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Abstract
AI chip scales expediently in the large language models (LLMs)

era. In contrast, the existing chip design space exploration (DSE)
methods, aimed at discovering optimal yet often infeasible or un-
produceable Pareto-front designs, are hindered by neglect of design
specifications. In this paper, we propose a novel Spec-driven trans-
formed Bayesian optimization framework to find expected optimal
RISC-V SoC architecture designs for LLM tasks. The highlights of our
framework lie in a tailored transformed Gaussian process (GP) model
prioritizing specified target metrics and a customized acquisition
function (EHRM) in multi-objective optimization. Extensive experi-
ments on large-scale RISC-V SoC architecture design explorations
for LLMs, such as Transformer, BERT, and GPT-1, demonstrate that
our method not only can effectively find the design according to
QoR values from the spec, but also outperforms 34.59% in ADRS
over state-of-the-art approach with only 66.67% runtime overhead.

1 Introduction
The astonishing advancement of artificial intelligence (AI) has

brought about tremendous changes in computing and associated
hardware design paradigms. In particular, generative AI and large
language models (LLMs), such as the OpenAI GPT family, which
kindled the entire academia and industry, require a large amount
of computation for training and deployment. This has led to an
explosive increase in demand for AI hardware computility.

Efficient inference of large models requires customized accel-
erators and System-on-Chip (SoC) designs to reach the satisfying
quality of result (QoR) metrics. However, such design is highly com-
plex and resource-intensive, involving collaborative efforts from a
sizeable team to systematically address issues and progressively re-
fine the design across several iterations. This dramatically increases
costs and time, with an initial design phase spanning 1 to 2 years,
followed by several years of optimization. Consequently, agile devel-
opment is gradually being adopted to reduce chip design costs and
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Figure 1: Flow of agile chip development. Processor cores,
like BOOM and Rocket, and accelerators, such as Gemmini
and Hwacha, are described in parameterized designs based on
certain libraries. After that, the compiler takes in Chisel files
and generates the SoC RTL description.

accelerate design cycles. Chisel [1], as shown in Figure 1, is a meta-
programming, object-oriented, and parameterized hardware descrip-
tion language, allowing for the agile integration of complex hardware
designs. Anchored on Chisel, Rocket Core [2] and Berkeley Out-of-
Order Machine (BOOM) [3] are configurable and parameterizable
RISC-V processors. Similarly, Gemmini [4] is a systolic array-based
DNN accelerator. Integrating the Rocket Core, BOOM, Gemmini, etc.,
Chipyard [5] is a design, simulation, and implementation framework
for custom SoC which has been adopted for LLM inferences. Despite
the numerous conveniences afforded by the adoption of configurable
design approaches, their optimization remains challenging in the
huge parameterized design space. Evaluating each set of parameters
may take weeks since the EDA flow is highly time-consuming. Even
worse, there is often interdependence or contention between param-
eters while the multiple design objectives may be conflicting. To
tackle the problem, some approaches have been proposed for explor-
ing the design space efficiently. In [6], artificial neural networks are
leveraged to describe relationships among design parameters and
produce performance estimates for the designs. Lee et al. [7] pro-
pose a non-linear regression model for exploration in multiprocessor
micro-architecture. ELSE [8] combines different regression models
for robust design space modeling of microprocessors. Li et al. [9]
explore the design space by exploiting AdaBoost.

The design data are expensive and scarce, insufficient for the afore-
mentioned methods. Bayesian optimization (BO) method, which
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performs efficient global searches to explore the multi-objective
Pareto-optimal designs, is promising for such a time-consuming
problem. Zhang et al. [10] propose to use BO with neural networks
for analog circuit synthesis. Ma et al. [11] use BO to solve the pa-
rameter selection problem for EDA tools. BOOM-Explorer [12] uses
a deep kernel learning-based BO method to optimize the power,
performance, and area of the BOOM core.

However, these works ignore the critical fact that the Pareto-
optimal designs are quite likely to be unknown, cost-unacceptable,
and unreachable in practice. Typically, anticipated Quality of Results
(QoR) metrics are delineated within the design specification (abbr.,
spec) prior to initiating the design process, transforming the search
for a design that meets these QoR values into a guided endeavor. As
extra information, the given spec is underutilized in previous works.
We propose a transformed Bayesian optimization-based framework
to efficiently find the parameterized SoC architecture that meets the
design spec. A transformed Gaussian process model is developed to
integrate the QoR metric values given in the spec so that enables ef-
ficient exploration. An acquisition function, EHRM, is well designed
to enable multi-objective optimization and guide the search based
on the transformed model.

