Lesyn: Placement-Aware Logic Resynthesis
for Non-Integer Multiple-Cell-Height Designs

Yuan Pu
CUHK

Fangzhou Liu
CUHK

Yibo Lin
Peking Univ

Abstract

Non-integer multiple cell height (NIMCH) standard-cell libraries
offer promising co-optimization for power, performance and area
in advanced technology nodes. However, such non-uniform design
introduces new layout constraints where any sub-region can only
accommodate gates of the same cell height due to manufacturabil-
ity concerns. The existing physical design flow for NIMCH circuits,
which handles the layout constraint by clustering and relocating
gates according to their cell heights, often leads to substantial gate
displacement that harms circuit performance. To alleviate the above
issue, this paper proposes a row-based logic resynthesis procedure
that explicitly adjusts cell heights after initial placement without
changing cell positions. Experiment results demonstrate that com-
pared with the conventional NIMCH physical design flow, our pro-
posed approach can reduce the maximal delay by 26.1%.

1 Introduction

With advancements in technology nodes, standard cell libraries
are now being designed with varying cell heights to meet diverse
power, performance, and area (PPA) requirements of digital circuits.
Traditionally, multi-row-height cells were sized as integer multiples
of a single-row height. However, this approach often results in un-
necessary area cost and may not align optimally with the shrinking
transistor sizes and minimal wiring pitch [1]. In contrast, standard
cells with non-integer multiple cell heights (NIMCH) offer a more ex-
tensive solution space for circuit design, allowing for highly flexible
and efficient power, performance, and area co-optimization. TSMC,
the latest 3nm manufacturer, has adopted NIMCH in its FinFlex
cell technology to achieve improved PPA through place-and-route
co-optimization [2]. An illustrative example by Dobre et al. demon-
strates that the utilization of non-integer-height standard cells, such
as 8T and 12T, leads to significant area reduction and performance
enhancement compared to using solely 8T/12T standard cells [3].

NIMCH libraries bring new layout constraints in circuit place-
ment: standard cells are constrained to be located in the sub-regions
based on their cell heights, with each sub-region only accommodat-
ing gates of the same cell height. The conventional NIMCH physical
design flow [3, 4] starts with an initial placement, and employs an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC °24, June 23-27, 2024, San Francisco, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06....$15.00

https://doi.org/10.1145/3649329.3656243

Kai-Yuan Chao

Siemens

Zhuolun He
CUHK

Yu Zhang
CUHK

Bei Yu
CUHK

——> Critical path D 12T cell [J8Tcell Q12T node @ 8T node

QO® ® [EE] o EE T
Q e @ + ‘AT D Placer L HH DV‘
ool C‘m B AllE [k
oty LAl aNgi0

Legalized placement

Initial NIMCH circuit Initial placement g .
(without resynthesis)

NIMCH Logic
Resynthesis

oo

Resynthesized
NIMCH circuit

Resynthesized
placement

Legalized placement
(with resynthesis)

Figure 1: Illustration of the effect of logic resynthesis on the
final NIMCH placement result. 8T/12T node in the circuit
denotes that the node is mapped to a library gate with the
height of 8T/12T.

NIMCH placer to form separate 8T/12T sub-regions, as is shown
in the top part of Figure 1. Since 8T/12T cells are usually spatially
mixed in the initial placement, the conventional flow could cause
huge displacement of cells and significantly degrade the perfor-
mance. One remedy to the conventional NIMCH physical design
flow is the incorporation of placement-aware logic resynthesis,
which resynthesizes cells in each separate sub-region to the same
heights. As is shown in the lower part of Figure 1, the incorpora-
tion of placement-aware logic resynthesis significantly reduces cell
displacement, thereby maintaining the circuit performance.
Although the literature has investigated NIMCH physical design
flow, most of the studies focus on pure NIMCH placement. Based
on the sub-region pattern, NIMCH placement approaches can be
classified into two categories: island-based and row-based, as illus-
trated in Figure 2. For island-based NIMCH placement, a study by
[3] employed Innovus to generate the NIMCH initial placement. An
iterative timing-aware legalization process is then applied to move
cells with the same heights to the same island. Chen et al. [5] for-
mulated the NIMCH placement as a nonlinear optimization problem
by introducing pseudo nets connected among gates with the same
cell heights. For the row-based approach, Lin et al. [4] used Innovus
to get the initial placement, followed by k-means-based row-height
assignment and NIMCH-aware cell legalization to minimize cell dis-
placement and achieve a legalized solution. They also demonstrated
that row-based NIMCH placement outperforms the island-based
approach regarding wirelength and total power consumption. De-
spite the efforts to advance placement algorithms, these approaches

https://doi.org/10.1145/3649329.3656243

TEres H EPESEE A EZTT

%]E%] EEI E‘E]:]:]E]ﬂ%[] 12T region

dmE 0 & fERSEY
(a) (b)

Figure 2: Illustration of (a) island-based and (b) row-based
NIMCH sub-region patterns.

