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Highlights

= We propose CBTune, adapting the contextual bandit algorithm to
facilitate efficient transformation selection through iterative model
tuning.

= We implement the Syn-LinUCB algorithm as the agent and establish a
context generator for informed decision-making in the bandit model.

= We present a novel “return-back” mechanism that revisits decisions to
avoid local optima, distinguishing it from typical RL scenarios.

= Our method surpasses SOTA approaches for metrics and runtime
within the same action space.

Background

ML-Enhanced Synthesis Optimization Machine learning facilitates
technology-independent optimization: 1) it models circuit structures to
accurately predict performance metrics [4], 2) it employs reinforcement
learning for rapid synthesis flow generation in an exponentially large
solution space [1].
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Figure 1. lllustration of our proposed contextual bandit-based approach for efficient
synthesis flow generation.

Bandit-based Search Model The Multi-Arm Bandit (MAB) model, known
for its efficiency in generating synthesis flows [3], strikes a balance be-
tween exploration and exploitation to optimize rewards. CBTune lever-
ages domain-specific knowledge by integrating contextual data into the
MAB model, enabling progressive decision-making depicted in Figure 1.

Motivation

Existing Problems

= NN-based methods are limited by time-consuming dataset preparation
and training, as well as restricted transferability and system integration.

= The non-contextual MAB approach neglects key arm features like
optimization trends and AlG characteristics. It also makes
sequence-based decisions without considering permutations,
compromising final performance.
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Figure 2. Score iterations for each arm in bandit model.

Observations LinUCB [2] improves MAB model by integrating contextual
details like arm and environmental features to guide decision-making. The
score for each arm a is updated by:

LINUCB, = E(a|x) + aSTD(a|x)
—z'.0,+ Oz\/wTAglaz.

(1)

1st term: Estimated Payoff 2rd term: Upper Confidence Bound

= Estimates average payoff from x = Controlled by hyperparameter o

= §, represents historical success = Reflects uncertainty in estimation

Therefore, we propose a tailored bandit model to guide decisions for each
individual transformation within the synthesis flow efficiently. This model:
1. Treats each transformation as an “arm” with equal initial UCB scores.
2. lteratively updates scores to gauge performance.

3. Chooses and refines the highest-scoring arm in each iteration for
enhanced score accuracy and reliability.

4. Steers scores towards the arms’ true payoffs, with the highest-scoring
arm reflecting the best optimization performance.

Pipeline

The overall CBTune framework is shown in Fig. 3.
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Figure 3. CBTune framework overview.

= Action Space: A = {resub (rs), resub -z (rsz), rewrite (rw), rewrite -z (rwz),
refactor (rf), refactor -z (rfz), balance (b)}.

= Reward r: the scaled payoff of a single arm execution.

Methodology

Evaluation Results

Context Generator The vector x, fusing circuit characteristics € and the
arm’s long-term payoff x!, informs the agent’s decisions by providing es-
sential environmental and state insights.

Table 1. Contextual Information.

Feature Example

Circuit Extracted by yosys and ccirc #Number of wires/cells/nots, #Max-
Characteristics imum delay, #Number of combinational nodes, #Number of high
(x°) degree comb, #Reconvergence, #Node shape...

Long-term  Payoff | Arm: rewrite (rw); { = 5; m = 1;

of the Arm frw rf,rf,rw bl — Nodes: 28010, Level: 66
(22!) Arm: refactor (rf): 1 = 4: m = 2:

{irf b,rf rw} — Nodes: 28350, Level: 69
{rf,rw.,b,rs} — Nodes: 28324, Level: 67

Agent: Syn-LinUCB Key advantages:

1. It utilizes short-term payoffs to direct the agent to select arms toward
the optimal target value per step, enhancing local performance.

2. It accounts for long-term payoffs to avert local optima and explore
potential optimization trends, fostering improved decision quality.

