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Abstract—Semiconductor lithography is a key process for
fabricating integrated circuits, but it suffers from various
distortions and variations that affect the quality of the printed
patterns. Optical proximity correction (OPC) is a technique to
improve pattern fidelity and robustness, and inverse lithography
technique (ILT) is a promising OPC method that optimizes the
mask as an inverse problem of the imaging system. However,
ILT is computationally expensive and challenging to implement
at a full-chip scale. In this paper, we present OpenlILT, an
open-source ILT platform that supports the rapid development
and evaluation of GPU-accelerated and Al-driven ILT methods.
OpenlLT provides a modular and flexible framework that inte-
grates various ILT components, such as lithography simulation,
objective functions, and evaluation metrics. It also offers a
convenient interface to PyTorch, a popular deep learning library,
to enable the implementation of GPU-accelerated and AI-driven
ILT methods.

I. INTRODUCTION

Semiconductor lithography, an essential process for fabri-
cating integrated circuits (ICs), involves transferring circuit
patterns from a mask onto a silicon wafer. This process ac-
counts for around 30% of the total cost of IC manufacturing.
As the feature size of ICs has continuously shrunk over the
past few decades in accordance with Moore’s Law, the lithog-
raphy proximity effect has become more significant, leading
to increased distortions and defects in printed patterns. This
phenomenon makes it increasingly difficult to achieve high
pattern fidelity and mask printability. Additionally, minor
variations in lithography conditions can greatly affect the
quality of the printed wafer image. Ensuring the correctness
of semiconductor lithography is therefore a critical issue.

Optical proximity correction (OPC) [1]-[9] is a technique
used to improve the accuracy and quality of lithography
patterns on semiconductor wafers. The first-generation OPC
is rule-based OPC [1], which uses pre-computed look-up
tables based on width and spacing between features to adjust
the patterns on the mask. At advanced technology nodes, OPC
evolves to model-based approaches [2] that can leverage extra
patterns to improve the resilience to manufacturing variation.
As semiconductor technology advances, OPC algorithms face
greater challenges in meeting the higher requirements in
process window and correctness.

Inverse lithography technique (ILT) [10]-[20] is an im-
portant field for optical proximity correction (OPC), treating
mask optimization as an inverse problem of the imaging
system. It aims at optimizing the carefully designed objective

function and adjusting the pixel-wise mask backward. A
variety of attempts have been made in ILT to improve both
the printed pattern fidelity and the process robustness. It has
been explored and developed as the next generation of OPC,
promising a solution to challenges of advanced technology
such as extreme ultraviolet (EUV).

However, there exist challenges that limit the broad appli-
cation of ILT. A major reason is that ILT typically consumes
a significant amount of runtime, making it challenging to
implement ILT at a full-chip scale. To alleviate the problems
above, the GPU acceleration of ILT has been adopted in
recent works [12], [13]. Deep-learning-based ILT algorithms
have also been proposed to reduce the runtime [14]-[20].
Nonetheless, we still lack a general platform that can support
the rapid development and evaluation of the ILT method
under the designated settings. A convenient interface to a
deep learning library is also needed to boost the development
of Al for ILT.

In this paper, we present an open-source ILT platform,
OpenlLT, which aims to facilitate the research on ILT al-
gorithms. OpenlLT leverages GPU acceleration and deep
learning capabilities to enable efficient and effective ILT al-
gorithm development. With effective acceleration, convenient
interfaces, and comprehensive evaluation, OpenILT can make
ILT research easier.

II. PRELIMINARIES

Figure 1 shows a typical ILT flow. The parameters to be
optimized are transformed into the mask image. The optical
projection and photoresist models convert the mask image to
the printed image. The cost function minimizes the distance
between the printed and target images. The gradient is back-
propagated to optimize the parameters. The optimized mask
can be obtained after certain optimization iterations.

