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The convolution neural network (CNN) has been widely adopted Optimized Verilog HDL}

in computer vision tasks. In the FPGA-based CNN accelerator design,
Winograd convolution can effectively improve computation perfor-
mance and save hardware resources. However, building efficient
and highly compatible IP for arbitrary Winograd convolution on
FPGA remains underexplored. To address this issue, we propose a
novel and efficient reformulation of Winograd convolution, named
Structured Direct Winograd Convolution (SDW). We further develop
WinoGen, a Chisel-based highly configurable Winograd convolu-
tion IP generator. Given arbitrary input/output tile size and kernel
size, it can generate optimized high-performance IP automatically.
Meanwhile, our generated IP can be compatible with multiple kernel
sizes and tile sizes. Experimental results show that the IP generated
by WinoGen achieves DSP efficiency up to 3.80 GOPS/DSP and
energy efficiency up to 652.77 GOPS/W while showing 2.45X and
3.10x improvements when processing a same CNN model compared
with state-of-the-arts.

1 Introduction

With the rapid advancement of Artificial Intelligence (AI), Convo-
lutional Neural Networks (CNNs) have emerged as one of the most
prominent network architectures. To accelerate CNN computations,
FPGA-based CNN accelerators have gained significant attention, as
they offer the potential for high parallelism and energy efficiency [1].
Among the techniques used in these accelerators, Winograd convo-
lution stands out for its ability to improve computation performance
and conserve hardware resources [2]. This advantage becomes sig-
nificant when using FPGA-based accelerators, where the usage of
dedicated Digital Signal Processors (DSPs) can be minimized.

Despite the rapid pace of development in this field, the develop-
ment of efficient IP for arbitrary Winograd convolution on FPGA
remains a challenging task. The existing FPGA IP generation meth-
ods do not adequately support Winograd convolution. For instance,
[3] does not support Winograd convolution, [4] only supports 3 x 3
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Figure 1: WinoGen automation workflow.

kernel, while [5] supports 2D and 3D Winograd convolution but is
limited to a single type of kernel and input tile size. [6] introduces
processing units capable of handling multiple kernel sizes. However,
it cannot be dynamically adjusted to be compatible with different
input tile sizes. The Decomposition-based Winograd method can
dynamically adapt to different kernel or tile sizes [7]. However, this
method requires a complex input tiling and kernel tiling architec-
ture, as well as a specially designed memory hierarchy, which is not
suitable for IP-level generative architecture design.

These issues motivate us to explore Winograd hardware IP gener-
ation in three aspects: (1) Given arbitrary input/output tile size and
kernel size, how to generate Winograd IP rapidly and automatically?
(2) How to make the generated IP compatible with as many types of
Winograd Convolution as possible, without altering the hardware
architecture? (3) How to guarantee the generated IPs maintain high
DSP efficiency and energy efficiency, even for Winograd convolution
under relatively large kernel or tile sizes?

In this paper, to overcome these issues, we propose WinoGen, an
automatic Winograd convolution IP generator for CNN acceleration
on FPGA. The main contributions are listed below:

e A Chisel-based highly configurable Winograd convolution IP
generator, WinoGen, is developed via algorithm-architecture
co-design approaches.

e A Structured Direct Winograd Convolution (SDW) algorithm is
proposed as a novel and efficient reformulation of Winograd
convolution, enabling WinoGen to generate IPs according to a
given arbitrary tile size and kernel size.

o Highly paralleled and fully pipelined architecture is designed as
the IP template. The generated IPs are compatible with multiple
kernel sizes and tile sizes.

o An architecture optimizer is built based on resource and latency
models, enabling WinoGen to generate IPs with optimal config-
urations.