8T region

follow a pure placement flow. Given that cells with different heights
are spatially mixed in the initial placement, these approaches usu-
ally end up with large cell displacement to meet the NIMCH layout
constraints, and eventually degrade circuit performance. This sce-
nario is illustrated in the top part of Figure 1, where the critical path
L —- K — G — A after NIMCH placement becomes considerably
longer, resulting in a larger path delay.

To overcome the concerns above, we propose a new NIMCH phys-
ical design flow, which incorporates an additional step of placement-
aware logic resynthesis. The core idea involves integrating the logic
resynthesis procedure between the initial placement and NIMCH
placement stages. By preserving the cell positions in the initial place-
ment, our proposed procedure resynthesizes cells in the NIMCH
circuit, such that the placement of the resynthesized circuit aligns
with the row-based sub-region pattern. Figure 1 shows one exam-
ple of incorporating our proposed logic resynthesis algorithm into
the physical design flow of an NIMCH circuit. The resynthesized
placement aligns with the row-based sub-region pattern, resulting
in small cell displacement by the NIMCH placer and better timing
performance (reflected by the shorter critical path). We summarize
our major contributions as follows:

o This paper represents the first work proposing a placement-
aware logic resynthesis approach tailored for NIMCH circuits.

e We develop a timing-aware strategy for row height assignment
and a dynamic programming-based algorithm for row-based
logic resynthesis.

e We propose two distinct strategies: (1) conservative logic resyn-
thesis, which is computationally efficient; (2) structural logic
resynthesis, which explores larger solution space.

e Experimental results on the EPFL arithmetic benchmark demon-
strate that Lesyn reduces the displacement during NIMCH place-
ment by 99.1%, and reduces the maximal delay by 26.1%.

2 Preliminaries

2.1 Basics of Logic Synthesis and Resynthesis

In logic synthesis, a Boolean network is a directed acyclic graph
(DAG). Nodes in the Boolean network correspond to library gates,
and edges represent wires. The terms Boolean network and circuit
are used interchangeably. Primary Inputs (PIs) and Primary Outputs
(POs) are nodes without fanins and fanouts, respectively. A cut of
anode n is a set of nodes that must be traversed to reach n from
PIs. A cut is K-feasible if its size does not exceed K. Each cut ¢ of a
node n can be associated with a truth table representing the function
at n considered from its leaves. A library gate g matches a cut ¢
if they have the same truth table (function). In a Boolean network,
a cut ¢ covers node n if n is mapped to a library g and g matches
c. Given a node n and its associated cut set Cut™ = {c1,¢2,....,cn},
assume n is originally mapped by a library gate g; and g; matches a

cut ¢; (¢; € Cut™), we can remap n with another gate g; such that g;
matches another cut ¢j (c; € Cut" and i # j). The remap operation
will modify the circuit connectivity but not the functionality.

Logic resynthesis involves modifying the original circuit by substi-
tuting its sub-circuits or gates with logically equivalent yet different
components. This modification can be categorized as conservative
or structural. For conservative logic resynthesis, only the gate type
is modified while the circuit connectivity remains unchanged. For
structural logic resynthesis, the circuit connectivity is modified.

2.2 Row-Based NIMCH Logic Resynthesis
Problem 1 (Row-Based NIMCH Logic Resynthesis). Given a circuit
C with n gates, a set of library gates L and the initial placement of
C, resynthesize each gate in C to minimize the combined cost of
total cell area and maximal delay, and ensure the placement of the
resynthesized circuit aligns with the row-based sub-region pattern.

By aligning the resynthesized placement with the row-based sub-
region pattern, little displacement is introduced by the subsequent
NIMCH placer, implicitly improving the timing performance. There
are two reasons for minimizing total cell area: (1) Large cell area
may cause cell inflation on some placement rows, leading to larger
displacement for NIMCH legalization and worsening timing perfor-
mance. (2) Large cell area increases the utilization rate of the core,
causing congestion in the subsequent routing flow.