A. Lithography Simulation Model

The unconstrained parameters P is transformed to the
input mask M via a sigmoid function:

M (z,y) = om(P(z,y)) = 1+exp(*;MP($ay))’ @

where 6, controls the steepness of the sigmoid function. This

transformation limits the values of M to the range [0, 1].
The lithography simulation process is composed of two

components, an optical projection model and a photoresist
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Fig. 1 Typical ILT flow. The forward pass mainly consists of the optical projection model and photoresist model. To minimize
the error between the printed and target images, we need to back-propagate the gradient to the parameters.

model. The Hopkins diffraction model [21] is employed
to approximate the projection behavior. Mathematically, the
aerial image I is obtained by applying a set of optical kernels
H to the mask M, which can be formulated as:
Np
I(z,y) =Y we|M(z,y) @ hi(z. )], @
k=1
where “®” represents the convolution operation. Ny, is the
number of optical kernels, which is 24 in our implementation,
hy is the k-th optical kernel in H, and wy is the corre-
sponding weight. After optical projection, the aerial image
I is input into the photoresist model. Its intensity threshold
Iy, indicates the exposure level. The printed image Z is
computed by the following function:

1
Z(z,y) =0z(I(x, = )
B LR
where 07 controls the steepness of the model. Note that after
optimization, both M and Z should be binarized with a

threshold of 0.5 before evaluation.

B. Evaluation Metrics

a) Square Lo Error: Given the target image Z; and the
printed image Z,,,,,, which represents the image printed via
nominal lithography process condition, the square Lo loss is
calculated by || Z,om — Z4||3.

b) Edge placement error (EPE): The EPE violations
are counted by sampling a series of points along the contour
of the target design. The EPE score is the number of points
where the distances between the target and printed images
are larger than an EPE constraint thgpp.

c) Process Variation Band (PVB): Under varying
lithography conditions, printed images can be different. Given
the images printed via the maximum and minimum lithogra-
phy conditions, Z,,q. and Z,,in, PVB is || Zmae — Zominl|3.

d) Shot Count (#Shots): #Shots [16] counts the rect-
angles needed to construct the mask. It can evaluate the
complexity of an optimized mask.

C. Cost Function

To iteratively improve the mask, ILT algorithms usually
adopt cost functions that can optimize the evaluation metrics
like Lo and PVB. For example, it is common to employ the
following cost function:

L(Zt7 Zn0m7 Zmaz7 Zmzn) =

“)
||Znom - Zt||§ + HZnLa;c - ZtH% + HZmin - Zt||§

At each iteration, the parameters can be updated by g—ILD.

III. OPENILT PLATFORM
A. Overview

OpenlLT provides the following modules:

1) Lithography simulation. The optical projection and
photoresist models are integrated into a class that im-
plements PyTorch Module interfaces, providing simple
but efficient lithography simulation functionality.

2) Initialization. Since parameter initialization strongly
affects the performance of the ILT process, OpenILT
supports different initialization schemes and allows users
to develop novel initialization strategies.

3) Solver. The ILT task is completed by a solver, which
gets the initialized mask, calls lithography simulation,
and iteratively updates the parameters. ILT researchers
and developers can easily develop their own solvers
using user-friendly interfaces.

4) Evaluation. Users can evaluate the Lo, PVB, EPE, and
#Shots metrics of the optimized masks by calling the
simple evaluation functions.

B. Lithography Simulation

A convolution operation in Equation (2) involves two
matrices that have large sizes (e.g. 2048 x 2048), which can
be very time-consuming. Thus, the convolution operation is
usually implemented by fast Fourier transformation (FFT) to
improve efficiency, which can be formulated as:

h;, ® M = 1IFFT(FFT(hy) @ FFT(M)), ®)

where FFT and IFFT represent the FFT and inverse FFT op-
erations, respectively. The notation, ®, represents pointwise
multiplication. Computing the optical projection with Equa-
tion (5) can significantly reduce the time complexity, since us-
ing FFT and IFFT for N x N images requires O(N?log N),
whereas directly computing the convolution costs O(N?).
The LithoSim class inherits the PyTorch Module class
and implements the lithography simulation. Given the mask
M, the printed images can be obtained by the following code:

Znom, Zmax, Zmin = litho (M)

Znom, Zmax, Zmin represent the printed images at the
nominal, maximum, and minimal process corners, respec-
tively. 1itho is an instance of the LithoSim class, whose
forward function outputs the lithography simulation results.