Our main contributions are as follows.
• To the best of our knowledge, it is the first exploration frame-
work to efficiently find the parameterized SoC architectures
with QoR metric values given in the spec.
• We construct a transformed Gaussian process model that
utilizes the information of the given spec.
• A customized acquisition function EHRM is developed to
enable multi-objective optimization based on the transformed
model.
• We conduct comprehensive experiments on the design space
exploration for parameterized RISC-V SoC, benchmarked on
some popular LLMs. Experimental results demonstrate the
high efficacy and quality of our method, outperforming the
previous arts significantly.

The rest of the paper is organized as follows. Section 2 introduces
prior knowledge of RISC-V SoC and multi-objective Bayesian opti-
mization and proposes a problem formulation. Section 3 sketches
the whole optimization flow. Section 4 describes the technical details
of the transformed Bayesian optimization, while Section 5 presents
the experimental results followed by a conclusion in Section 6.

2 Preliminaries
2.1 RISC-V SoC and LLM Acceleration

RISC-V SoC: The RISC-V architecture, a reduced instruction set
computer architecture, offers efficient hardware design and imple-
mentation with a minimal instruction set [13], and has been more
and more popular in recent years for its outstanding power efficiency.
A notable RISC-V SoC framework is Chipyard [5], an open-source
platform enabling SoC customization, integrating various RISC-V
CPUs and accelerators, such as BOOM [3], Rocket Core [2], Gem-
mini [4], and Hwacha [14]. A typical RISC-V SoC orchestrated using
Chipyard is shown in Figure 2, integrating a Gemmini accelerator,
a RISC-V CPU, an L2 Cache, and DRAM. The Gemmini accelerator
comprises a configurable systolic array arranged as tiles of PEs. The
scratchpad is the in-accelerator storage made up of configurable
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Figure 2: The architecture of RISC-V SoC. It is generated from
the highly parameterized Chisel files describing the architec-
ture configurations.

SRAMs. The controller is responsible for scheduling, sending, and
receiving the data from the external DRAM with the DMA channel.
Queue is implemented for access-execute decoupling, which con-
tains the load, store, and execute instruction queues. The framework
can be configured to use one or more RISC-V synthesizable CPUs.
The CPUs communicate with accelerators by sending commands to
the Rocket custom co-processor (RoCC), a component that can be
added to the CPU for communication support. Several configurable
hierarchical caches can be added, including L1 and L2 caches.

LLM Acceleration: The RISC-V SoC has demonstrated remarkable
capabilities in the acceleration of convolution networks, supporting
a variety of complex model computations and requirements [4]. Di-
vergent from traditional convolutional networks, LLM tasks exhibit a
more regularized or uniformmodel structure, with large-scale matrix
multiplication constituting the primary module and performance
bottleneck. To adapt the architecture depicted in Figure 2 for LLM
tasks, numerous factors must be considered. These include the selec-
tion of an appropriate CPU, cache sizes, accelerator configurations,
etc., to achieve a synergistic optimization of performance, area, and
power consumption, thereby fulfilling the design specification.

2.2 Multi-objective Bayesian Optimization
Bayesian optimization (BO) [15] is a sequential design strategy for

the global optimization of noisy black-box functions. It builds surro-
gate models to mimic the unknown black-box objective functions,
i.e., the complicated SoC architecture in our context. The Gaussian
process (GP) model is widely used as the surrogate model, which pro-
vides a posterior distribution of functions given prior and observed
data.

