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Abstract
Learning feasible representation from raw gate-level netlists is

essential for incorporating machine learning techniques in logic
synthesis, physical design, or verification. Existing message-passing-
based graph learning methodologies focus merely on graph topology
while overlooking gate functionality, which often fails to capture
underlying semantic, thus limiting their generalizability. To address
the concern, we propose a novel netlist representation learning
framework that utilizes a contrastive scheme to acquire generic
functional knowledge from netlists effectively. We also propose a
customized graph neural network (GNN) architecture that learns a
set of independent aggregators to better cooperate with the above
framework. Comprehensive experiments on multiple complex real-
world designs demonstrate that our proposed solution significantly
outperforms state-of-the-art netlist feature learning flows.

1 Introduction
As machine learning (ML) techniques develop rapidly, there is a

surge in incorporating ML in electronic design automation (EDA) [1–
3]. Most existing works follow a representation learning paradigm
consisting of two steps: first, learn low-dimensional representations
from the high-dimensional raw data and then conduct classification
or regression based on the learned representations. The learned repre-
sentations play a dominant role in improving model performance. In
this work, we focus on representation learning for electronic circuit
netlists. This is non-trivial as a netlist contains circuit components,
which might vary largely in structures and connectivity. Therefore,
it is worth designing subtle representation learning methodologies
dedicated to netlists.

Early netlist representation construction methods focus on the
structural information of netlists. Structural information mainly
includes the topology of circuit components. A representative art
[4] developed a shape hashing technique to group wires with similar
local topology into words, where a sequence representation named
shape is proposed. Specifically, a target wire’s shape is produced
by serializing gate and wire types along depth-first-search (DFS)
traversal of its fan-in cone. However, the generated representation
is highly related to the traversing order, which is stochastic. As a
consequence, wires with isomorphic fan-in structures may be pushed
apart in the representation space. Besides, the information contained
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Figure 1: Illustration of the drawback of existing structure-
based netlist representation learning methods.

in the traversal sequence is relatively shallow, leading to insufficient
understanding of the netlists.

In recent years, the fast-growing deep neural network techniques
have shown great power in netlist representation learning. A com-
pact representation termed level-dependent decaying sum (LDDS)
existence vector (EV) is introduced in [5] to embed a circuit node
with its neighbors. A fixed number of EVs are selected to satisfy the
fixed-input-size requirement of convolutional neural networks. Ma
et al. [1] propose an iterative process to insert observation points
into gate-level netlists based on the node representations learned by
a graph neural network. [6] develop a graph learning-based solution
to extract desired logic components from a flattened netlist, where a
novel graph neural network customized for directed acyclic graph
(DAG) is proposed to generate gate representations. The embeddings
are then fed into a classifier to predict the boundaries of desired com-
ponents. While generating more powerful representations, the above
machine learning-driven methods can likewise be categorized as
structural ones since they take merely topological information into
consideration.

Though existing structure-based netlist representation learning
methods have achieved state-of-the-art performance in many netlist-
level tasks, we argue that they are far from good enough. The main
point is that these methods ignore the boolean functionality, which
plays a dominant role in understanding the semantics of netlists.
Figure 1 gives two examples to illustrate the drawbacks of existing
structure-based netlist representation learning methods. Netlists
A, B, and C are three different netlists. A and B implement the
same function, sharing similar semantics, which means they should
be close in the representation space. However, existing methods
would push their representations apart since they are topologically
disparate. On the other hand, A and C implement different functions,
thus having different semantics, and are expected to be distant in the
representation space. Nevertheless, their representations would be
pulled together by existing methods based on their similar structures.

To address the above concerns, we develop a novel contrastive
learning (CL)-based netlist representation learning framework to
extract the basic logic functionality of netlists, which is universal
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and transferable across different designs. We further propose a cus-
tomized graph neural network architecture to better cooperate with
the above framework. The proposed framework aims at encoding
functional information of netlists, independently of specific struc-
tural patterns, thus improving the capability of generalizing to un-
seen designs.

Our major contributions are summarized as follows:
• For the first time, to the best of our knowledge, we present a
contrastive learning-based pre-training framework customized
for gate-level circuits, extracting universal knowledge of logic
functionality.