3 Conservative Logic Resynthesis

In this section, we introduce the algorithm for NIMCH row-based
conservative logic resynthesis. Assuming a node n; in the original
NIMCH circuit is covered by a cut ¢;, for conservative logic resynthe-
sis, we exclusively select library gates matching cut ¢; as candidate
library gates for the resynthesis of n;. Conservative logic resyn-
thesis can ensure that the circuit connectivity (topology) remains
unchanged after resynthesis.

Figure 3 shows the overall flow of our proposed algorithm: Start-
ing with the NIMCH circuit and its initial placement, the process
commences with row height assignment, which assigns a distinct cell
height to each gate in the circuit to form the row-based sub-region
pattern. Following this and preserving the cell positions in the initial
placement, dynamic programming (DP) is employed to resynthe-
size the circuit referring to the assigned cell heights, wherein the
resynthesized solution candidates are tabulated. The ultimate logic
resynthesis solution is ascertained by retracing the computed DP
table. During the solution traceback, the problem of path reconver-
gence arises when a node has multiple fanouts, and more than one
candidate library gates are selected for that node. A heuristic strat-
egy is proposed to tackle this issue. The resynthesized placement
is then fed into the SOTA row-based NIMCH placer [4] to obtain a
legalized placement satisfying the NIMCH layout constraints. In the
remainder of this section, we use two non-integer cell heights 8T
and 12T to illustrate our algorithm for convenience. It is notewor-
thy that our algorithm can handle NIMCH circuits with any pair of
non-integer cell heights.

3.1 Row Height Assignment

During row height assignment, a specific cell height is assigned to
each cell such that the row-based sub-region pattern is established on
the initial placement. In the later stage of resynthesis, each cell can be
only resynthesized to the library gate with the assigned cell height.

[Ji2Teent [8T celt

NIMCH Circuits

-~ |l oom
0O 1A 1 A
’ Row Height Assignment ‘ Hl‘] HE‘lH ‘ “ ‘
¥
DP Based Logic Resynthesis 0 OOOCm
¥ A 100
Resynthesis Solution TraceBack “ “‘ﬂ H‘u ‘ H‘ ‘
NIMCH Logic Resynthesis 4
! /
Resynthesized NIMCH Circuits |~ %
Row-based NIMCH s ‘ u ‘ ‘ ‘ ‘
Placement ‘ H ‘ ‘ H

Figure 3: The overall flow of Lesyn.

We propose a majority-guided algorithm for row height assignment.
Denote a placement row by r; and the set of 8T/12T cells on r; by
C?T/C}QT. The ratio between |C?T| and |Cl.12T| is then denoted by
ratio;. The ratio; is multiplied by a predefined parameter f to control
the overall 8T/12T ratio of the circuit, as shown in Equation (1).

ratio; = |C?T| (1)
s e

If ratio; > 1, the heights of all cells on r; are set to 8T, and vice

versa. However, the majority-guided row height assignment may

cause issues such as bad timing performance (assigning the height

of timing-critical gate to 8T) or area waste (assigning the height of

non-timing-critical gate to 12T).

To resolve the issues above, we allow some of the placement rows
to contain both 8T and 12T gates during the process of row height
assignment (the NIMCH layout constraint violations will be resolved
by row-based NIMCH placement in the later stage). We propose a
timing-aware strategy for row height assignment: After applying the
majority-guided algorithm above, we refer to the timing report of
the initial NIMCH placement and sort all gates by their slack values.
For all gates assigned to 8T, we select the top x gates exhibiting the
smallest slack values and reassign them to 12T; Similarly, for gates
assigned to 12T, the top y gates with the largest slack values are
reassigned to 8T. In this work, x and y are set to be small values
to reduce the displacement introduced by the row-based NIMCH
placer. After row height assignment, for each node n;, its assigned

cell height is denoted by RHA[n;].
3.2 DP Based Logic Resynthesis

Referring to the row height assignment RHA, we employ dynamic
programming to tabulate the resynthesized solution. We formulate
the NIMCH row-based logic resynthesis problem in Equation (2). The
objective is to minimize the total cell area (explained in Section 2.2).
There are two constraints of the problem: (1) The maximal delay
between any primary input and primary output is less than the target
delay «; (2) The cell height of each gate g; satisfies the row height
assignment solution RHA.