Real-world optimization problems often involve multiple con-
flicting objectives. Multi-objective Bayesian optimization (MOBO)
extends the standard BO to tackle such multi-objective problems.
Let functions {𝑓𝑖 (𝒙)}𝑚𝑖=1 denote the𝑚-dimension QoR metrics to be
minimized and 𝑿 denotes the parameter space. A parameter vector
𝒙∗ ∈ 𝑿 is said to dominate 𝒙′ ∈ 𝑿 , denoted as 𝒙∗ ⪰ 𝒙′, if the
following two conditions are met in this minimization problem:

(1) 𝑓𝑖 (𝒙′) ≥ 𝑓𝑖 (𝒙∗),∀𝑖 ∈ {1, ...,𝑚},
(2) There exists at least one 𝑗 such that 𝑓𝑗 (𝑥 ′) > 𝑓𝑗 (𝒙∗).
The set of parameter vectors that are not dominated by other

vectors is called the Pareto-optimal set, denoted as 𝑿Pareto, which is



the target of MOBO:

𝑿Pareto = {𝒙∗ ∈ 𝑿 |�𝒙′ ∈ 𝑿 , 𝒙′ ⪰ 𝒙∗}. (1)

If 𝒚∗ ⪰ 𝒚′, it means that (𝒙∗,𝒚∗) dominate (𝒙′,𝒚′). For the prob-
lem with𝑚 optimization objectives, Bayesian optimization builds
𝑚 surrogate models for these objectives, denoted as 𝑴 , to mimic
the unknown black-box objective functions. Further, an acquisition
function 𝐴𝑐 (𝑴, 𝒙) is built based on the surrogate models and esti-
mates the quality of a parameter configuration 𝒙 with respect to
finding the Pareto set, without going through the time-consuming
EDA flow.

2.3 Problem Formulation
Definition 1 (Hypervolume). In multi-objective problems, the no-
tion of solution is that of Pareto fronts. The quality of such fronts
can be measured by hypervolume:

HV
(
𝑓 𝑟𝑒 𝑓 ,X

)
= Λ

©­«
⋃
X𝑛∈X

[
𝑓1 (X𝑛) , 𝑓 𝑟𝑒 𝑓1

]
× · · · ×

[
𝑓𝑚 (X𝑛) , 𝑓 𝑟𝑒 𝑓𝑚

]ª®¬ ,
(2)

where 𝑓 𝑟𝑒 𝑓 refers to a chosen reference point, generally, it is set as
a very bad performance value point. 𝑓𝑚 means the𝑚 th metric i.e.
cycles, power and area. And Λ refers to the Lebesgue measure.

Definition 2 (ADRS). Another metric to measure the quality of
Pareto fronts is the average distance to reference set (ADRS):

ADRS(Γ,Ω) = 1
|Γ |

∑︁
𝛾 ∈Γ

min
𝜔∈Ω

𝐷 (𝛾, 𝜔), (3)

where 𝐷 is the Euclidean distance function. Γ is the real Pareto-
optimal set and Ω is the learned Pareto-optimal set. ADRS is often
exploited to measure how close a learned Pareto-optimal set is to
the real Pareto-optimal set of the design space.

In industrial scenarios, a set of expected values of QoR metrics
are usually provided by specifications in advance. With the above
knowledge, our problem can be formulated as follows.

Problem 1 (Spec-driven SoC design space exploration). Given the
expected value of QoR metrics from specifications, the objective of
SoC architecture design space exploration is to automatically search
parameterized designs whose associated performance is closest to
expected metric values.

3 Overall Flow
In this section, we introduce a multi-objective Bayesian optimiza-

tion approach. The primary goal of the approach is to optimize the
parameterized SoC architecture to meet the expected metrics.

The overall architecture of our approach is shown in Figure 3.
Chipyard takes in the suggested parameterized SoC architecture as
Chisel files and generates corresponding Verilog files. Then, per-
formance information is generated using the simulator. After the
Verilog files are synthesized with EDA tools, power and area infor-
mation can be read from report files. The QoR metrics, including
performance, power, and area, are appended to the data𝑌 , along with
the parameterized SoC architecture as 𝑋 . A transformed Gaussian
process regression model which utilizes the expected value from the
spec is built for each metric. These models offer mean and variance
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Figure 3: Overall flow. The whole flow is separated into two
parts. The green part in the figure takes in the suggestion and
evaluates it through the simulator and EDA tools. After that,
QoR metrics are collected in the yellow part to generate the
next suggestion through transformed Bayesian optimization.

Algorithm 1 BO Approach with Given Spec
Input: Spec’s metrics values 𝑓 ∗, parameter search
space 𝑋 , acquisition function 𝐴𝐶 , simulation tool SIM,
EDA tool EDA, optimization budget 𝑡𝑚𝑎𝑥 .