• We design a novel GNN architecture for circuit representation
learning that encodes the basic functional information of gate-
level netlists.

• We conduct comprehensive experiments on several complex
real-world designs, which confirms the effectiveness of our
proposed framework compared with state-of-the-art netlist
representation learning arts.

2 Preliminaries
2.1 Graph Neural Network

Graph neural networks (GNNs) [7–9] have emerged as a promis-
ing approach for analyzing graph-structured data in recent years.
They follow an iterative neighborhood aggregation scheme to cap-
ture the structural information within nodes’ neighborhoods. Let
𝐺 = ⟨V,E⟩ denotes a graph, where V = {𝑣1, 𝑣2, · · · , 𝑣𝑛} is the vertex
set, and E ⊆ V × V is the edge set. Considering a K-layer GNN, the
propagation of the 𝑘-th layer is represented as

𝒂 (𝑘)𝑣 = AGGREGATE({𝒉(𝑘−1)𝑢 : 𝑢 ∈ N(𝑣)}),

𝒉(𝑘)𝑣 = COMBINE(𝒂 (𝑘)𝑣 ,𝒉(𝑘−1)𝑣 ),
(1)

where 𝒉(𝑘)𝑣 is the representation vector of vertex 𝑣 at the 𝑘-th layer.
N(𝑣) denotes the neighboring nodes of 𝑣 , and AGGREGATE is a func-
tion used to collect messages from a node’s neighborhood. COMBINE
is leveraged to combine the node’s previous representation with its
neighborhood message.

Various GNNs [10–12] have been proposed, achieving state-of-
the-art performance in related graph learning tasks. Notably, there
emerges growing interest in a unique graph type, directed acyclic
graph (DAG)[13, 14]. DAGs are widely applied to model many real-
world data, including gate-level netlists. To generate better global-
level embeddings for DAGs, [13] construct an impressive GNN ar-
chitecture driven by the partial order induced by DAG. Besides,
[14] propose an asynchronous message passing scheme to encode
computation graphs and further develop a variational autoencoder
for DAGs, D-VAE. However, these methods can only be applied to
handle structural information of DAGs while omitting the underly-
ing semantics of target graphs, which is vital for generating better
representations.

2.2 Graph Contrastive Learning
Contrastive learning (CL) is employed as a new paradigm to pre-

train the model to improve the modeling performance on down-
stream tasks. The main idea of contrastive learning is to capture
statistical dependencies of interest and those that do not by sepa-
rating positive samples from negative samples in the n-dimensional

embedding space 𝑅𝑛 as much as possible. The goal of CL is to learn
an encoder 𝑓 : 𝑥 → 𝒆, 𝒆 ∈ R𝑛 that for any sample 𝑥 :

𝑠𝑐𝑜𝑟𝑒 (𝑓 (𝑥), 𝑓 (𝑥+)) >> 𝑠𝑐𝑜𝑟𝑒 (𝑓 (𝑥), 𝑓 (𝑥−)). (2)

Here 𝑥+ refers to positive samples that are similar or equal to 𝑥 , 𝑥−
refers to negative samples that are different from 𝑥 , and 𝑠𝑐𝑜𝑟𝑒 (𝒆1, 𝒆2)
measures the similarity (distance) between embedding 𝒆1 and 𝒆2.

Due to its outstanding performance, contrastive learning achieves
great success in the computer vision domain [15, 16]. Theoretical
analyses shed light on the reasons behind their success [17]: objec-
tives used in contrastive methods can be seen as maximizing a lower
bound of mutual information between the input data and the output
representations.

In recent years, many researchers have been focusing on extend-
ing the contrastive methods to handle graph data. DGI [18] embeds
high-order global contextual features into node representations by
maximizing mutual information between global and local embed-
dings. You et al. [19] build multiple views of a graph by incorporating
several perturbations, e.g., edge dropping, node dropping, feature
masking, etc. GCA [20] is proposed to explore graph data augmenta-
tion.