2 WinoGen Workflow

Our automated IP generation flow WinoGen is shown in Figure 1.
Users are required to specify Winograd convolution sizes (formu-
lated as F(k, n) in the following sections), input data width, and
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Figure 2: Winograd convolution flow defined by F(k, n).

output data width. They can specify how many input channels an
IP can compute simultaneously, or leave the decision to WinoGen.
In addition, users can provide hardware resource constraints for IP.
Then WinoGen optimizer will carry out Design Space Exploration
(DSE) to determine optimal design parameters. WinoGen and the
generated IPs have remarkable static and dynamic configurability.

o Static configurability is WinoGen’s ability to generate IP com-
patible with arbitrary forms of Winograd convolution for accel-
eration.

e Dynamic configurability indicates the generated IP’s versa-
tility, which supports multiple convolution kernel sizes and in-
put/output feature tile sizes under a unified architecture.

e WinoGen Optimizer is constructed with resource and latency
modeling, enabling DSE for IP architecture configuration.

3 Structured Direct Winograd Convolution

In this section, we will illustrate how to construct the Winograd
used in WinoGen in a hardware-friendly manner. Based on that,
Structured Direct Winograd Convolution (SDW) is proposed as a
novel and efficient Winograd convolution reformulation.

3.1 Winograd Convolution Construction
A typical Winograd convolution algorithm is depicted in Figure 2.
The two-dimensional Winograd defined by F(k, n) is described as

s=A"T [BTdBOGgG'| A, (1)

where s is a k Xk output tile, g isan nxXn kerneland d isa (k+n—1) X
(k+n—1) input feature map tile. We denote the input tile size 0 = k+
n—1 as the Winograd filter size. For the CNN inference stage, usually,
k is even and n is odd. A Winograd convolution consists of the
input transformation (U = BT dB), the kernel transformation (V =
GgGT), the element-wise multiplication (Y = U ® V) and the output
transformation (s = ATYA). The B, G and A are corresponding
transformation matrices, which are constant and determined by
Winograd parameters k, n and .

The transformation matrices (B, G and A) are generated by Cook-
Toom algorithm [8]. A generation process (using F(4,3) as an exam-
ple) has been provided in [9]. In this section, we will give a more
general derivation to show how we construct the Winograd convo-
lution implementation in WinoGen, given arbitrary k and n.

When constructing Winograd convolution defined by F(k, n),
firstly we need to select w interpolation points «; and construct a

polynomial sequence:
mi(x)=x+a;, i=01---,0-1. (2)

Usually we choose mg (x) = x and m,,—1(x) = x—o0, using a notation
similar to [9]. (x—co) denotes a special remainder term. In our design,
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For simplicity, only D; = BO T4 ; is shown.

we select interpolation points that are all powers of 2 (for hardware-
friendly consideration), and obtain:

x, i=0,
mi(x) ={x+(-)ix2l7) 0<i<w-1, 3)
X — 00, i=w-—-1,

where | -] is the floor function. For example, for F(4, 3), the sequence
will be: x, (x — 1), (x + 1), (x — 2), (x + 2), (x — o0).

Now we are ready to elucidate our Structured Direct Wino-
grad Convolution (SDW) method. It is composed of Recursive
Winograd Input Transformation (RIT) and Blockwise Wino-
grad Output Transformation (BOT). The kernel transformation is
not considered because for hardware accelerators it can be precom-
puted offline. SDW provides a unified approach to transform arbitrary
forms of Winograd input transformation and output transformation
into addition, subtraction, and shift operations. It does not need
decomposition-based methods used in [7, 10] when handling large
kernels or tiles, thus avoiding complex input tiling and kernel tiling.

3.2 Recursive Winograd Input Transformation

The key idea of RIT is computing the Winograd input transforma-
tion recursively. It is based on our observation that given two forms
of Winograd convolution F(ky,n1) and F(kg, n2), if (k1 +n; — 1) <
(k2 +nz—1),i.e, w1 < wy, then the input transformation of F(ky, n2)
can be computed incrementally based on the computation procedure
of F (k 15 nl).