Output: The set of solutions closest to spec value 𝑿spec.
1: Initialization: sample initial input 𝑿0 with 𝑿0 ⊂ 𝑿 , 𝒀0 =
[SIM(𝑿0),EDA(𝑿0)], 𝑫0 = {𝑿0, 𝒀0};

2: for 𝑡 ←1 to 𝑡𝑚𝑎𝑥 do
3: Build𝑚 transformed Gaussian process models:

𝑴𝑡 ;1,...,𝑚 ← GP(𝑓 ∗,𝑿𝑡−1, 𝒀𝑡−1); ⊲ Equation (7)
4: Select the next candidate to evaluate:

𝑿𝑡 ← A𝐶 (𝑓 ∗,𝑴𝑡 ;1,...,𝑚, 𝒙), ∀𝒙 ∈ 𝑿 ; ⊲ Equation (12)
5: Evaluate next candidate 𝒀𝑡 = [SIM(𝑿𝑡 ),EDA(𝑋𝑡 )];
6: Update 𝑫𝑡 ← {𝑿𝑡 , 𝒀𝑡 };
7: end for
8: Select ideal configurations 𝑿spec according to 𝑫𝑡𝑚𝑎𝑥

;
9: return 𝑿spec.

information for the acquisition function to select the next set of
parameterized SoC architecture.

Algorithm 1 outlines the steps taken in each iteration of the opti-
mization process. In line 1, the algorithm begins by randomly sam-
pling the initial parameter configurations 𝑋0 from the parameter
search space. 𝑋0 is then simulated and synthesized using the simu-
lator and EDA tools to get the corresponding performance, power,
and area values. For simplicity, we denote the simulator as SIM and
EDA tools as EDA. In each iteration (line 2 to 7), a transformed GP
model, which takes in the knowledge of expected value 𝑓 ∗ in spec, is
built for each metric (line 3). A corresponding acquisition function,
which also needs 𝑓 ∗, selects the next candidate to be evaluated (line
4). After that candidate is simulated and synthesized, the results are
added to the sample set 𝐷 for the next iteration (line 5 to 6). This pro-
cess is repeated until the maximum number of iterations is reached.
Finally, the algorithm returns the parameterized SoC architecture
closest to the given spec.

In a nutshell, the proposed algorithm takes in the knowledge of
the spec to explore and exploit the SoC architecture design space



using the Gaussian process model, thereby providing a satisfactory
SoC architecture.

4 Bayesian Optimization With Given Spec
As aforementioned, each parameter in a parameterized SoC archi-

tecture has its elusive effect on metrics like performance, power, and
area. Some parameters may conflict, making it even harder to pick an
ideal SoC architecture from the design space. This section details the
methodology we employed to carry out Bayesian optimization (BO)
for optimizing QoR with its values given in spec. We aim to utilize
the knowledge of that given value 𝑓 ∗ in spec to find a corresponding
SoC architecture quickly.

4.1 Transformed Gaussian process
The key idea of the transformation is that the function value 𝑓 (𝑥)

should reach the value 𝑓 ∗ in spec but does not need to be greater
than 𝑓 ∗. Based on the idea, the Gaussian process is transformed as:

𝑓 (x) = 𝑓 ∗ − 1
2𝑔

2 (x) 𝑔(x) ∼ 𝐺𝑃 (𝑚0, 𝐾) , (4)

where𝑚0 and 𝐾 are the prior mean and covariance of 𝑔(𝑥) respec-
tively, so 𝑓 (𝑥) will not beyond the given spec’s value 𝑓 ∗. Doing so
can save lots of effort from the attempt to go greater than 𝑓 ∗. Given a
set of single-objective observations 𝑫 = (𝒙𝑖 , 𝑦𝑖 )𝑁𝑖=1, we can compute
the observations as: 𝑫𝒈 = (𝒙𝑖 , 𝑔𝑖 )𝑁𝑖=1, where 𝑔𝑖 =

√︁
2 (𝑓 ∗ − 𝑦𝑖 ). Then

the posterior distribution of the transformed Gaussian process can
be described as:

𝑝
(
𝑔 | 𝑫𝑔, 𝑓

∗) ∼ N
(
𝜇𝑔 (x), 𝜎𝑔 (x)

)
, (5)