N
min ZAi st. Delay <a, g¢;cL h(i)=RHA[i], (2)
i=1

(p1 = {n1 — gl.,n2 — g3} — {area = 1.3, delay = 2.8}
p1(1.3,2.8)

Delay

po = {n1 — gi,n2 — g5} — {area = 2.2, delay = 1.8}
p3 = {n1 = g, n2 = g3} = {area = 2.3, delay = 2.2}
pa = {n1 — g%,ny — g3} — {area = 3.5, delay = 1.2}

N 1
3 1OR2X1_12T
\/77«3\\ 93 -

g1 {INVX1_ST

2 (N1) (N2) 2.
g1 IINVX278TU _~/g5 :BUFX2_12T

(a) Illustration of fanin mappings of ns

1 g3 :BUFXI 12T

dpn_q._qé Area
(b) AD-curve of n3 and gé
Figure 4: Illustration of the dynamic programming approach.

where N denotes the number of nodes in the circuit, L denotes the
set of library gates, g; represents the library gate resynthesized for
node n;j, A; and h; denote the area and height of gate g;, and RHA[]
denotes the assigned cell height for node n;.

While acquiring the cell area for any given node in the circuit
is intuitive, the calculation of the maximum delay from a PI to any
given node, n;, can be decomposed into sub-problems concerning the
computation of maximal delay for its fanin nodes. We can store the
delay value of each node in a table, which can then be directly used
to calculate the maximal delay(s) from PI (s) to its fanout node(s).
This strategy eliminates the need for delay recalculation. Given
these insights, we can solve the NIMCH row-based logic resynthesis
problem by dynamic programming, and the DP table calculation
follows the topological order (from PI to PO).

Before diving into the dynamic programming formulation, the
definition of fanin mapping is first given in Definition 1.

Definition 1. (fanin mapping) For a node n in a circuit, denote its
fanin nodes by Fanins(n) and for each fanin node k (k € Fanins(n)),
Gates(k) denotes a set of library gates that can be mapped to k. A
fanin mapping for node n, denoted by pp, refers to a library gate
mapping assignment for all fanin nodes of n (p, = {k — g, Vk €
Fanins(n), g;. € Gates(k)}).

There are three nodes {n1, ny, n3} in the circuit of Figure 4(a): nq
and ny are fanin nodes of ns, there are two candidate library gates
for ny (g% and g%) and two candidates for ny (g; and g%), According to
definition 1, there are four fanin mappings of node n3: p; = {n; —
g1.n2 = g3} p2 = {n1 —> gl.n2 = g3}, p3 = {m — ¢.nz > g3}
and pg = {n; — g%, ny — gg}

A 3-D table dp is introduced to describe the dynamic programming
state. Given a node nj, its candidate library gate g; and its fanin
mapping p;, the dp entry dpp, g, p, stores two attributes, namely,
area and delay. The attribute area represents the average area of gate
gi and its all fanin gates in p;, and delay denotes the maximal delay
from PI to the output pin of n; (given that n; is mapped to the library
gate g;, and its fanin mapping is p;). Integrating all fanin mapping
entries of dpni,gi, we derive an area-delay-curve (AD-curve), and
each point on the AD-curve represents the area-delay characteristic
of one fanin mapping of n;. Note that the AD-curve is a Pareto
curve, which means any point on the curve is not dominated by any
other point (Definition 2 gives the definition of point dominance).
Figure 4(b) gives one example of AD-curve of node n3 and library
gate gé (dpp,, gl)- p3 is dominated by p» and is excluded.

Definition 2. (Point Dominance) In an AD-curve, a point i domi-
nates another point j is i.area < j.area and i.delay < j.delay.

P1 O = —)" B
i
(dc‘la) } b
Pig.gy s d(ng,ni) D(g:)
Figure 5: Illustration of delay notations mentioned in the sub-
section DP Entry Calculation.

To apply the dynamic programming approach on a circuit, we
need to go through all nodes in the circuit in topological order
(from PI to PO): For each node n; and each candidate library g;, if
gi matches the cut of n; in the original circuit and the cell height
of g; satisfies the row height assignment RHA, we calculate the dp
entries of dpp, 4, for each possible fanin mapping p;. Then, all fanin
mapping entries of dpp, g, are integrated and pruned to construct
the AD-curve. This process is propagated until the AD-curves of
all nodes and their candidate library gates are constructed. Next,
we delve into further elaboration on dp entry calculation and
AD-curve construction.