OpenlLT’s lithography model comes from ICCAD-13 [23]
contest. We implement an exact and a simple LithoSim



TABLE I Comparison Between Reproduced and Original Methods

MOSAIC [11] Our MOSAIC LevelSet [12] Our LevelSet
Benchmarks | EPE Lo PVB Time | EPE Lo PVB Time EPE Lo PVB Time | EPE Lo PVB Time
(nm?) (nm?) (s) (nm?)  (nm?) (s) (nm?)  (nm?) (s) (mnm?)  (nm?) (s)
casel 6 49893 65534 318 8 48896 55028 0.95 4 46032 62693 123 6 45520 57468 2.49
case2 10 50369 48230 256 4 37327 46019 0.95 1 36177 50724 81 1 33571 49680 2.27
case3 59 81007 108608 321 47 81327 86685 0.94 29 71178 100945 214 39 78695 90748 2.26
cased 1 20044 28285 322 2 16409 26358 0.94 0 16345 29831 184 2 18040 27710 2.27
caseS 6 44656 58835 315 0 37810 57472 0.94 1 47103 56510 76 2 38226 59035 2.26
case6 1 57375 48739 314 0 36706 52566 0.94 1 46205 51204 65 0 35962 54163 2.27
case’ 0 37221 43490 239 2 29520 47598 0.94 0 28609 45056 64 2 30542 48173 2.27
case8 2 19782 22846 258 1 14291 24268 0.94 1 19477 22757 67 1 14252 25043 2.26
case9 6 55399 66331 322 2 47367 64932 0.94 0 52613 64597 63 1 43390 68229 2.26
casel0 0 24381 18097 231 0 8950 19871 0.94 0 22415 18769 64 0 8919 20878 2.27

[ Average { 9.1 44012 50899 289 { 6.6 35860 48080 0.94 H 3.7 38615 50309 100 { 54 34712 50113 2.29 \
TABLE II Comparison Between Reproduced and Original Methods

GAN-OPC [14] Our GAN-OPC MultiLevel [22] Our MultiLevel
Benchmarks | EPE Lo PVB Time | EPE Lo PVB Time EPE Lo PVB Time | EPE Lo PVB Time
(nm?)  (nm?2) (s) (nm?2)  (nm?2) (s) (nm?)  (nm?2) (s) (nm?2)  (nm?2) (s)
casel - 55425 58043 - 20 58712 52126 1.13 3 39303 46077 1.42 4 38577 47367 1.03
case2 - 40211 53020 - 1 36669 43861 1.13 0 28986 37626 1.24 1 32104 37572 1.03
case3 - 93090 75644 - 51 85677 68400 1.12 22 66151 68021 1.42 20 64245 72910 1.03
case4d - 22877 26401 - 1 15812 27559 1.13 0 15890 23511 0.72 0 10880 23270 1.03
caseS - 42650 59765 - 5 46249 55090 1.13 0 29138 49987 1.43 0 30454 51915 1.03
case6 - 39776 54878 - 0 37489 51545 1.13 0 30558 44503 1.42 0 30504 46394 1.03
case7 - 22761 49156 - 0 26882 45715 1.14 0 15765 37009 1.43 0 16056 39412 1.03
case8 - 16296 24441 - 0 14654 24076 1.13 0 13943 21503 0.8 0 11560 19991 1.03
case9 - 52157 66492 - 5 51179 61939 1.14 0 36397 55600 1.43 0 36017 58943 1.03
casel0 - 9765 21338 - 0 9066 20121 1.12 0 7492 16604 1.42 0 8533 15942 1.03

| Average [ - 39501 48918 - [ 8.3 38239 45043 1.13 H 2.5 28362 40044 1.27 [ 2.5 27893 41372 1.03 |

classes, which share the same forward pass while having
different backward computations. The exact lithography sim-
ulator follows the Hopkins diffraction model to compute
the gradient. The simple lithography simulator implements
the speedup technique in [11] that combines the kernels
together in the back-propagation step, utilizing the feature
Yrwk(M@hy)=M® Y, (wphy).

C. Initialization

The most common way to initialize the parameters is to use
the target image. Given the target image Z;, the parameters
P can be initialized by P = Z, or P =2Z, — 1.