However, the posterior distribution becomes a non-central pro-
cess because of the transformation. An approximation technique
is performed to overcome the problem. A local-linearization of the
transformation 𝑡 (x) = 𝑓 ∗ − 1

2𝑔
2 (x) is taken around 𝑔0 and 𝑓 is

obtained as:
𝑓 ≈ 𝑡 (𝑔0) + 𝑡 ′ (𝑔0) (𝑔 − 𝑔0) , (6)

where the gradient 𝑡 ′ (𝑔0) equals −𝑔. We set 𝑔0 = 𝜇𝑔 to model the
posterior distribution, so 𝑓 can be expressed as:

𝑓 (x) ≈ 𝑓 ∗ − 1
2 𝜇

2
𝑔 (x) − 𝜇𝑔 (x)

[
𝑔(x) − 𝜇𝑔 (x)

]
= 𝑓 ∗ + 1

2 𝜇
2
𝑔 (x) − 𝜇𝑔 (x)𝑔(x) .

(7)

Now, the posterior distribution has a form for 𝑝 (𝑓 | .) = N (𝑓 |
𝜇, 𝜎), where

𝜇 (x) = 𝑓 ∗ − 1
2 𝜇

2
𝑔 (x), (8)

and
𝜎 (x) = 𝜇𝑔 (x)𝜎𝑔 (x)𝜇𝑔 (x). (9)

By implementing such transformations, we can exploit the informa-
tion of the given spec and force the Gaussian process to get close to
𝑓 ∗ without getting above it, as shown in Figure 4.

4.2 Expected hyper-regret minimization
The acquisition function is crucial in Bayesian optimization, de-

termining where to sample next. Based on the idea of getting close
to the given value 𝑓 ∗ in spec, a multi-objective acquisition function
is developed, called expected hyper-regret minimization (EHRM).

Figure 4: Comparison between ordinary Gaussian process and
our transformed Gaussian process. The brown square in the
figure is the evaluated point, and the blue curve is the real
function 𝑓 (𝑥). The dotted line and the cyan area represent the
predicted mean and variance, respectively. It can be seen that
the predicted mean (dotted line) and variance (cyan area) do
not go above the target value from the spec in the transformed
Gaussian process, while the ordinary Gaussian process does.

Here, the word ‘regret’ means the miss-distance between the metrics
of the current parameter configuration and 𝑓 ∗, which is defined as:

𝑟 (x) = 𝑓 ∗ − 𝑓 (x) . (10)

In a normal posterior distribution, the probability of 𝑟 (x) is

𝑃 (𝑟 ) = 1
√
2𝜋𝜎 (x)

exp
(
−12
[𝑓 ∗ − 𝜇 (x) − 𝑟 (x)]2

𝜎2 (x)

)
. (11)

When it comes to multiple QoR metrics to be optimized, which
means 𝒇∗ is now a vector, so we introduce hyper-regret 𝐻𝑟 (x) to
express the regret in high-dimension circumstances.

Hyper-regret measures the distance between the current metrics
and the spec’s value in a normalized space. It is used to quantify the
disappointment of the metrics of a specific SoC architecture when
the spec is given.

Since the information of each metric’s mean and variance can
be calculated from the transformed Gaussian process, the expected
hyper-regret is defined as the expectation of 𝐻𝑟 (x) with respect to
the posterior predictive distribution of the transformed GP. EHRM
aims to find a configuration of SoC architecture parameters with
an expectation closet to the given spec, in other words, with the
smallest expected hyper-regret:

x𝑡+1 = arg min
x∈X

EHRM(x) = arg min
x∈X

E[𝐻𝑟 (x)] . (12)

EHRM utilizes mean and variance similarly to EHVI (Expected
Hypervolume Improvement) [16], while the ideas behind them are
different. EHVI prefers high means and high variance, which means
it always desires to find a better QoR result in high-variance ar-
eas. However, the same desire for EHRM decreases with the result
reaching the given value in the spec.