The input transformation matrix B is decided by the value of w.
Therefore we denote it as B() in this section. To get B(@) we first
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Figure 5: Sharing mechanism and block partition of AT (using
F(6,3) and F(4,3) as examples).

define polynomial sequence Mi(w> (x):

1 w=2 . : _
Ml_(w) (x) _ {T(x) Hj:() mj(x), 0<i<w-1, (4)

;9;02 m;(x), i—w-1.
Then B(®) " can be derived by mapping coefficients of Ml.(w) (x) to

>
the i-th row ofB(“’)T, denoted as ng) :

oM ) x (0% =0

B = )
! c Ml.(w) (x)]

0<i<w-1

where ¢ [M l.(w) (x)] means the coefficient vector of polynomial Ml.(w) (x).

Figure 3 shows an example of F(w = 4) and F(w = 6), where F(w)
is used to denote the set of F(k, n) with a same w.

For F(w1) and F(w2), when wy — w1 = 2, the polynomial sequence
m;(x) of F(wz) will have 2 additional terms compared with F(w;):
My, —3(x) and mgy, —2(x). And BT will also expand accordingly,
as shown in Figure 3.

Additionally, based on the relationship between convolution and
polynomial multiplication, we can get the relationship:

¢ [M ) mat)| = [MP 0] ke lma0], @

where mp (x) denotes any of the additional polynomial or their
product, and * denotes the convolution of two discrete sequences
(distinct from the "convolution" used in CNN). Furthermore, based
on the properties of convolution and cross-correlation, we have the
following relationship:

{c [Mi(w) (x)] *C [mA(x)]}-dj =c [Ml(w) (x)]-{dj ®c [mA(x)]}, (7)

where d; denotes the j-th column of the input tile d, - denotes the
inner product of vectors, and ® denotes cross-correlation. Combining
Equations (6) and (7), we can get the recursive relationship:

w) T w-2)T
B d; =B {dj@clma()]}, ®)

and (—1) will be additionally multiplied when i = 0, according to
Equation (5). The correspondence between iz and i; is determined
by the remaining polynomials after extracting ma (x). As the exam-
ple illustrated in Figure 3, the rows with the same color indicate
correspondence.

Based on the relationships above, we propose the RIT method.

When computing the vector dot product between ng)T and dj,
we can extract the additional polynomials and first calculate cross-
correlation between their coefficient vectors and d;. Remaining
computations can be done by multiplying the intermediate result

T
vectors with Bl(w 2) , or continue calculating cross-correlation by

T
further decomposing ng 2
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Figure 6: Blockwise Output Transformation for F(4,3). The
D@B@ correspond to OOOB of BOT procedure in Sec-
tion 3.3.

RIT procedure. For F(w), the computation of D; = B(“’)de can
be done recursively: @ perform correlation of dj with the coefficient
vectors of mg—2(x), mgp—3(x) and my,—2(x)m,—3(x) to get result
vectors hi, hy and hs; @ multiply the B2 7 with hs; © continue
to perform correlation operations on h; and hy; ® concatenate the
results to get Dj. As for the final result, the input transformation
can be obtained similarly through U = (BTD)T. An example of
F(w = 6) is shown in Figure 4. For simplicity, only the process of
D; = B(6)de is shown.

When using RIT to design hardware computing units, it is possi-
ble to preserve all the hardware structures of F(w’) (where o’ < )
while implementing the input transformation functionality of F(w).

3.3 Blockwise Winograd Output Transformation

The key idea of BOT is decomposing matrix AT and matrix Y
into 2 X 2 sub-matrices. It enables the output transformation to be
performed using block matrix computation. Moreover, the sharing
mechanism of AT and the numerical distribution pattern of its inter-
nal elements are exploited to unify different output transformations.
This approach also transforms associated multiplication operations
into addition, subtraction, and shift calculations.

The sharing mechanism of AT has been observed in [6], indicating
repeated values in AT across different F(k,n) with same . We
further exploit it to any F(k, n), as shown in the left of Figure 5.
When k or n increases, the center part of AT will expand accordingly
in units of 2 x 2 cells. The first/last column of AT has a fixed pattern:
the value at the first/last row is 1, while all other positions are 0s.