DP Entry Calculation. For any node n; in the circuit with library
gate g; and fanin mapping p;, to determine the delay and area values
of dpn, g,,p;» we first determine the minimal delay value for each
fanin of n;: For each (nf,gr) € Fanins(n;), where ny denotes one
fanin node of n; and gr represents the library gate selected for ng,
we select the fanin mapping point py with the minimal delay value
(delay)
“Pnrgrpr
the wire delay from ng to n; (d(nf, ni)) in a table dr(r;)n, as shown in
Equation (3).

from the AD-curve of dpn g, and store the value of dp plus

(delay)

(i)
q npgp.pr T A0nfN0) ®3)

inl (M 9p)] = min dp

pr Edpnf,gf

Then, we set the delay value of dpy, g, p; to be the maximal delay
among drinin plus the gate delay of g; (D(g;)). The attribute area
stores the average area of gate g; and all its fanin gates in p;.

We use a state transition function to depict the process of dp entry
calculation, as formulated in Equation (4).

del. i
Aoty = Do) + max di) [(ng.gp)].
4
(area) _ A(gi) + ngEpi A(gf) ()
ni.gi.pi

1 + |Fanins(n;)|

where D(g;) and the A(g;) denote the gate delay and area of library
gate g, d(ng, n;) denotes the wire delay from node ny to node n;. Fig-

del
f(lf?gjf}j;f’ d(ng, n;) and D(g;), and

Figure 6 gives one example of dp entry calculation: Assume nj and ny
are two fanin nodes of n;, to calculate dpy, g, (n;—g;n;—g.} (ibrary

ure 5 illustrates the meaning of dp

gates g; and g are mapped to n; and ng, respectively), we first de-

termine the minimal delay d;/dy in the AD-curve of dpn;,g,/dpn;. gy
(delay)

Then, dp”isgi»{n_i_’gj’"k_’gk}

between d; and d plus the gate delay of g;.

can be calculated as the maximal delay

AD-curve Construction. For any node n; and its candidate library
gate g;, after calculating the dp entry of each fanin mapping, we
need to construct the AD-curve of dpy, ,: Treating the dp entry of
each fanin mapping as a 2D point with the corresponding delay and
area value as the point coordinate, we prune the dominated points,

dpli5), = D(gi) +max(dy, di)e___

Delay
Delay

/ dp =4.3 +ld(nk,nl)
dj = 1.2+ d(nj,n;) 7

N p(6.2,4.3)
v

)
p

dpn, \9; Area dpn, s Area
Figure 6: Illustration of dp entry calculation of dpy, g, p;, where
pi={nj = gj,m = gi}-

[P traceback

Delay

2 . :
Po = {na — 93~

ny = gy}

Delay

dpnb gt Area

Figure 7: Illustration of solution traceback for fanin nodes (n,
and np) of n,: Assume library gate g} is mapped to 1, and the
corresponding fanin mapping selected is {n, — g3, n — glly}’
we trace back to the AD-curves ofdpnu’gz and dpnb)g;,, and select
the fanin mapping which satisfies the required arrival time
constraint and has the minimal area (p2 and pi).

and the pareto frontier constituted by the remaining points is the
AD-curve of dpy, g;-

3.3 Resynthesis Solution Traceback

This sub-section details the process of solution traceback in the
calculated DP table, and proposes a heuristic strategy to solve the
issue of path reconvergence encountered during the traceback.

Solution Traceback. The solution traceback of the calculated DP
table follows the reverse-topological order, and starts with the nodes
whose fanouts are POs (output nodes for short). To determine the
resynthesized gate selection of an output node n, from a list of
candidate library gates (G, = {g}, g2, ... gk}), we merge all AD-
curves of dp,, P (g} € Go) into a single AD-curve, and among the
points whose delays are smaller than the required arrival time of
no (RAT(n,)), the point with the minimal area, say, dpn, g,.p,» i
selected as the resynthesized solution of n, (that is, library gate g,
is selected as the resynthesis solution of n,).