5 Experiment
5.1 Experimental Setup and Benchmarks

We test our flow on a Gemmini-based RISC-V SoC benchmarked
on some popular LLMs, including Transformer-small [17], Bert-base
[18], Transformer-large, Bert-large, and GPT1-small [19]. Chipyard
1.9.1 is leveraged to generate RTL code from parameterized Chisel



Table 1: Examples of Parameters

Parameters Stage Candidates
𝑐𝑝𝑢_𝑡𝑦𝑝𝑒 CPU core RocketBig/BoomMed/BoomLarge
𝐿2𝑇𝐿𝐵𝑠

L2 Cache
512, 1024

𝑛𝑊𝑎𝑦𝑠 4, 8, 16
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐾𝐵 512, 1024
𝑡𝑖𝑙𝑒_𝑅𝑜𝑤𝑠/𝐶𝑜𝑙𝑢𝑚𝑛𝑠

Accelerator

1, 4, 8
𝑚𝑒𝑠ℎ_𝑅𝑜𝑤𝑠/𝐶𝑜𝑙𝑢𝑚𝑛𝑠 8, 16, 32, 64
𝑠𝑝_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 256, 512, 1024, 2048, 4096
𝑑𝑚𝑎_𝑏𝑢𝑠𝑤𝑖𝑑𝑡ℎ 128, 256

Transformer-small Bert-base Transformer-large Bert-large GPT1-small

Figure 5: Cycles of language model tests on different methods’
output optimal parameters.

files. A bespoke simulator built on Spike is used for fast cycle simula-
tion which returns the number of cycles to measure LLMs’ inference
cycles on the SoC designs. Cadence Genus 201 is invoked to synthe-
size the RTL design based on the ASAP7 7nm PDK. Cadence Joules
201 and PrimeTime 2018.06-SP1 analyze the power consumption.
The multiple optimization objectives include power, area, and cycles.

The architecture design space is composed of 19 parameters, re-
sulting in 3 × 108 parameter configurations. After refining our se-
lection to exclude infeasible parameter configurations and sampling
the remaining ones, we have included a total of 1124 parameter con-
figurations in our offline dataset. Table 1 illustrates the parameters.
Their definitions are shown below:
• 𝑐𝑝𝑢_𝑡𝑦𝑝𝑒 specifies the type of CPU cores, which is selected
between different BOOM and Rocket cores.
• 𝐿2𝑇𝐿𝐵𝑠 assigns the number of entries of translation look-
aside buffer in L2 Cache.
• 𝑛𝑊𝑎𝑦𝑠 assigns the number of associate sets of L2 Cache.
• 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐾𝐵 specifies the capacity of L2 Cache in Kilobytes.
• 𝑡𝑖𝑙𝑒_𝑅𝑜𝑤𝑠/𝐶𝑜𝑙𝑢𝑚𝑛𝑠 and𝑚𝑒𝑠ℎ_𝑅𝑜𝑤𝑠/𝐶𝑜𝑙𝑢𝑚𝑛𝑠 specify the di-
mensions of systolic arraies. Each tile is an array of PEs and
each mesh is an array of tiles with connecting registers.
• 𝑠𝑝_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 determines the capacity of scratchpad memory.
• 𝑑𝑚𝑎_𝑏𝑢𝑠𝑤𝑖𝑑𝑡ℎ assigns the bus width of the accelerator’s
DMA transaction.

The following metrics are employed to compare each SoC DSE
method: hypervolume (𝐻𝑉 ), cycles-power hypervolume (𝐻𝑉0,1),
cycles-area hypervolume (𝐻𝑉0,2), and average distance to reference
set (ADRS). ADRS computes the average distance between the found
Pareto designs and the ground-truth Pareto designs. The cycle here
is the average cycle of the benchmarks’ inference performance on
the SoC. We compare our method with the following baselines, each
with a 150-hour execution quota (including EDA tool runtimes):
• GLSVLSI’07 [20]: Support vector machine-based method.
• HPCA’07 [7]: Regression-based model with non-linear trans-
formation.
• DAC’16 [9]: Method based on AdaBoost learning.
• ASPDAC’20 [21]: XGBoost-based method.

0 20 40 60 80 100 120 140
Runtime (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
yp

er
vo

lu
m

e GLSVLSI'07
HPCA'07
DAC'16
ASPDAC'20
ICCAD'21
ISCA'23
Ours

(a)

0 20 40 60 80 100 120 140
Runtime (hours)

0.2

0.4

0.6

0.8

1.0

N
or

m
. A

D
R

S

(b)

Figure 6: (a) The visualizations of different methods’ nor-
malized hypervolume changes with runtime (including EDA
tools). (b) The visualizations of normalized ADRS changes
with runtime.

