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Multiplier Verification

= Wide applications of integer multipliers: signal processing,
cryptography, scientific computing, etc.

= Formal verification is essential to ensure reliability.

= Verifying highly parallelized and structurally complex multipliers
IS time-consuming.

Formal Verification Methods

= Binary Decision Tree: memory explosion and structural
iInformation dependent.

= SAT: poor scalability when facing large multipliers.
= Symbolic Computer Algebra: achieves SOTA performance.

SCA-based Verification

= Step 1: Grobner basis construction.

= Step 2: Grobner basis rewriting.

= Step 3: Specification polynomial reduction.
= Step 4: Zero remainder implies correctness.

Grobner Basis Construction

Model the circuit as Gréobner basis polynomials G = {f,, ...
the specification as a polynomial sp.
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sp := 853 + 482 + 281 + s¢g — (2a1 + ag)(2b1 + bg)
Jss 1= —83 + g11

fo11 = —g11 + gagr

Jso i = =82+ 1—g12

Jgi1o := =912+ 1 — g9 — g10 + 99910

Grobner Basis Rewriting

The objective of Grobner basis rewriting is to acquire a new basis
with fewer variables, preventing the blow-up of monomials.

= Before rewriting:
fri=—r-+1—r—s+st, which
depends on s and t.

= After rewriting:
fr:=—r+a+b— 2ab, which
depends on g and b.

XOR-Rewriting [5] removes all variables that are neither an input
nor an output of an XOR-gate.

@ @ = Before rewriting:
i fr .= —r+ s — st, which
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Common-Rewriting [5] simplifies the Grobner basis by eliminating
all gates that only possess a single fanout.

depends on s and t.

= After rewriting:
fr .= —r + ab — abt, which
depends on g and b.

Specification Polynomial Reduction

Suppose we desire to reduce sp = C1X1XpX3 + - -+ + CoXpXa With a
polynomial fy, = —Xo + C3X5x4 from simplified Grobner basis. The
reduction process can be accomplished by the following steps:

= Divide term: identify all terms containing the variable x» in sp,
divide x» from those terms and add them together to get
quO = C1X1X3 + CoX4.

= Multiply poly: multiply the obtained quo with f,,, resulting in a
polynomial
Mul := —C1X1X2X3 + C1C3X1X3X5Xs — CoXoXa + CoCaXaX5Xe.

= Add poly: add mul to sp to cancel all terms containing the
variable x», which are c1x1x2x3 and CoXoXa.

Previous Works

= Reduce the verification complexity by detecting redundant
polynomials [6].

= Allow for local cancellation of vanishing monomials in
converging gates cones starting from half adders [3].

= Substitute complex final-stage adders with simple ripple-carry
adders and used SAT solvers to verify the equivalence of
substitution [2].

Whole Flow of Our Framework

Key contribution: accelerating verification by parallel computing
and memory footprint optimization.
Independent Gates

Grobner Basis
( AlG ) Construction Indentification
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Parallel Grobner Basis Rewriting

= \We observe that the elimination of certain variables can operate
independently of others.

= The elimination of (gs,8¢) and (89, 810) In the AlG are
independent of each other and thus can be done in parallel.
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a, b, b, a, a, by b, a,

fgg = —gs+1—9g5 — g6 + 9596 Jos = —08 — g2 — g3 + 29293

Jos 7= —95 + g3 — 9293 foo
giz -
fge ‘= —g6 T+ 92 — 9293

= —g12 — g4 — g7 + 29497

Double Buffering

= Cache the first polynomial spq in the first buffer.

= After reducing it by fq, the derived polynomial, sp», is stored in
the second buffer.

= sp1 IS NO longer needed, so the first buffer can be used to store
the newly derived polynomial, sps.

Suppose we have f1 == —a + h(T,
and h(Tg) are both polynomials. It e & h(T3), B € h(T
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Operator Rescheduling

o) and fo == =B+ h(Tg). h(T,)
) and Yu €
af

sp1,u — r # 0, where u is a monomial in sp4, then the reduction
of f1 and f» can be performed concurrently.

Divide term

Spl / ._)’_)- @ Multiply poly

The second computation graph exhibits smaller memory overhead
because tmp is a shorter polynomial than sp2.

Experimental Results

Verification runtime comparison on large multipliers generated by

GenMul [4].

henchmark cive foates Amulet 2.2 [1] Ours (16 threads)
5 rewriting reduction overall |rewriting reduction overall
SP-AR-LF 194314 0.98 0.16 1.30 0.43 0.57 1.15
SP-DT-LF | 128x128 193806 2.26 0.38 2.82 0.45 0.82 1.39
SP-WT-BK 197774 2.31 2.65 5.24 0.48 1.26 1.92
SP-AR-LF /81834 6.20 0.87 /.72 2.37 1.52 4.55
SP-DT-LF | 256x512 /80814 17.85 2.09 20.80 1.79 3.57 6.06
SP-WT-BK /90610 17.84 25.85 44 .66 1.86 5.63 8.16
SP-AR-LF 3136522 | 5542 5.70 63.81 10.94 6.9/ 20.13
SP-DT-LF | 512x512 | 31344/8 | 185.53 12.02  201.13 8.28 1522  26.33
SP-WT-BK 3157890 | 18646 322.8/ 51296 3.84 33.05 4502
SP-AR-LF 12564490 | 506.55 39.39 57305 | 54.26 3741 102.11
SP-DT-LF |1024x1024 | 12560398 | 1817.96  92.74 1940.23| 38.32 /3.96 123.68
SP-WT-BK 126067141 1807.25 3519.13 5356.14| 37.65 311.19 360.71
Average Ratio 15.64 2.80 6.24 1.00 1.00 1.00

Effectiveness of Memory Optimization Techniques

1.2 =Vanilla==DB=DB+Reschedule
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128-bit 256-bit 512-bit 1024-bit
Multiplier input width with architecture SP-WT-BK

Both DB (double buffering) and operator rescheduling are useful for
reducing memory overhead.
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