However, most existing methods only take the structural informa-
tion into account during the data augmentation procedures, leading
to inadequate or even wrong understanding of the target graphs.
We argue that structural information is not consistent with the se-
mantics in many situations, e.g., two structurally different netlists
may share the same function (e.g., ripple-carry adder and carry look-
ahead adder). Besides, even a small perturbation may totally change
the semantics of a graph (e.g., replacing an XOR gate with an OR
gate may change a circuit’s function). Therefore, existing methods
fail to guarantee the consistency between the augmented view and
the original input since they randomly introduce structural pertur-
bations (e.g., random edge/node dropping), which may change the
underlying semantics.

3 Problem Formulation
We first introduce the gate-level netlist and then give the problem

formulation. The gate-level netlist of an electric circuit consists of a
list of gate-level circuit components, e.g., AND gates and intercon-
nects (wires) between them. Gate-level netlists are generated by
converting a description of circuit behavior at register transfer level
(RTL) into design implementation in logic gates.

A gate-level netlist can be formulated as a DAG with vertices
denoting circuit components and edges representing wires. Based
on the gate-level netlist, our problem can be formulated.

Problem 1 (Netlist Representation Learning ). Design a novel learn-
ing methodology that automatically discovers gate/netlist represen-
tations capturing their boolean functional semantics. We hope the
representation facilitates multiple downstream netlist tasks, cover-
ing: (1) local scenario, e.g., identifying desired components (viz., sub-
netlists) located in the netlist and (2) global scenario, e.g., classifying
the netlist into one of the categories according to its functionality.

4 Netlist Representation Learning Framework
Before introducing algorithmic details, we briefly overview our

proposed netlist representation learning flow, as shown in Figure 2.
The whole flow can be summarized as three steps:
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Figure 2: Our proposed netlist representation learning flow

1. Preprocessing: Firstly, the input gate-level netlist is trans-
formed to a DAG. Each vertex corresponds to a gate in the netlist,
and directed edges represent the interconnection between gates,
where the source vertices denote the driven gates.

2. Pre-training: Secondly, functionality graph neural network
(FGNN) (Section 4.2) is dedicated designed for learning functionality
of gate-level netlists. The pre-training of FGNN is guided by the
proposed gate-level netlist contrastive scheme (Section 4.1).

3. Fine-tuning: Finally, pre-trained FGNN is equipped with a
classifier and fine-tuned to adapt downstream tasks.

4.1 Netlist Contrastive Scheme
To extract the prior knowledge of netlists’ basic logic functional-

ity, we develop a novel netlist contrastive learning (NCL) scheme,
as shown in Figure 4. Our proposed scheme follows a standard con-
trastive learning paradigm, where the model seeks to maximize the
agreement of different views (constructed through data augmenta-
tion) of the same item. Researches have shown that the success of
contrastive learning lies in the assumption that important informa-
tion is shared between different views [21, 22]. It indicates that the
semantics of augmented views should be maintained following the
original input.

While generating augmented views without causing semantic
changes is relatively natural for images (e.g., translation, scale) [16],
it is not explicit for graph data. The primary difficulty here is that
the semantics of graphs are not apparent under many situations,
and sometimes even a tiny perturbation may completely alter its
meaning. To resolve the above difficulty and extend the contrastive
learning scheme to handle graphs, it is critical to explore a cus-
tomized data augmentation scheme that introduces perturbations
without changing the original semantics.

When it comes to a gate-level netlist, its semantics can be denoted
by its function. Given a gate-level netlist, we can treat it as a compu-
tation graph and describe its function through a boolean expression,
whose basic operators are the logic gates, as demonstrated in Fig-
ure 3. Therefore, based on the observation of equivalent boolean
transformation, we carefully design a data augmentation scheme
to maximize the mutual information between functionally similar
netlists. Specifically, for a given netlist 𝑐 , we conduct the augmenta-
tion by replacing a randomly picked sub-netlist in 𝑐 with equivalent
Boolean transformations (described in Figure 4), resulting in a func-
tionally constant but topologically different netlist 𝑐 ′. This procedure
guarantees the semantic (functionality) consistency between the aug-
mented netlist 𝑐 ′ and the original netlist 𝑐 , making the contrastive
objective clear and explicit. By applying the above augmentation
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Figure 3: Illustration of Boolean Equivalence

scheme to netlist 𝑐 twice, we obtain two augmented netlists (𝑐 ′1, 𝑐
′
2)

as a positive pair .
We apply mini-batch gradient descent to train our netlist con-

trastive learning scheme. Each time a mini-batch of 𝑁 netlists are
randomly sampled and processed through the above functionality-
constant augmentation, resulting in 2𝑁 augmented netlists. Follow-
ing the sampling strategy in [23], we define the negative samples
for any positive pair (𝑐 ′1, 𝑐