• ICCAD’21 [12]: Method with active learning-based initial
dataset sampling and Gaussian process with deep kernel learn-
ing.
• ISCA’23 [22]: Method based on randomized decision forests.

Our method and the baselines share the same randomly initialized
parameter configurations, except ICCAD’21 [12] which utilizes its
meticulously selected initial configurations. To evaluate our explo-
ration ability and simultaneously perform a fair comparison against
other Pareto-driven methods, the associated QoR metric values of
Pareto-optimal designs are given in several separate specifications
to feed into our approach. Our method is invoked in parallel, and
the total time cost is summed up for each process.

5.2 Comparisons Against SOTAWorks
Table 2 shows the comparison of our method with existing meth-

ods on RISC-V SoC. Although these methods have the same runtime
quota, our method can better explore the search space. In the nor-
malized space of the 3 metrics (cycles, power, and area), our method
acquires the highest hypervolume in all subspace (𝐻𝑉0,1, 𝐻𝑉0,2 and
𝐻𝑉 ). On average of these three metrics, our method is 9.02% higher
than GLSVLSI’07 [20], 7.03% higher than HPCA’07 [7], 4.17% higher
than DAC’16 [9], 6.30% higher than ASPDAC’20 [21], 4.02% higher
than ICCAD’21 [12], 9.54% higher than ISCA’23 [22]. Visualization
of the Pareto frontier in two QoR metrics is shown in Figure 7. Some
Pareto results of different languagemodel tests given by eachmethod
are shown in Figure 5. The SoC design output by our method can
reach the least cycles in each of the language model tests.

Figure 6(a) and Figure 6(b) show the increase of hypervolume and
the decrease of ADRS of each method. The red curve rises faster than
others in hypervolume and falls faster than others in ADRS, which
means our method outperforms others remarkably. In ADRS, our
method converged to 0.107 after 40 hours of runtime, while DAC’16
[9] converged to 0.154 after 60 hours of runtime. It indicates that
our method is more efficient in exploring the design space.

The associated performance of suggestion and the given spec QoR
metric values are visualized in Figure 8(a). Color of the suggestion’s
performance is related to the time it is suggested. The later it is
suggested, the darker its color is. It can be seen that the suggestion
keeps getting close to the given spec QoR values and finally reaches
them. The area ratio of the suggested SoC design’s components is
listed in Figure 8(b). The systolic mesh and the scratchpad occupy



Table 2: Comparisons against SOTA works

Metric
Method GLSVLSI’07 [20] HPCA’07 [7] DAC’16 [9] ASPDAC’20 [21] ICCAD’21 [12] ISCA’23 [22] Ours

HV0,1 0.6320 0.6491 0.6789 0.6610 0.6716 0.6398 0.7063
HV0,2 0.7129 0.7255 0.7231 0.7144 0.7251 0.6929 0.7472
HV 0.5577 0.5636 0.5891 0.5758 0.5975 0.5609 0.6208

Average 0.6342 0.6460 0.6637 0.6504 0.6647 0.6312 0.6914
Ratio(%) 91.72 93.43 95.99 94.07 96.13 91.29 100

(a)

(b)

Figure 7: (a) The visualizations of selected Pareto frontiers
in cycles-area metric space. (b) The visualizations of selected
Pareto frontiers in cycles-power metric space.
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Figure 8: (a) The visualizations of transformed Bayesian opti-
mization’s suggestion getting close to given spec. (b) The area
ratio of each component in our method’s suggested design.

most of the design’s area. The systolic mesh size of the suggested
SoC design is 32, which is better fitted to the hidden dimensions and
heads of LLMs on the benchmark.The capacity of the scratchpad is
2048 (KiB), large enough to store the result of the LLMs’ inference.

6 Conclusion
In this paper, we have proposed an architecture design space

exploration method based on the transformed Bayesian optimization

approach to find an ideal RISC-V SoC design with given QoR metric
values from the specification. The constructed model utilizes the
given spec QoR metric values as additional information to learn and
force the Gaussian process to get close to the target QoR values
without beyond them. A tailored acquisition function is developed
for optimization in multiple metrics (e.g., cycles, power, and area).
Experiments on 5 large language models under an advanced 7nm
technology node have demonstrated the efficiency and effectiveness
of the proposed framework.
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