

PARALLEL GRÖBNER BASIS REWRITING AND MEMORY **OPTIMIZATION FOR EFFICIENT MULTIPLIER VERIFICATION**

Hongduo Liu¹, Peiyu Liao¹, Junhua Huang², Hui-Ling Zhen², Mingxuan Yuan², Tsung-Yi Ho¹, Bei Yu¹ ¹The Chinese University of Hong Kong ²Huawei Noah's Ark Lab

Multiplier Verification

- Wide applications of integer multipliers: signal processing, cryptography, scientific computing, etc.
- **Formal** verification is essential to ensure reliability.
- Verifying highly parallelized and structurally complex multipliers is **time-consuming**.

Formal Verification Methods

- Binary Decision Tree: memory explosion and structural information dependent.
- SAT: poor scalability when facing large multipliers.
- Symbolic Computer Algebra: achieves SOTA performance.

Specification Polynomial Reduction

Suppose we desire to reduce $sp = c_1x_1x_2x_3 + \cdots + c_2x_2x_4$ with a polynomial $f_{x_2} = -x_2 + c_3 x_5 x_6$ from simplified Gröbner basis. The reduction process can be accomplished by the following steps:

- **Divide term**: identify all terms containing the variable x_2 in *sp*, divide x_2 from those terms and add them together to get $QUO := C_1 X_1 X_3 + C_2 X_4.$
- Multiply poly: multiply the obtained quo with f_{x_2} , resulting in a polynomial
- $mul := -c_1x_1x_2x_3 + c_1c_3x_1x_3x_5x_6 c_2x_2x_4 + c_2c_3x_4x_5x_6.$
- Add poly: add *mul* to *sp* to cancel all terms containing the variable x_2 , which are $c_1x_1x_2x_3$ and $c_2x_2x_4$.

Previous Works

Operator Rescheduling

Suppose we have $f_1 := -\alpha + h(T_\alpha)$ and $f_2 := -\beta + h(T_\beta)$. $h(T_\alpha)$ and $h(T_{\beta})$ are both polynomials. If $\alpha \notin h(T_{\beta}), \beta \notin h(T_{\alpha})$ and $\forall u \in$ $sp_1, u \xrightarrow{\alpha\beta} r \neq 0$, where u is a monomial in sp_1 , then the reduction of f_1 and f_2 can be performed concurrently.

SCA-based Verification

- Step 1: Gröbner basis construction.
- Step 2: Gröbner basis rewriting.
- Step 3: Specification polynomial reduction.
- Step 4: Zero remainder implies correctness.

Gröbner Basis Construction

Model the circuit as Gröbner basis polynomials $G = \{f_{g_1}, ..., f_{g_n}\}$ and the specification as a polynomial *sp*.

- Reduce the verification complexity by detecting redundant polynomials [6].
- Allow for local cancellation of vanishing monomials in converging gates cones starting from half adders [3].
- Substitute complex final-stage adders with simple ripple-carry adders and used SAT solvers to verify the equivalence of substitution [2].

Whole Flow of Our Framework

Key contribution: accelerating verification by parallel computing and memory footprint optimization.

Parallel Gröbner Basis Rewriting

The second computation graph exhibits smaller memory overhead because *tmp* is a shorter polynomial than *sp*2.

Experimental Results

Verification runtime comparison on large multipliers generated by GenMul [4].

benchmark	size	#gates	Amulet 2.2 [1]			Ours (16 threads)		
			rewriting	reduction	overall	rewriting	reduction	overall
SP-AR-LF		194314	0.98	0.16	1.30	0.43	0.57	1.15
SP-DT-LF	128×128	193806	2.26	0.38	2.82	0.45	0.82	1.39
SP-WT-BK		197774	2.31	2.65	5.24	0.48	1.26	1.92
SP-AR-LF	256×512	781834	6.20	0.87	7.72	2.37	1.52	4.55
SP-DT-LF		780814	17.85	2.09	20.80	1.79	3.57	6.06
SP-WT-BK		790610	17.84	25.85	44.66	1.86	5.63	8.16
SP-AR-LF	512×512	3136522	55.42	5.70	63.81	10.94	6.97	20.13
SP-DT-LF		3134478	185.53	12.02	201.13	8.28	15.22	26.33
SP-WT-BK		3157890	186.46	322.87	512.96	8.84	33.05	45.02
SP-AR-LF	1024×1024	12564490	506.55	39.39	573.05	54.26	37.41	102.11
SP-DT-LF		12560398	1817.96	92.74	1940.23	38.32	73.96	123.68
SP-WT-BK		12606714	1807.25	3519.13	5356.14	37.65	311.19	360.71
Average Ratio			15.64	2.80	6.24	1.00	1.00	1.00