To exploit these characteristics, we divide AT to a center matrix
H and two edge vectors ey, e, and further divide H into 2 X 2
sub-matrices. According to our Winograd polynomial construction
strategy in Equation (3), the value distribution pattern of each sub-

matrix can be summarized as:
1 1
Hjj=2" [ ot _ot ] ) )

wherer = 2(i—1)(j—1) and t = (j—1). An example of the blockwise
breakdown and the value distribution pattern is shown in Figure 5.
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Based on the observations above, we divide AT, Y and A into 2x 2
sub-matrices to perform block matrix computations. The Winograd
output transformation is therefore reformulated as:

Y(1,1) ¢ Y(Lo) el 1"
ATYA=[es H e,|x| p z P | x|HT
Y(w,1) q) Y(w ) el
Y(1,1) 0 Y(1,w) q;
= 0 0 0 |+H[py 0 p,|+|0|H +HZH".
Y(w,1) 0 Y(ww) q,,

(10)

The Y matrix is divided into four parts: the four corners, the first
row q;— and the last row g, (excluding corners), the first column
p; and the last column p, (excluding corners), and the central part
Z. We combine the four corners into a single 2 X 2 matrix, combine
q;— and g/, into several 2 X 2 matrices, and combine p; and p,,
into several 2 X 2 matrices. We then divide Z into several 2 X 2
matrices. Subsequently, we perform blockwise computation between
the partitioned Y and the partitioned H and accumulate the results
onto corresponding positions of the output matrix s. An example of
F (4, 3) is shown in Figure 6.

The calculations required in BOT for sub-matrices from the four
parts of Y are respectively: remain unchanged, left-multiplied by
H; j, right-multiplied by H ;I,—j’ left-multiplied by H;; and right-
multiplied by H ;'—] The multiplication between H; j and the sub-
matrices of Y can be divided into a set of add/sub-operations and a set
of shift operations. Taking Z; j as an example, it can be seen that the
add/sub-operations between the elements and the shift operations
for each output value can be done separately:

1 1 a b 1 2k
T _
Hil’jlzi’jHizyjz =2 2t _oh X c d x 2% 1 —ZtZ]
= o(ritry) (a+b+c+d) 22(a—b+c—d)
2hi(a+b—c—d) 20t (a—b—c+d)|

(11)
BOT procedure. Overall, we can summarize the procedures of
BOT as follows: @ divide Y to 2 X 2 sub-matrices, determine the type

of blockwise computation required by each sub-matrix, and identify
corresponding H; j matrices; @ conduct addition and subtraction
operations according to the type of blockwise computation required
by the sub-matrix; ® conduct shift operations according to Hj j; @
accumulate computation results onto corresponding positions of s.

4 WinoGen IP Architecture

Based on our SDW algorithm, we propose a powerful and efficient
hardware architecture as a template for WinoGen to generate IPs.
The overall architecture is shown in Figure 7(a). It can be hosted and
dynamically configured by an outside processor or controller, and
takes inputs and weights from external memory and return outputs.

Inside the WinoGen IP, Input Transformation Module, Element-
Wise Multiplication Module and Output Transformation Module are
exploited to compute RIT, element-wise multiplication and BOT.
The IP built under the static configuration of F(k, n) can be dynam-
ically configured to support arbitrary F(k’,n’), as long as ’ < @
and k’ < k, which will be explained in the following subsections.

4.1 Input Transformation Module

The Input Transformation Module (ITrans Module) computes
Winograd input transformation using RIT method. It takes feature
map tile d as an input and outputs transformed feature map U. In our
design, we use PN to denote parallel numbers. In a single WinoGen
IP, PN¢ ITrans Modules are deployed in parallel to simultaneously
compute PN¢ input channels. PN¢ can be defined by the user or
decided by WinoGen optimizer, varying from 1 to 4.