Referring to the fanin mapping p,, we can further determine the
library gate selection of the fanin nodes of n,. Assume node ny is
one fanin node of n,, and the library gate g is selected for ng, a
fanin mapping point py on the AD-curve of dpp g, is required to
be determined to trace back the resynthesis solutions for fanins of
ny: We first calculate the required arrival time RAT(ns) of ny. Then,
the points on the AD-curve of dpp 4, whose delays are larger than
RAT(n) are pruned, and the fanin mapping among the remaining
points with the minimal area is selected. This traceback procedure is
recursively leveraged until the gate-selection is completed for each
node in the circuit. Figure 7 illustrates solution traceback.

e —————

.- ()= APy, g2 {ni -}

=@
-~ @:> APn; g1 (a2}

Figure 8: Illustration of path reconvergence: Assume
dpni,gl?,{nk—w}(} and dpn_;,g},{nkﬁgi} represent the resynthesis

result for n; and nj, with fanin mappings n; — gllC and n, — glz<
respectively. Two library gates (gllc and g,zc) are selected for ny.

Path Reconvergence. Since the underlying topology of the gate-
level netlist is a DAG instead of a tree, path reconvergence occurs in
the process of solution traceback when two nodes (n; and n;) share
the same fanin node (n;), and the dp table entry determination of
n; and n; leads to gate-type-selection conflict of ny, as illustrated
in Figure 8. The issue of path reconvergence is discussed in several
works involving DP-like systematic solution tracing [6-8]. We pro-
pose a heuristic strategy to handle the path reconvergence issue.
During the process of solution traceback, if the gate-selection con-
flict occurs for node ny (that is, there are two candidate gates for n),
we calculate the required arrival time of ng (RAT(ng)), and between
the two candidate library gates, we choose the candidate with the
minimal area whose delay is smaller than RAT(n) as the resynthesis
solution of ny.

By the timing-aware solution traceback and the heuristic strategy
for path reconvergence fix, the total area is minimized and the timing
constraint is satisfied for the resynthesis result.

4 Structural Logic Resynthesis

In this section, we extend the conservative logic resynthesis by
allowing circuit topological modification, for larger solution space
and potentially better resynthesis result. We propose structural logic
resynthesis by only modifying the step of DP table calculation (Sec-
tion 3.2): For library gate selection of any node n;, instead of sticking
to library gates which match the original cut of n;, any library gate
gi which matches any cut in Cut; (Cut; denotes all cuts of node i)
is expected to be selected as the candidate gate (as long as the cell
height of g; satisfies the row height assignment RHA). The dp entries
and AD-curve are calculated and constructed for each g;.

However, exhausting all library gates of all cuts may be computa-
tionally prohibitive for DP table calculation and resynthesis solution
traceback. Moreover, for any node n; and its cut ¢; (c; € Cut), if
the nodes in c; are spatially distant from n; in the initial placement,
resynthesizing n; to the library gate matching c; may cause a large
wire delay and thus bad timing.

To overcome the two concerns above, we constrain the maximal
size of the cut to be 4 (4-feasible cut), and prune the spatially-distant
cut(s) for each node in the step of DP table calculation. Figure 9
illustrates the process of structural resynthesis. Compared with con-
servative logic resynthesis, the structural approach explores the
variants of the circuit connectivity and topological structure, enlarg-
ing the resynthesis solution space at the cost of a larger runtime.

5 Experimental Results

We implement the logic resynthesis algorithm in C++, with the
logic synthesis library mockturtle [9] used for cut enumeration and
technology mapping. OpenTimer [10], a static timing analysis (STA)
tool, is used for timing evaluation. All experiments were performed

® [__ml
% E@
® ® ol
(@) ()
Figure 9: Illustration of structural logic resynthesis: in circuit
(a), the node A has two cuts, namely, {B, C} and {C, D, E}, and A is
covered by the cut {B, C}. (b) is the placement before structural
resynthesis. After structural resynthesis, in the circuit of (c),

A is remapped to cut {C, D, E}, and B is dangling and thus
removed. The corresponding placement of (c) is shown in (d).

@
Resynthesi:
I o @g Jo
E C
(®) (©

on a 64-bit Linux machine with Intel Core i7 2.5GHz CPU and 64GB
memory. By modifying the 15nm FinFET-based Open Cell Library
(OCL) [11], we made our technology library contain the information
of 8T and 12T cells. Figure 10 demonstrates the delay-area trade-off
between 8T and 12T cells in our technology library.