′
2) as the other (2𝑁 − 2) netlists within

the mini-batch. A normalized temperature-scaled cross-entropy loss
(NT-Xent) [24] is then applied to maximize the consistency between
positive pairs compared with negative samples, which is formulated
as follows:

L =
1
𝑁

𝑁∑
𝑛=1

𝑙1,2 (𝑛) + 𝑙2,1 (𝑛), (3)

where 𝑙1,2 (𝑛) + 𝑙2,1 (𝑛) gives the loss for the positive pair of the 𝑛-th
netlist, and 𝑙𝑖, 𝑗 is defined as:

𝑙𝑖, 𝑗 (𝑛) = − log
exp(∼ (𝒉𝑛,𝑖 ,𝒉𝑛,𝑗 )/𝜏)

𝑁∑
𝑢=1,𝑢≠𝑛

exp(∼ (𝒉𝑛,𝑖 ,𝒉𝑢,𝑖 )/𝜏) +
𝑁∑
𝑢=1

exp(∼ (𝒉𝑛,𝑖 ,𝒉𝑢,𝑗 )/𝜏)
,

(4)
where 𝒉𝑛,𝑖 denotes the embedding of the 𝑖-th augmentation of 𝑛-th
netlist, ∼ (𝒉𝑛,𝑖 ,𝒉𝑛,𝑗 ) = 𝒉⊤𝑛,𝑖𝒉𝑛,𝑗/∥𝒉𝑛,𝑖 ∥∥𝒉𝑛,𝑗 ∥ is the cosine similarity
between the two embeddings 𝒉𝑛,𝑖 and 𝒉𝑛,𝑗 and 𝜏 is a temperature
parameter.

4.2 Customized Graph Neural Network: FGNN
Asmentioned in Section 2.1, though enabling a powerful represen-

tation learning paradigm for graphs, existing GNNs fail to capture
the underlying semantic of netlists. Hence, designing customized
architecture that adapts to netlist is still crucial to achieving better
performance. This part discusses how to design a novel graph neu-
ral network architecture that complements our netlist contrastive
learning scheme.

Regarding the unique properties of gate-level netlists, GNN cus-
tomization should take two aspects into account: (1) how to learn
logic functionality and (2) how to guarantee knowledge transferabil-
ity between different netlists. We find that most existing GNNs do
not fit well since they learn to encode topological information (e.g.,
node connectivity) instead of logic functionality. Consequently, the
learned knowledge is highly related to the training graphs’ topology,
leading to poor generalization ability.

To overcome the above drawbacks, we propose a novel GNN
architecture that targets learning the basic logical functionality of
netlists, namely functional graph neural network (FGNN). Specifi-
cally, instead of learning a shared aggregator for all the nodes, FGNN
learns a set of independent aggregators (functions), one for each
gate type (e.g., AND, XOR. . . ). The insight behind this is that, as the
most fundamental building component of netlists, the logic gates’
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Figure 4: Overview of our Netlist Contrastive representation learning framework. Refer to Section 4.1 for details.

functionalities naturally reflect the underlying semantics of netlists
and keep constant across different designs. By learning the essen-
tial gate functions, our proposed model manages to capture the
generic knowledge shared between different netlists. In practice,
we learn 8 basic gate (cell) functions including AND, OR, INV,
MAJ, MUX, NAND, NOR and XOR.

Motivated by ABGNN [6], our proposed FGNN follows an asyn-
chronous message passing scheme. For any target vertex 𝑣𝑖 , the
message passing scheme starts from the Primary Inputs (PIs) of 𝑣𝑖 ’s
fanin-cone and all the way to 𝑣𝑖 . During the procedure, a vertex
stays inactive until all its predecessors’ representations have been
computed. When a vertex is activated, FGNN aggregates the mes-
sages (representations) received from its predecessors to construct
its own representation and then sends the newly-built representa-
tion to all its successors. Our work differs from ABGNN [6] since
we use independent aggregators for vertices of different types. The
above message passing scheme is illustrated in Figure 5.