PE;t is the processing element (PE) deployed in the ITrans Mod-
ule. The detailed architecture is shown in Figure 7(b). Following the
mechanism of RIT in Section 3.2, PE;T has a nested structure. We
denote the top layer of PE;T as PEjT(w), and it recursively contains
PE;r(w —2), PErr(w —4), ..., until reaches PE;7(2), whose outputs
directly equals to inputs. After taking in a column or a row of the
input matrix, three Vector Correlation Layers conduct the @ proce-
dure of RIT, the PE;T(w — 2) conducts the @ procedure, two Vector
Correlation Trees conduct the ® procedure. The nodes in Vector



Correlation Layers and Vector Correlation Trees can perform shift
and add/sub operations on input values, thus realizing vector cross-
correlation. The Vector Correlation Layers contain (@ — 2) nodes,
while the Vector Correlation Trees are constructed as reduction trees
with (w — 4) layers. The data path of PE;r is fully pipelined, thus
enabling it to process one column of d in one clock cycle.

There are two groups of PEjr in the ITrans Module, each contain-
ing PNt PEs. The first group conducts D = B"d and the second
group conducts U = (BTDT)T, thus realizing the reuse of PE;T
architecture. The parallel number PNyr (varying from 1 to w) is
decided by WinoGen optimizer, taking into account the resource
constraints and the throughput of the whole IP.

Buffers in the ITrans Module are built with registers and con-
structed by double-buffering. For D Buffer and U Buffer, all have two
groups of Register Tiles, while each tile consists of w registers to
store a column or row of the matrices. For each group of D Buffer, the
tile number is fixed to w due to the requirement of matrix transpose.
For Y Buffer, the tile number equals PNyt.

Compatibility of the ITrans Module (constructed under F(k, n))
lies in that it supports any F(k’,n”) input transformation as long
as @’ < w. This is realized by the Bypasses in PEj7, linking all the
nested PEs, as shown in Figure 7(b). The bypass behavior can be
dynamically configured by the ITrans Module Controller.

4.2 Element Wise Multiplication Module

The Element Wise Multiplication Module (EWM Module) com-
putes the element-wise multiplication in Winograd convolution and
conducts channel-wise accumulation. It takes transformed feature
map U and transformed kernel V from PN input channels as inputs,
and outputs EWM result Y of an output channel.

Multiplier Array performs the element-wise multiplication. PN¢
Multiplier Arrays are deployed in parallel, each having @ X PNgw
multipliers. The multipliers are pipeline multipliers with a stage
number of T,,,,;;, decided by WinoGen optimizer.

Adder Array performs channel-wise accumulation. There are
(PN¢ — 1) Adder Arrays, each having w X PNy adders imple-
mented by combinational logics.

Buffers in the EWM Module are divided into V Buffer and Y
Buffer. V Buffer comprises PN tiles of w X w registers to store V
matrix. Y Buffer is double-buffered, with two groups of w X PNgw m
register tiles.

Compatibility of the EWM Module is the same as the ITrans
Module. By selecting part of the outputs from the Multiplier Arrays
and Adder Arrays, any F(k’,n") element-wise multiplication is sup-
ported when @’ < w. When o’ < , only the first " outputs in
each row of the arrays are valid, and stored in Y Buffer under the
control of the EWM Module Controller.

4.3 Output Transformation Module

The Output Transformation Module (OTrans Module) computes
Winograd output transformation using BOT method. It takes EWM
result Y as an input and outputs Winograd convolution result s.

PEQrt’s architecture is shown in Figure 7(c). Following the rule of
BOT in Section 3.3, PEQT is designed as a three-stage structure. Each
PEor takes 2 X 2 sub-matrices of Y as input. The Basic Transfor-
mation Unit, which contains 4 adders and 4 subtractors and several
MUZXers, conducts the @ procedure of BOT. The Shift Transforma-
tion Unit, organized in groups of 4 shifters, conducts the & procedure

of BOT. The Accumulator Unit, organized in groups of 4 accumula-
tors, conducts the @ procedure of BOT. For each Z; j, there are (k/2)
types of H;, j, be left-multiplied and (k/2) types of H;I;,jz be right-
multiplied to it. Combining Equation (11), each PEoT is equipped
with 1 Basic Trans. Unit, (k?/4) groups of Shift Trans. Unit, and
(k%/4) groups of Accumulator Unit. PEg7 is fully pipelined with
Tpg,; = 3 stages. The parallel number of PEpr is defined as PNor,
varying from 1 to (w?/4).