The following code can easily generate the initial P:

Initializer ()
init.run(design,X,Y,dX,dyY)

init =
7t,P =
Zt and P denotes the target image and parameters, respec-
tively. design contains the target shapes described using
rectilinear polygons. X and Y indicate the size of the image.
dX and dY specify the offset between the coordinates of the
polygons and their positions on the target image.

Level-set ILT algorithms [12] employ a different initial-
ization scheme, which is also implemented in OpenlLT. The
corresponding Initializer.run function initializes the
value of each pixel by calculating its distance to the nearest
edge or corner of the target shapes. Note that the values inside
the shapes are negative while the values outside are positive.

D. Solver

Users can implement the transformation from P to M
using the sigmoid function provided by PyTorch. The lithog-
raphy simulation (M — Z) is done by the LithoSim class.

After that, the loss function can also be implemented using
PyTorch functions. PyTorch optimizers such as SGD and
Adam can be utilized to automatically calculate the gradient
and update the parameters.

OpenlLT provides four examplary solvers: MOSAIC [11],
LevelSet [12], MultiLevel [22], GAN-OPC [14]. The first
three solvers are traditional ILT algorithms with our GPU
acceleration. GAN-OPC is an ILT method based on deep
learning, showing that OpenlLT can facilitate the develop-
ment of Al-driven algorithms.

MOSAIC and LevelSet use Equation (4) as the cost
function. MultiLevel improves the performance of MOSAIC
by employing the average pooling mechanism and multi-
resolution ILT scheme. GAN-OPC uses a generative adver-
sarial network (GAN) to give a better initial mask for ILT.
We try to reproduce these methods by using a similar number
of iterations, learning rate, neural network architecture, etc.

E. Evaluation

OpenlLT has three classes for evaluation, Basic,
EPEChecker, and ShotCounter. Basic calculates the
Lo and PVB metrics. EPEChecker and ShotCounter
estimate the EPE and #Shots, respectively. Each evaluation
class uses a run function to get the result. The following
function can easily evaluate all metrics.

12,pvb, epe, shot = evaluate (M, Zt,litho)

F. Implmentation

Given the utilities in OpenlLT, we can efficiently reproduce
existing methods. Our MOSAIC, LevelSet, MultiLevel, and
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Fig. 2 Examples of (a) target; (b) our LevelSet; (c) our MultiLevel.

GAN-OPC only takes 64, 93, 102, and 241 lines of Python
code, respectively. The following example shows how to do
ILT using MOSAIC solver within a few lines of code.

cfg = SimpleCfg()
litho = LithoSim()
solver = SimpleILT (cfg, litho)

design = Design("M1l_testl.glp")

Zt,P = PixellInit () .run(design)

12,pvb,P,M = solver.solve (Zt,P)

12,pvb, epe, shot = evaluate (M, Zt,litho)

The seven lines of code load the configuration, get the lithog-
raphy simulation model, instantiate the MOSAIC solver, read
the design, initialize the parameters, optimize the mask, and
evaluate the result.

IV. EXPERIMENTS
A. Reproduction of Existing Methods

TABLE I compares the results of our reproduced MO-
SAIC/LevelSet algorithms with the results reported in the
original papers. With the help of GPU acceleration, our
MOSAIC is significantly faster than the original MOSAIC,
achieving 321x speedup. Compared to the original GPU-
accelerated LevelSet algorithm [12], our implementation has
44 x speedup. TABLE 1II presents the comparison of GAN-
OPC and MultiLevel. For these two methods, our reproduced
versions can also achieve comparable performance as the
original ones. Fig. 2 presents some examples of our repro-
duced results.

B. Runtime Analysis

Fig. 3 presents the runtime analysis of our MOSAIC.
Lithography simulation is the most time-consuming process,
which is caused by the FFT and IFFT operations. The gra-
dient descent process also consumes a considerable amount
of time. According to the analysis, future development of
lithography simulation acceleration is promising to boost the
speed of ILT algorithms.

V. CONCLUSION

OpenlLT is an open-source platform for inverse lithog-
raphy technology (ILT) research. It has a comprehensive
and flexible ecosystem of libraries that enable the efficient
development and evaluation of ILT algorithm. The platform
is implemented with PyTorch, which enables easy GPU
acceleration and deep-learning integration. It is available at
https://github.com/OpenOPC/OpenlLT.
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