

Fracturing-aware Curvilinear ILT via **Circular E-beam Mask Writer**

Xinyun Zhang, Su Zheng, Guojin Chen, Binwu Zhu, Hong Xu, Bei Yu

The Chinese University of Hong Kong

SHAPING THE NEXT GENERATION OF ELECTRONICS

Introduction

Figure 1. Fracturing pattern comparison. Circular fracturing requires much fewer shots for curvilinear masks compared with rectangular fracturing and is MRC-friendly.

Motivation:

• Traditional Variable Shaped-Beam (VSB) machines utilize varying sizes of rectangular shapes, requiring Mask Data Preparation (MDP) to fracture these shapes into non-overlapping rectangles or VSB shots for printability.

Optimization-based method: CircleOpt

- Pixel-level initialization
- Sparse circular re-parameterization
- Differentiable circle-to-pixel transformation

- The Manhattanization-based fracturing of curvilinear shapes, especially small sub-resolution assist features (SRAFs), results in a substantial increase in the number of shots.
- [2] introduces a new circular e-beam mask writer that writes a variable-radius circle for each shot and allows overlapping writing, as shown in Figure 1b.
- The circular mask writer requires **much fewer shots** than rectangular-based ones.
- The circularly fractured curvilinear masks are also mask rule checking (MRC)-friendly since we can effortlessly check the distances between the circular shots with their positions and radii.

Problem Formulation:

Given a target pattern T, our goal is to obtain a mask M, which is perfectly fractured into a set of overlapping circles with a radius within a proper range, to minimize the squared L2 loss, PVB and the shot count.

Rule-based method: CircleRule

Overview

- Find the skeleton in each shape.
- Construct the skeleton graph, as shown in Figure 2a.
- Sample the circle centers.
- Find a proper radius for each circle, as shown in Figure 2b.

Figure 3. Overall flow of CircleOpt.

Differentiable circle-to-pixel transformation:

Quantization of the coordinates and radius using a straight-through estimator (STE).

Figure 4. Visualization of the straight-through estimator. (a) STE forward; (b) STE backward.

• For each circle, we define a window function as:

$$f_{x'_i,y'_i,r'_i}(x,y) = \frac{1}{1+e^{-\alpha(-\sqrt{(x-x'_i)^2 + (y-y'_i)^2} + r'_i)}},$$
(1)

where (x, y) are the variables and can be any position in a 2D dense mask, and α is a hyper-parameter for adjusting the steepness of the window function.

• With this window function, we can define the transformation as:

$$\bar{\boldsymbol{M}}(x,y) = \max_{i \in \{1,\cdots,n\}} \{ q_i f_{x'_i,y'_i,r'_i}(x,y) \}.$$

This transformation is differentiable. A schematic illustration is shown in Figure 5.

(2)

Figure 2. Illustration of the key steps in CircleRule. (a) Construction of the skeleton graph; (b) the spanning process of the circle radius.

Algorithm 1 The Rule-based Method for CFAOPC

- 1: Input: Raw mask A, sample distance m, maximum radius R_{max} , minimum radius R_{min} , cover rate threshold *I*.
- 2: **Output**: Circular fractured mask \hat{A} .
- 3: Initialize an empty stack t;
- 4: $V \leftarrow \emptyset, \tilde{A} \leftarrow \emptyset;$
- 5: $\{A_1, \cdots, A_n\} \leftarrow \texttt{findConnectedRegions}(A);$
- 6: for $i \in \{1, \cdots, n\}$ do
- $S_i \leftarrow \texttt{findSkeleton}(A_i);$
- Randomly sample a point p_i in S_i ; 8:
- Push $(p_i, 0)$ to t; 9:
- while t is not empty do 10:
- $(u, cnt) \leftarrow \mathsf{Pop} t;$ 11:
- if u not in V then 12:
- $V \leftarrow V \cup u;$ 13:

15:

16:

17:

19:

20:

- $N \leftarrow \texttt{findNeighborPoints}(u);$ 14:
 - for $n \in N$ do
 - if $n \notin V$ then
 - Push (n, cnt + 1) to t;
- if $cnt \mod m == 0$ then 18:
 - for $r \in \{R_{\min}, \cdots, R_{\max}\}$ do
 - cover rate $\leftarrow \frac{|C(u,r) \cap A_i|}{|C(u,r) \cap A_i|}$

▷ DFS-based point sampling

Figure 5. Schematic illustration of the updates of the circular representations from the gradient of the dense mask $ar{M}$.

Experiments

Main results:

Table 1. Mask Printability, Complexity Comparison for CircleRule and CircleOpt.

