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Highlights

We convert the traditional NAS problem into a sparse coding task with linear

complexity of backward computing called NAC.

We have theoretically justified the power of untrained GNN in the NAS-GNN

problem, where updating the neural weights is not necessary.

NAC achieves higher accuracy (up to 18.8%) and much faster convergence

(up to 200×) without any updating on neural weights.

Background

NAS in Graph Neural Networks(NAS-GNN)

Sample-based
1. Reinforcement Learning-based: GraphNAS [gao2020graphnas]

Weight-Sharing-based
1. Differential-based: SANE [huan2021sane]

search space
S

search strategy
p(S) : S 7→ R

evaluation method
Eval (〈S,ω⋆(S)〉 ;Dval)

sampling S ∈ S

updating p(S)

Figure 1. The three components of NAS.

Differential-based NAS-GNN

The differential-based method addresses two subproblems of weights and ar-

chitectures alternatively using a bi-level optimization framework to reduce the

search effort [huan2021sane]:α∗ = argmax
α

Lval (w∗(α), α) ,

w∗ = argmin
w

Ltrain(α, w)
(1)

where L denotes a loss function (e.g., cross-entropy loss) on training and validat-
ing dataset w.r.t w, and α is the architecture parameter.

Motivation

Existing Problems Two optimization challenges cause

the instability of the differential-based methods:

Optimization challenge due to bi-level optimization

Inaccurate estimation caused by softmax
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Figure 2. Softmax

In this work, we attempt to address the optimization difficulty in DARTS from a

new perspective.

No-update Scheme: We utilize the power of untrained GNN [kipf2016gcn] in

the NAS-GNN problem and provide a theoretical analysis.

Sparse Coding: The ultimate goal of NAS is to assign the coefficients of

unimportant operators as zeros.

Methodology

The optimality of untrained GNNs and the connection between NAS in GNNs

and sparse coding allow us to waive the effort of updating weights and make us

focus on architecture updates.

As shown in the Fig. 3, NAC directly learns architecture α with a fixed dictionary.
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Figure 3. The framework of the proposed NAC in one layer.

min
α

L
(

y, f (hL)
)

+ ρ‖α‖1,where


hl

v = φ
[
W l · ōl

({
hl−1

u , ∀u ∈ N(v)
})]

ōl(x) = olα̂l =
∑K

k=1
αlk

||αl||2
olk(x)

ol = [ol1(x), ol2(x), . . . , olK(x)]
(2)

where ρ is the sparsity hyperparameter, f (·) is a linear function as the final output
layer, e.g., MLP, h represents all nodes’ embeddings.

Theoretical Findings

Analysis of No-update Scheme in GNNs

We investigate why an untrained GNN model can attain the same performance

as the optimal one.

Analysis for No-update Scheme in GNNs

AssumeW l(0) is randomly initialized for all l ∈ [1, L], if
∏L

l=1 W l(0) is full rank,
there must exist a weight matrix for the output layer, i.e., W̃ o, that makes the

final output the same as the one from a well-trained network:

ALX

L∏
l=1

W ∗
l W ∗

o = ALX

L∏
l=1

W l(0)W̃ o. (3)

Architecture Searching via Sparse Coding

We put forward the following corollary to show the natural connection between

NAS in GNNs and Sparse Coding.

The Unified Format of Search Space in NAC

The search space of GNNs can be unified as
∑K

k=0 Pk(L)XW k = DW when

removing the activation function, whereD = ‖{Pk(L)X} is the fixed base, and
W = ‖{W k}T is the trainable parameters. Here, ‖ stands for concatenating a
set of matrices horizontally.

Evaluation Results

Table 1. Experimental results on the compared methods: our NAC attains superior performance

in both accuracy (%) and efficiency (in minutes).

CiteSeer Cora PubMed Computers

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

RS 70.12±2.36 14.4 71.26±4.68 30.6 86.75±0.82 187.8 77.84±1.35 8.75

BO 70.95±1.62 18 68.59±6.66 31.2 87.42±0.68 189.6 77.46±2.02 17.65
GraphNAS 68.69±1.30 253.8 71.26±4.90 245.4 86.07±0.51 1363.8 73.97±1.79 86.37
GraphNAS-WS 65.35±5.13 80.4 72.14±2.59 161.4 85.71±1.05 965.4 72.99±3.44 42.47
SANE 71.84±1.33 4.2 84.58±0.53 10.2 87.55±0.78 107.4 90.70±0.89 0.72

NAC 74.62±0.38 1.2 87.41±0.92 1.2 88.04±1.06 9.0 91.64±0.14 0.23

NAC-updating 74.17±1.18 4.2 86.62±1.14 3.6 88.10±0.86 25.8 90.89±1.10 0.70

Observations

Accuracy: NAC beats all baselines and attains

up to 18.8% improvement over the Bayesian
method.

Efficiency: NAC achieves superior

performance up to 200× time faster than
GraphNAS.
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Figure 4. Performance on Cora.

No-update Scheme atWork. To further validate our no-update scheme, we eval-

uate its effect on other weight-sharing methods, which implies that we can im-

prove the performance of NAS-GNN methods by simply fixing the weights.

Table 2. Comparison between SANE and SANE∗ (w/o. weight updates).

CiteSeer Cora Pubmed Computers

Acc(%) Acc(%) Acc(%) Acc(%)

SANE 71.84±1.33 84.58±0.53 87.55±0.78 90.70±0.89
SANE∗ 71.95±1.32 85.46±0.76 88.12±0.35 90.86±0.80

Analysis of Convergence. A notable benefit of the NAC framework is its guar-

anteed convergence from the sparse coding perspective. NAC converges much

faster than SNAE in only around 20 epochs.
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Figure 5. Convergence for SANE and NAC in terms of accuracy on Pubmed datasaet.
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