The OTrans Module Controller and Routers handle the tasks of
2 X 2 partition of Y, including providing the parameters used in @
procedure of BOT. The Adder Array accumulates the outputs from
PEoTs and saves the final result in the s Buffer.

Compatibility of the OTrans Module (constructed under F(k, n))
lies in that it supports any F(k’,n”) output transformation as long
as k’ < k. This is because the hardware architecture of the OTrans
Module is only affected by k, while different n affects the number of
blockwise computations and the values in AT. Thus, it can be dy-
namically adjusted by the controller. And the output transformation
of F(k’,n’) when k’ < k can be done by blocking the output from
part of the accumulators in PEgT, similar to the idea in [6].

4.4 WinoGen Optimizer

Due to the WinoGen flexibility, we can navigate the design space
of generated IPs, tailoring them to fit specific requirements. The
WinoGen Optimizer models the utilization of DSP and LUT as re-
source constraints, and models the throughput of IP as optimization
target.

DSP utilization is derived by calculating the number of multipliers
in the EWM Module. LUT utilization is derived by calculating the
combinational operators including adders, subtractors and shifters
in each module. And IP throughput is derived by calculating the
expected clock cycles to process a certain number of input tiles (e.g.
1000 tiles).

With the estimation of resource overhead and latency in place, the
design space exploration of IP architecture can be formulated as an
Integer Linear Programming problem. Given the resource constraints
of DSP and LUT, the throughput is maximized under the constraints
by setting the IP hardware parameters PNrr, PNgwa, PNot and
PNG.

5 Experiments

For experimental evaluations, we generate IPs with WinoGen,
using Xilinx Vivado 2023.2 to implement and test them on ZCU104.

IP-level Evaluation. We firstly carry out IP-level evaluation to
test the operator-level performance of generated IPs, while testing
the functionality of the WinoGen optimizer. We select three fun-
damental types of IP: F(4,1), F(4,3) and F(6, 3) for generality. For
each fundamental IP type, we each test three configuration cases: (a)
"PNmin" means that when constructing the IP, the parallel numbers
are set to the minimum; (b) "Constrained" means a set of hardware
resource constraints is given, and the parallel numbers are decided
by WinoGen optimizer; (c) "PNpqx" means the parallel numbers
are set to the maximum.

The configurations, resource utilization, throughput, and com-
patibility of the IPs are shown in Table 1. For extremely limited



Table 1: Optimized WinoGen IP under different resource constraints (* is used to test the throughput of the IP)

