchmark-

ing],[liu2023verilogeval].

Existing Challenges

Three challenges need to be addressed to enhance the performance and practi-

cability of LLM based Verilog generation:

Complicated requirements of Hardware designs: The complex and strict

requirements of hardware designs restrain LLMs from learning and

understanding the knowledge related to Verilog.

Limited Verilog resources: There are limited Verilog resources available

globally, which often leads to problems of overfitting and data bias during

LLM fine-tuning.

EDA downstream tasks: The Electornic Design Automation (EDA)

downstream tasks should be further considered. However, it is difficult for

LLM to understand the downstream tasks, which involve customized and

complex definitions.
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Figure 2. The overview of BetterV

We propose a framework, BetterV, for controlled verilog generation.

Code Knowledge Transfer: We design a novel instruct-tuning process to

aligns Verilog to C, which helps transfer the knowledge of LLMs on general

code to Verilog.

Discriminative Guidance: We utilize a generative discriminator to guide the

LLMs to generate or modify Verilog implementations directly from natural

language, towards specific optimization on downstream tasks.

Data Augmentation: We implement a simple but effective solution to

augment data for Verilog scarcity.

Methodology

Code Knowledge TransferWe firstly use the toolV2C to convert the Verilog into

C. Then the Verilog-C pairs are used as dataset for LLMs instruct-tuning, which

drives the alignment from C to Verilog.
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Figure 3. The pipeline of Code Knowledge Transfer

Discriminative GuidanceWe employ generative discriminator to guide LLMs on

specific Electronic Design Automation (EDA) tasks, which will give optimization

on the Verilog implementation.
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Figure 4. The pipeline of Discriminative Guidance

Experiments

Functional Correctness: BetterV-CodeQwen have achieved the state-of-the-art

performance on VerilogEval with pass@1 outperforms GPT-4.

Model
VerilogEval-machine VerilogEval-human

pass@1 pass@5 pass@10 pass@1 pass@5 pass@10

GPT-3.5 46.7 69.1 74.1 26.7 45.8 51.7
GPT-4 60.0 70.6 73.5 43.5 55.8 58.9

CodeLlama 43.1 47.1 47.7 18.2 22.7 24.3
DeepSeek 52.2 55.4 56.8 30.2 33.9 34.9
CodeQwen 46.5 54.9 56.4 22.5 26.1 28.0
ChipNeMo 43.4 - - 22.4 - -
Thakur et al. 44.0 52.6 59.2 30.3 43.9 49.6
VerilogEval 46.2 67.3 73.7 28.8 45.9 52.3

RTLCoder-Mistral 62.5 72.2 76.6 36.7 45.5 49.2
RTLCoder-DeepSeek 61.2 76.5 81.8 41.6 50.1 53.4
BetterV-CodeLlama 64.2 75.4 79.1 40.9 50.0 53.3
BetterV-DeepSeek 67.8 79.1 84.0 45.9 53.3 57.6
BetterV-CodeQwen 68.1 79.4 84.5 46.1 53.7 58.2

Downstream-task optimization: BetterV can optimize the Verilog implementa-

tion towards Synthesis nodes reduction and Verification runtime reduction.

Problem Ref BetterV-base BetterV Com Base Com Ref

ece241_2013_q8 657 333.5 255.3 23.44% 61.14%
m2041_q6 1370 692.7 685.6 1.03% 49.95%
counter_2bc 673 666.2 518.9 22.11% 22.89%

review2015_count1k 487 493.4 402.6 18.44% 17.33%
timer 498 294.3 247.3 15.97% 50.34%

edgedetect2 58 189.9 47.4 75.03% 18.27%
counter1to10 325 266.3 240.3 9.76% 26.06%
2013_q2afsm 826 308.8 296.6 3.95% 64.09%

dff8p 50 42.3 37.8 10.63% 24.4%
fsm3comb 844 167.9 104.4 37.82% 87.63%
rule90 6651 12435.6 4536.9 63.52% 31.79%

mux256to1v 2376 2439.6 557.2 77.16% 76.54%
fsm2 389 186.53 121.9 34.65% 68.66%
fsm2s 396 163.7 144.1 11.97% 63.61%

ece241_2013_q4 2222 1789.5 897.4 49.85% 59.61%
conwaylife 43794 547400.3 27037.4 95.06% 38.26%
count_clock 3187 2497.5 2222.2 11.02% 30.27%
countbcd 1589 932.0 849.3 8.87% 46.55%

Design
Ref BetterV-base BetterV

Com Base Com Ref
(s) (s) (s)

b03 1.233 1.252 0.857 31.54% 30.49%
b06 0.099 0.083 0.078 6.02% 21.21%
Spinner 1.577 1.343 1.064 20.77% 32.53%

traffic_light_example 0.583 0.497 0.480 3.42% 17.67%
Rotate 1.153 1.126 1.034 8.17% 10.32%
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