Deficit Area(nm ⁺⁺⁾ L_2 PVBEPE #Shot L_2 PVBEPEEPEcase12153445963251087231025300557775131704929346945825343358469053case2169280532404299319804566253770131283958338565223635496379201case321350410734270906692059311692536612131052176438169242752066624132case482560215122562374418912288736731420923649216413205232341case528195853242527064140527145357581923239851711031734938531101case628623452837485955203488055220071903876748290131336797446290case722914936973431240146245604735301461739138744033521036411180case81285441820923917165167302711428912516<	
case1 215344 59632 51087 23 102 53005 57775 13 170 49293 46945 8 253 43358 46905 3 case2 169280 53240 42993 19 80 45662 53770 13 128 39583 38565 2 236 35496 37920 1 case3 213504 107342 70906 69 205 93116 92536 61 213 105217 64381 69 242 75206 66241 32 case4 82560 21512 25623 7 44 18912 28873 6 73 14209 23649 2 164 13205 23234 1 case5 281958 53242 52706 4 140 52714 53575 8 192 32398 51711 0 317 34938 53110 1 case6 286234 52837 48595 5 203 48805 52200 7 190 38767 48290	#Shot
case2 169280 53240 42993 19 80 45662 53770 13 128 39583 38565 2 236 35496 37920 1 case3 213504 107342 70906 69 205 93116 92536 61 213 105217 64381 69 242 75206 66241 32 case4 82560 21512 25623 7 44 18912 28873 6 73 14209 23649 2 164 13205 23234 1 case5 281958 53242 52706 4 140 52714 53575 8 192 32398 51711 0 317 34938 53110 1 case6 286234 52837 48595 5 203 48805 52200 7 190 38767 48290 1 313 36797 44629 0 case7 229149 36973 43124 0 146 24560 47353 0 146 17391 38744	214
case3 213504 107342 70906 69 205 93116 92536 61 213 105217 64381 69 242 75206 66241 32 case4 82560 21512 25623 7 44 18912 28873 6 73 14209 23649 2 164 13205 23234 1 case5 281958 53242 52706 4 140 52714 53575 8 192 32398 51711 0 317 34938 53110 1 case6 286234 52837 48595 5 203 48805 52200 7 190 38767 48290 1 313 36797 44629 0 case7 229149 36973 43124 0 146 24560 47353 0 146 17391 38744 0 335 21036 41118 0 case7 128544 18209 22917 1 65 16730 27114 2 89 12516 19968 <t< th=""><th>215</th></t<>	215
case4 82560 21512 25623 7 44 18912 28873 6 73 14209 23649 2 164 13205 23234 1 case5 281958 53242 52706 4 140 52714 53575 8 192 32398 51711 0 317 34938 53110 1 case6 286234 52837 48595 5 203 48805 52200 7 190 38767 48290 1 313 36797 44629 0 case7 229149 36973 43124 0 146 24560 47353 0 146 17391 38744 0 335 21036 41118 0 case8 128544 18209 22917 1 65 16730 27114 2 89 12516 19968 0 181 13906 19959 0	194
case5 281958 53242 52706 4 140 52714 53575 8 192 32398 51711 0 317 34938 53110 1 case6 286234 52837 48595 5 203 48805 52200 7 190 38767 48290 1 313 36797 44629 0 case7 229149 36973 43124 0 146 24560 47353 0 146 17391 38744 0 335 21036 41118 0 case8 128544 18209 22917 1 65 16730 27114 2 89 12516 19968 0 181 12006 19859 0	104
case6 286234 52837 48595 5 203 48805 52200 7 190 38767 48290 1 313 36797 44629 0 case7 229149 36973 43124 0 146 24560 47353 0 146 17391 38744 0 335 21036 41118 0 case8 128544 18209 22917 1 65 16730 27114 2 89 12516 19968 0 181 13006 19859 0	172
case7 229149 36973 43124 0 146 24560 47353 0 146 17391 38744 0 335 21036 41118 0 case7 128544 18209 22917 1 65 16730 27114 2 89 12516 19968 0 181 12906 19859 0	252
	175
Caseo 120344 10207 22717 1 03 10730 27114 2 07 12310 17700 0 101 13700 17037 0	169
case9 317581 62119 59295 8 214 53743 70986 9 221 40871 58311 1 407 47844 54625 1	251
case10 102400 27205 16825 8 39 9959 20025 0 77 9034 16694 0 152 9107 16969 0	83
Average 49231.1 43407.1 14.4 123.8 41720.6 50420.7 11.9 149.9 35790.0 40725.0 8.3 260.0 33089.3 40451.5 3.9	182.9

 L_2 and PVB unit: nm^2

Circle radius selection

References

[1] Guojin Chen, Ziyang Yu, Hongduo Liu, Yuzhe Ma, and Bei Yu. DevelSet: Deep neural level set for instant mask optimization. In Proc. ICCAD, 2021.

[2] Aki Fujimura, David Kim, Tadashi Komagata, Yasutoshi Nakagawa, Vikram Tolani, and Tom Cecil. Best depth of focus on 22-nm logic wafers with less shot count. In Kunihiro Hosono, editor, Photomask and Next-Generation Lithography Mask Technology XVII, volume 7748, page 77480V. International Society for Optics and Photonics, SPIE, 2010.

[3] Bentian Jiang, Lixin Liu, Yuzhe Ma, Bei Yu, and Evangeline FY Young. Neural-ILT 2.0: Migrating ilt to domain-specific and multitask-enabled neural network. IEEE TCAD, 2021.

[4] Shuyuan Sun, Fan Yang, Bei Yu, Li Shang, and Xuan Zeng. Efficient ilt via multi-level lithography simulation. In Proc. DAC, 2023.

ACM/IEEE Design Automation Conference (DAC) 2024, San Francisco