IP Type | Config. Type IP Config. Resource Util. (Constraint) Thro. /GOPS Supported Winograd Type
PNir | PNpwum | PNor [PNc | DSP [ LUT | FF | 1x1Kemel [ 3x3Kernel | 5x5Kernel | 7x 7 Kernel
PNpin 1 1 1 1 4 1689 2191 1.308 5.559 - -
F(4,1) | Constrained 4 4 4 1 16(20) 2267(2400) | 2901 5.232 22.236 - - F(2,3)*, F(4,1)*
PNpax 4 4 4 4 64 4858 7579 36.624 92.868 - -
PNm,-A,l 1 1 1 1 6 2441 3587 1.308 9.883 7.121 - I
F(4,3) | Constrained | 2 2 3 4 | 48(64) | 8267(8400) | 11678 12.208 123.824 86.764 B F.8), FA*
PNpax 6 6 9 4 144 17472 18476 36.624 371.472 260.292 -
PNpin 1 1 1 1 8 3757 5703 1.308 12.508 16.023 7.930 F(2,7)", F(4,5)*, F(6,3)";
F(6,3) | Constrained | 8 8 16 2 | 128(128) | 31899(40000) | 25307 35316 412.02 517.968 255.06 F(2,5), F(4,3), F(6,1)";
PNpax 8 8 16 4 256 41093 40238 82.404 835.812 1041.168 511.428 F(2,3), F(4,1)
Table 2: WinoGen evaluation and comparison with state-of-the-art designs.
[3] [5] [11] Vitis-AI[12][6] [6] WinoGen IP-F(4,3)x12 WinoGen IP-F(6,3)X5
Platform KU115 VCU118 VU9P ZCU102 ZCU102 ZCU104 ZCU104
CNN Model VGG16 | AlexNet VGG16 VGG16 | VGG16 | YOLOv2 | VGG16 | YOLOvZ | VGG16 | AlexNet | YOLOv2 | VGG16 [ AlexNet | YOLOv2
Freq. (MHz) 235 220 200 167 281 214 317 317
Supported Precision | 8bit/ 16 bit | 8 bit/ 16 bit 16 bit 12 bit 8 bit 8-16 bit 8-16 bit 8-16 bit
DSP (% of total) 4318 (78%) | 4318 (88%) | 3224 (47%) | 5163 (75%) 1926 (76%) 2345 (93%) 1728 (100%) 1280 (74.1%)
LUT (% of total) 257862 (39%) | 257862 (40%) - - - - 209664 (91%) 205465 (89.2%)
Power (W) 22.3 22.9 - 45.9 - - 8.25 7.45
Thro. (GOPS) 4022 3265 3772 37757 | 12252 | 1008 | 31203 | 1717.7 | 44532 | 4190.8 | 2408.6 | 4170.7 | 48631 | 2640.8
DSP Eff. (GOPS/DSP) 0.991 0.764 117 0.65 0636 | 0523 1.33 0.73 258 243 1.39 3.26 3.80 2.06
Energy Eff. (GOPS/W) 180.4 98.3 - 73.5 - - - - 539.78 507.98 291.95 559.83 652.77 354.47

hardware resources, WinoGen can generate IPs with minimal re-
source consumption. In cases where hardware resources are abun-
dant, WinoGen can create IPs with ultra-high computational per-
formance (over 1000 GOPS). For other scenarios, WinoGen can
utilize its optimizer to generate optimized IPs, aiming for maximum
throughput while adhering to the given resource constraints.

System-level Evaluation. We then conduct a system-level evalu-
ation to test the network-level performance of a system equipped
with multiple WinoGen IPs. We select two types of IP: F (4, 3) and
F(6,3), each is built under PNy,4x configuration. Then we separately
implement these two IPs on ZCU104, maximizing hardware resource
utilization.

The evaluation results and comparison with other state-of-the-
art designs are shown in Table 2. The selected related works are
all IP-based or template-based. The throughput, DSP efficiency and
energy efficiency are only for the convolution layers, except [3]. For
[3], only the metrics for 8-bit configuration are listed here.

For our implementation, the DSP efficiency reaches 3.80 GOPS/DSP
and energy efficiency reaches 652.77 GOPS/W when deploying IP-
F(6,3) to compute AlexNet. Considering the first layer of AlexNet
is not yet supported by WinoGen IPs due to its non-1 stride, we
use the metrics for VGG16 to conduct an apple-to-apple comparison
with other works. When computing VGG16, our design achieves DSP
efficiency up to 3.26 GOPS/DSP and energy efficiency up to 559.83
GOPS/W, thus showing 2.45x and 3.10X improvements compared
with state-of-the-arts [3, 6].

6 Conclusion

In this paper, we propose an efficient IP generation method for ar-
bitrary Winograd convolution on FPGA. By introducing SDW method
and leveraging Chisel for algorithm-architecture co-design, we have

successfully developed a highly configurable Winograd convolution
IP generator WinoGen. Based on our resource and latency models,
we optimize the generated IP configurations. Experimental results
demonstrate the effectiveness of WinoGen, showing significant im-
provements in DSP efficiency and energy efficiency compared to
state-of-the-art methods.
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