Algorithm 1 Syn-LinUCB

Input: Arms a € A, Context weights w € R?,
Number of iterations 1", Constant p.
Output: Best arm ay.4 In this step.
1: r, < Reward of all arms;
2: Extract the AIG characteristics: ¢ € R%;
3: Arm selection times s, = 0;
4: fort=1,2,...,T do

5: Update the long-term payoff: x} , € R%;
6 Observe features of a € A : @y, = [xf, z; ] € RY;
7 for Va € A do
8: Initialize historical context and reward by A, = I4, b, = 04, Va Is new;
9: Update hyperparameter o« by o = 1.0 + W;
10: Update the decision parameter by 8, = A;lba;
11: Calculate the weighted context Ty, = Ty W,
12: Update score by p;, = Hz(zc;‘ja) + oz\/(wg‘ja)TA(;l(w;‘ja);
13: end for
14: Choose arm by a; = argmax,c 4 Pt.a;
15: Increase the selection count of arm a; by s, = 54, + 1;
16: Update the parameters A,, and b,, of the chosen arm a; by
17: A, =Ay+x,, by, =by+ 1.,
18: end for

19: a/best % a/t.

Return-back Mechanism To amend suboptimal decisions stemming from a
lack of historical data, we allow CBTune the capacity to “regret” by record-
Ing synthesis results in a hash table. This allows CBTune to compare new
results with past decisions and, if necessary, return to a crucial step to re-
select a better arm, thus improving decision quality.

Check out the hash table and Return back
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Figure 4. The return-back mechanism in CBTune.
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Figure 5. CBTune vs. FlowTune [3] in AIG node optimization.

Table 2. CBTune vs. FlowTune in 6-LUTs optimization.

Initial | Greedy | Flowtune [3] CBTune
Benchmark _
#LUTs | #LUTs = #LUTs 7(m) #LUTs #LUTs 7(m)
bfly 9019 8269 8216 7647 7962 8086.03 29.63
dscg 8534 8313 8302 77.15 7981 8119.84 30.44
fir 8646 8385 8094 7423 7820 7/977.38 27.6
ode 5244 5316 5096 34.83| 4920 5046.71 17.32

or1200 2776 2748 2747  20.08| 2731 2/54.0/ 15.62
synz2 8777 3669 8603 81.33 8234 8360.53 31.67
GEOMEAN|6631.20|6464.69 | 6364.89 54.046166.39 62/1.82 24.48
Ratio Avg. | 1.000 @ 0.9/75 | 0.960 1.000| 0.930 0.946 0.453

Table 3. CBTune vs. NN-enhanced RL in 6-LUTs optimization.

Initial | Greedy|  DRILLS [1] RLALS CBTune
#LUTs | #LUTs | #LUTs  7(m) | #LUTs  7(m) | #LUTs 7(m)
max 721 | 697 | 694 3258 | 687.8 5434 | 684.25 6.01
adder 249 | 244 | 244 2405 244  10.05 244 597
cavic 116 | 115 | 1122 26.02 1113 322 111 2.37
ctrl 29 28 28 2425, 28 2.85 28 0.59
int2float | 47 46 426 217 | 423 281 40 2.76
router 73 67 701 2201 | 695 307 | 6811 232
priority | 264 | 146 | 1334 2332 | 1429 5.9 138.86 3.41
i2c 353 | 291 | 2921 2517 28932 755 | 28311 3.61
sin 1444 1451 | 14415 51.15 1438 201 | 1441.67 9.71
square | 3994 | 3898 | 3889.4 130 | 3889  72.88 | 3882.11 25.99
sqrt 8084 | 4807 | 4708 147.64 46853 19615 | 4607 36.51
log2 7584 | 7660 | 7583.6 198.6 | 7580.1 12528 7580 41.27
multiplier = 5678 | 5688 | 5678 180.84| 5672 187.81 | 5679.75 29.08
voter 2744 | 1904 | 1834.7 84.43 | 1678.1 33048 | 1682.25 11.46
div 23864 | 4205 | 79444 25975 7807.1 482 | 4180.91 25.58
mem_ctrl 11631 | 10144 10527.6 229.33/10309.7 1985.84 10242.57 45.81
GEOMEAN 926.59732.69 75349 5948 74834 3454 | 712.83 8.37
Ratio Avg. | 1.000 | 0.791 | 0.813 1.000 0.808 0.581 | 0.769 0.141

*Last10 in RL-PPO-Pruned [5]

Benchmark

Conclusion

= CBTune outperforms FlowTune in both AIG nodes/6-LUT optimization
in both metric and runtime. Our method also outshines three RL-based
methods by reducing 6-LUT counts up to 4.4%, all achieved in a swift
8.37 minutes per design.

= CBTune efficiently generates synthesis flows with excellent, stable
results and fast runtime, without training data or complex procedures.
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