Effectiveness of Memory Optimization Techniques

 $sp := 8s_3 + 4s_2 + 2s_1 + s_0 - (2a_1 + a_0)(2b_1 + b_0)$ $f_{s_3} := -s_3 + g_{11}$ $f_{g_{11}} := -g_{11} + g_4 g_7$ $f_{s_2} := -s_2 + 1 - g_{12}$ $f_{q_{12}} := -g_{12} + 1 - g_9 - g_{10} + g_9 g_{10}$

Gröbner Basis Rewriting

The objective of Gröbner basis rewriting is to acquire a new basis with fewer variables, preventing the blow-up of monomials.

• • •

- Before rewriting: $f_r := -r + 1 - r - s + st$, which depends on *s* and *t*.
 - After rewriting: $f_r := -r + a + b - 2ab$, which depends on *a* and *b*.

XOR-Rewriting [5] removes all variables that are neither an input nor an output of an XOR-gate.

- Before rewriting: $f_r := -r + s - st$, which depends on s and t.
- After rewriting:

- We observe that the elimination of certain variables can operate independently of others.
- The elimination of (g_5, g_6) and (g_9, g_{10}) in the AIG are independent of each other and thus can be done in parallel.

 g_5

 $f_{g_6} := -g_6 + g_2 - g_2 g_3$

 $f_{g_8} := -g_8 - g_2 - g_3 + 2g_2g_3$ $f_{g_{12}} := -g_{12} - g_4 - g_7 + 2g_4g_7$

 S_2

g₁₁

 g_7

 g_3

Double Buffering

Both DB (double buffering) and operator rescheduling are useful for reducing memory overhead.

References

- [1] Daniela Kaufmann and Armin Biere. Fuzzing and delta debugging and-inverter graph verification tools. In International Conference on Tests and Proofs, pages 69–88. Springer, 2022.
- [2] Daniela Kaufmann, Armin Biere, and Manuel Kauers. Verifying large multipliers by combining SAT and computer algebra. In Proc. FMCAD, pages 28–36. IEEE, 2019.
- [3] Alireza Mahzoon, Daniel Große, and Rolf Drechsler. Polycleaner: clean your polynomials before backward rewriting to verify million-gate multipliers. In Proc. ICCAD, pages 1–8. IEEE, 2018.
- [4] Alireza Mahzoon, Daniel Große, and Rolf Drechsler. Genmul: Generating architecturally complex multipliers to challenge formal verification tools. In Recent Findings in Boolean Techniques, pages 177–191. Springer, 2021.
- [5] Amr Sayed-Ahmed, Daniel Große, Ulrich Kühne, Mathias Soeken, and Rolf Drechsler.

Common-Rewriting [5] simplifies the Gröbner basis by eliminating all gates that only possess a single fanout.

• Cache the first polynomial sp_1 in the first buffer.

• After reducing it by f_1 , the derived polynomial, sp_2 , is stored in the second buffer.

sp₁ is no longer needed, so the first buffer can be used to store the newly derived polynomial, sp_3 .

Formal verification of integer multipliers by combining gröbner basis with logic reduction. pages 1048–1053. IEEE, 2016.

[6] Cunxi Yu, Maciej Ciesielski, and Alan Mishchenko. Fast algebraic rewriting based on and-inverter graphs. *IEEE TCAD*, 37(9):1907–1911, 2017.

