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Analog Routing Problem

Analog circuit routing is critical to optimal performance, but obtain-
ing a decent circuit layout requires significant time and expertise.

Figure 1. The placed comparator. Figure 2. The routing solution.

Existing Heuristic Constraint-based Methods

Ou et al. propose different levels of geometrical matching con-
straints [4].
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Figure 3. (a) Symmetric constraint. (b) Common-centroid constraint. (c)
Topology-matching constraint. (d) Length-matching constraint.

Other works optimize power routing [3] and propose shielding crit-
ical nets [2].

sernsiive not

shiel dimg ne
»  forward direetion

shigld=0 Jhickd=1

] =

shicld=2 shicld=3

Figure 5. Shielding critical

. . : nets.
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A ML-Guided Analog Routing Problem

Can we automatically summarize the human layout intelligence
leveraging ML? [5]

Placement

Explicated Constraints + Routing

Heuristic constraints Use a set of detailed heuristics as routing con-
straints.

Symmetric Constraints
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Routing guidance Routing strategies learned from human
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= Extract training data where the human would likely route the
nets.

= Predict a 2D probability map of the routing likelihoods.
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= | everaging variational autoencoder (VAE) to reconstruct the
routing solutions.

Existing Problems

= Problem #1 The human experts’ layout data is pretty scarce.

= Problem #2 Fail to deal with designs of different sizes or aspect
ratios and resource competition between different pins close to
each other.

= Problem #3 The generative model makes it hard to guarantee a
performance boost.
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Methodology

= We introduce a performance-driven analog routing approach.

= A non-uniform routing guidance is proposed to address sparsity
issues by assigning routing guidance to different nets.

= A a customized AnalogFold framework is proposed to enable
accurate modeling of the performance potential of routing
guidance.

Problem #1. Performance-Driven Analog Routing
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= We introduce a performance-driven analog routing approach.

= Learn from the automatically generated routing patterns and
their simulation results.

Problem #2: Non-uniform Routing Guidance

Figure 6. (a) Two examples of non-uniform routing guidance; (b) The 3D
visualization.

= We propose a non-uniform and adaptive routing guidance,
which assigns different routing guidance ¢; along different
directions for each net n..

= Adapt the route guide distribution to areas with different
densities and support a 3D cost map.

Problem #3: AnalogFold for Performance
Relaxation
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Routing Guide
= AnalogFold contains a heterogeneous routing graph, a

protein-inspired SDGNN network, and a pool-aided potential
relaxation process.

Heterogeneous Graph for Analog Routing We design a heteroge-
neous graph Gy =< Vap, Vv, Epp, Epm, Emm > tO represent the inter-
actions between pin access points and modules.
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&yp: module-module edges

&pp: pin-pin edges

k%MP: module-pin edges

Cost-aware Distance Augmented Module We can define the dis-
tance honors routing cost as follows:

Goost (Vi V) = \/ (0] - hio)? + (E[1] - wie)2 + (E2] - z1e)2. (1)

dcost (’Uk y Us )

The distance between nodes is embedded to reflect the routing
resource competition.

Performance-driven Analog Routing via Heterogeneous 3DGNN and Potential Relaxation @ DAC 2024

Protein-inspired SDGNN for Analog Routing Especially, the 3D
information in P is incorporated to update each message ey.
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= We created a differentiable model using the SDGNN to predict
the post-layout performance of the routing guidance.

= We then apply a gradient-based optimization of routing
guidance potential multiple times with different initialization to
derive the top-N routing guidance results.

Dataset

= \WWe use operational transconductance amplifiers (OTAs) as our
main benchmark designs.

Table 1. Benchmark circuits information of the number of PMQOS, number of
NMOS, number of capacitors, number of resistors, number of standard cells,
number of total modules.

Benchmark | #PMOS | #NMQOS #Cap #Res|#Total
OTA1 6 8 2 O 25
OTA2 6 8 2 O 25
OTA3 16 10 6 4 36
OTA4 16 10 6 4 36

Post-layout Performance Comparisons on OTA
benchamarks

Table 2. The summarized comparisons between baseline methods and the
proposed method on OTA{1-4}&{A-C}.

Circuits Schematic | MagicalRoute [1]  GeniusRoute [5]| PARoute (ours)
Offset Voltage(uV) | - 1.000 10.426 0.546
CMRR(dB) * - 1.000 0.998 1.163
Average | BandWidth(MHz) 1 - 1.000 1.002 1.113
DC Gain(dB) 1 : 1.000 0.999 2.368
Noise(uVims) | - 1.000 1.007 0.787
Runtime(s) | - 1.000 17.147 7.480

Runtime Breakdown

00 Inference: Guided Detailed Routing

Placement

Inference: Routing Guide Generation
B Model Training
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= Althogh the average runtime of our proposed approach is
/.48 x slower than MagicalRoute [1], it is nearly 2.29 x faster
than GeniusRoute [5] due to the simplified 3D graph structure.
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