To evaluate the effectiveness and efficiency of our method, we
conduct our experiments on the EPFL combinational arithmetic
benchmark suite [12]. Firstly, these designs are synthesized (technol-
ogy mapped) by mockturtle. Then, we modify the standard-cell LEF
files such that all cells share the same height (8T) with area unaltered
(the reason for LEF modification is that existing commercial place-
ment tools can only handle designs with the same cell heights). The
circuits are then placed by Innovus in timing-driven mode to obtain
the initial placement. Next, our proposed row-based logic resynthe-
sis methods are leveraged on the initial placement to generate the
resynthesized placement. Finally, we apply the row-based NIMCH
placement [4] on both the initial placement (for conventional flow)
and the resynthesized placement to eliminate potential cell overlaps
and satisfy the NIMCH layout constraints. Note that during the row-
based NIMCH placement, each gate reverts to its original height,
with a corresponding update to the floorplan (height of each row).

In the implementation of the dynamic programming-based logic
resynthesis, we apply Cadence Innovus to generate the wire para-
sitics (SPEF) of the initial placement, and feed the generated SPEF to
Opentimer for delay calculation. For wire delay calculation of the
structural resynthesis, whenever the resynthesis updates the circuit
connectivity, we apply flute [13] to generate Steiner trees for the
affected nets. Based on the Steiner trees, we construct corresponding
RC trees and feed them back to Opentimer for wire delay calculation.

Since no clocks are defined for the combinational circuits, it is im-
possible to evaluate common timing metrics (such as WNS and TNS)
and dynamic power consumption. Therefore, we follow the con-
vention of logic synthesis to report experimental results in Table 1:
‘area’ denotes the total area of all gates in the circuit, ‘power’ reports
the leakage power consumption, and ‘delay’ reports the maximal
path delay in the placed circuit. Besides, ‘disp’ reports the displace-
ment between the initial placement (generated by Innovus) and the
layout-constraint-satisfied placement. The runtime of ‘conventional
flow’ consists of the runtime of Innovus for initial placement and the
runtime of row-based NIMCH placement [4] for layout-constraint-
satisfied placement, while the runtime of ‘conventional flow + Lesyn’
sums up the runtime of initial placement generation, structural logic
resynthesis and row-based NIMCH placement.

Table 1: Post-Place PPA results on the EPFL combinational arithmetic benchmark suite. ‘Conventional flow’ involves directly
applying the row-based NIMCH placer [4] on the initial placement. For ‘conventional flow +Lesyn’, our proposed resynthesis
approach is incorporated between the stage of initial placement generation and row-based NIMCH placement.

Metrics conventional flow [4] conventional flow + Lesyn (Ours)
Circuit # # area power delay disp time area power delay disp time
Cells Nets (um?) (mW) (ns) (um) (s) (um?) (mW) (ns) (um) (s)
adder 891 1147 197.198 0.012 1.865 2410.82 47 197.231 0011 1715 923.65 59
bar 2188 2323 744.096 0.043 1.525 4281.73 54 727.213 0.039 0.485 311.30 77
div 48343 48471 9930.834 0.549 245.849 185512.02 1248 9850.830 0.525 208.065 6223.10 2182
hyp 168035 168291 | 38847.320 2.181 1154.000 4623408.61 3943 | 38923.400 2.082 795.058 30046.210 6505
log2 21148 21180 | 5638914 0334 21.330 102082.70 704 | 5546.227 0324 12.821 5296.64 1307
max 2287 2799 | 493.994 0.025 2.839 2267.18 83 490.160 0.024 2.652 515.07 103
multi 21832 21960 4415.000 0.248 9.996 395585.00 493 4443.712 0.246 5.646 2186.75 836
sin 4203 4227 1212.678 0.072 3.710 13039.92 165 1219.117 0.072 3.269 540.42 252
sqrt 21832 21960 | 5962334 0.355 147.273 168311.07 870 | 5942411 0361 142552 280320 1377
square 12985 13050 | 2705.146 0.135 6.155 3543074 240 | 2704.163 0.134 5.748 1944.83 361
Normalize - - 1.000 1.000 1.000 1.000 1.000 ‘ 0.999 0.965 0.739 0.009 1.538 ‘
b ‘ et explores larger solution space and achieves 15.7% extra maximal
& L L B . . .
E 1.2 o 12T delay reduction (exemplified by the case hyp, multi and sqrt), at the
L] oy .
< 09 e 1 cost of 8.8% additional runtime.
Zos ° * . :
= sl e % . e 6 Conclusion
O ® B
© L T o ¢ ‘ i In this paper, we introduce a new flow for NIMCH physical design,

|
0 2 4 6 8 10 12 14 16
Cell Delay (ps)

Figure 10: The delay-area trade-off between 8T and 12T cells
in our technology library.

E=w /o structural resynthesis
== w. structural resynthesis

LITHTTITIT N LT

¥ S
A\ Y -z»b\‘ BN

==w /o structural resynthesis
== w. structural resynthesis

H
[E—

(a) maximal delay comparison
Figure 11: Comparison of normalized maximal delay and run-
time, with and without structural logic resynthesis.

(b) runtime comparison

As is shown in Table 1, by adjusting the parameter f§ in row height
assignment and the target delay « in Equation (2), the total cell area
of the initial circuit and resynthesized circuit remain almost the same.
Compared with directly applying row-based NIMCH placer on the
initial placement by Innovus, Lesyn reduces the maximal delay by
26.1%, at the cost of 55.1% additional runtime. Moreover, since our
proposed resynthesis algorithm preserves the cell locations of the
initial placement, the displacement of Lesyn is reduced by 99.1%,
compared with the conventional NIMCH physical design flow. Little
displacement introduced by our proposed approach guarantees that
the timing-optimization by the initial placement is well preserved,
leading to a smaller delay.

Figure 11 showcases a comparison between conservative and
structural logic resynthesis on the EPFL arithmetic benchmark suite.
Since the variance in total cell area, leakage power and displacement
for the conservative and structural approaches are within 2%, we
only compare the normalized maximal delay and runtime. Compared
with the conservative logic resynthesis, the structural approach

with the incorporation of placement-aware logic resynthesis. Our
proposed row-based logic resynthesis algorithm starts with a timing-
aware row height assignment strategy, which assigns specific cell
heights to each row of the initial placement. Then, we develop a
dynamic-programming-based algorithm for logic resynthesis, and a
heuristic method is proposed to solve the path reconvergence issue
of the solution traceback. Experimental results demonstrate that by
keeping the total cell area unchanged, our algorithm can reduce the
maximal delay by 26.1%.

References

[1] M. Hatamian and P. Penzes, “Non-integer height standard cell library,” Patent, uS
Patent 8,788,998.

[2] S.-Y. Wu, C. Chang, M. Chiang, C. Lin, J. Liaw, J. Cheng, J. Yeh, H. Chen, S. Chang,
K. Lai et al, “A 3nm CMOS FinFlex™ Platform Technology with Enhanced Power
Efficiency and Performance for Mobile SoC and High Performance Computing
Applications,” in Proc. [IEDM, 2022.

[3] S. A. Dobre, A. B. Kahng, and J. Li, “Design implementation with noninteger
multiple-height cells for improved design quality in advanced nodes,” IEEE TCAD,
vol. 37, no. 4, pp. 855-868, 2017.

[4] Z.-Y.Lin and Y.-W. Chang, “A row-based algorithm for non-integer multiple-cell-
height placement,” in Proc. ICCAD, 2021.

[5] J. Chen, Z. Huang, Y. Huang, W. Zhu, J. Yu, and Y.-W. Chang, “An efficient epist al-
gorithm for global placement with non-integer multiple-height cells,” in Proc. DAC,
2020.

[6] Y. Liu and J. Hu, “A new algorithm for simultaneous gate sizing and threshold
voltage assignment,” in Proc. ISPD, 2009.

[7] K.-M. Lai, T.-W. Huang, P.-Y. Lee, and T.-Y. Ho, “ATM: A High Accuracy Extracted
Timing Model for Hierarchical Timing Analysis,” in Proc. ASPDAC, 2021.

[8] M. M. Ozdal, S. Burns, and J. Hu, “Gate sizing and device technology selection
algorithms for high-performance industrial designs,” in Proc. ICCAD, 2011.

[9] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli, F. Mozafari,

S.-Y. Lee, A. T. Calvino, D. S. Marakkalage et al., “The epfl logic synthesis libraries,”

arXiv preprint arXiv:1805.05121, 2018.

T.-W. Huang and M. D. Wong, “Opentimer: A high-performance timing analysis

tool,” in Proc. ICCAD, 2015.

M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, and J. Michelsen,

“Open cell library in 15nm freepdk technology,” in Proc. ISPD, 2015.

L. Amaru, P.-E. Gaillardon, and G. De Micheli, “The EPFL combinational benchmark

suite,” in Proc. IWLS, 2015.

C.Chuand Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear Steiner minimal

tree algorithm for VLSI design,” IEEE TCAD, vol. 27, no. 1, pp. 70-83, 2007.

[10]
[11]

[12

[13]