Formally, given a target vertex 𝑣 , the aggregation scheme of the
k-th iteration of a depth-𝛿 FGNN can be described as follows:

𝒉(𝑘){i:D(i,v)=𝛿−k} = A{g:T (i)=g} ({𝒉
(𝑘−1)
𝑢 : 𝑢 ∈ N(𝑖)})

= 𝜎 (𝑊𝑔 · 𝑓𝑔 ({𝒉(𝑘−1)𝑢 : 𝑢 ∈ N(𝑖)})),
(5)

where D(𝑖, 𝑣) is the distance between vertices 𝑖 and 𝑣 in the graph,
N(𝑖) is the set of direct neighbors of vertex 𝑖 , T(𝑖) gives the type of
vertex 𝑖 , A𝑔 is the aggregator for vertex type 𝑔, 𝜎 is an activation
function,𝑊𝑔 is the weight matrix forA𝑔 and 𝑓𝑔 is the reduce function
forA𝑔 . The initial message for each vertex 𝑖 is an all-one vector. The
red part in the formulation emphasizes the difference between our
work and ABGNN [6].

The vertex representations learned by FGNN can be directly fed
into a classifier/regression model to handle local-level tasks like link
prediction or node classification. For global scenarios, e.g., graph clas-
sification, we first select a set of representative vertices 𝑉 from the
target graph and then use a readout function READOUT (e.g., mean,
sum, etc.) to combine the selected vertices’ representations into a sin-
gle global-level representation 𝒉𝑔𝑙𝑜𝑏𝑎𝑙 , as described in Equation (6),

𝒉𝑔𝑙𝑜𝑏𝑎𝑙 = READOUT({𝒉𝑢 : 𝑢 ∈ 𝑉 }) (6)

In practice, we select the Primary Outputs (POs) of a target netlist
as the representative vertices and use a mean function to readout.

4.3 Curriculum Learning
We further introduce a curriculum learning scheme to guide the

pre-training procedure. We first train the model on a small number
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Figure 5: An illustration of the representation generating pro-
cedure. The target vertex 𝑣 is emphasized with bold outlines.
Square vertices are primary inputs initializing with all-one
representations. Different states of vertices are indicated by
fill colors: blank means inactive, red means being computed
at current iteration and bluemeans having been computed in
previous iterations. INV, AND, OR are different aggregators.

of easy cases and then train on successively more complex cases
with increased batch size.

Two aspects determine the perplexity of a positive pair: (1) netlist
complexity (depth/number of PIs) and (2) topological similarity be-
tween the two composed netlists (measured by the times of functionality-
constant replacements). Simpler cases and cases with similar positive
pairs are regarded as easier ones.

The curriculum is initialized with netlists with 4 PIs. Each time the
training performance plateaus below a threshold loss, the perplexity
of the cases is increased by either adding number of PIs or introduc-
ing more variance (applying more cell replacements) during data
augmentation, up to a maximum of K PIs and M times replacements.
In our experiments, we set 𝐾 = 8 and𝑀 = 4.

5 Experiments
We implemented the netlist representation learning framework

with DGL [5], a graph learning library based on PyTorch. FGNN is
pre-trained/fine-tuned on a Linux machine with 48 Intel Xeon Silver
4212 cores (2.20GHz), 1 GeForce RTX 2080 Ti GPU, and a 32 GB main
memory.

As mentioned in Section 4.3, we utilize the curriculum learning
technique to guide the pre-training procedure. Specifically, we de-
note a dataset composed of netlists with m Primary Inputs (PIs) and
up to n times cell replacements during augmentation as (m,n). The



Table 1: Performance of different models on adder output boundary prediction in terms of recall and F1-score. Best results are
emphasized with boldface. Our proposed FGNN + NCL framework outperforms other models in all the test cases.

Case Ratio EV-CNN [5] GraphSage [8] ABGNN [6] FGNN FGNN + NCL
Recall F1-Score Recall F1-Score Recall F1-Score Recall F1-Score Recall F1-Score

1 1/6 0.602 0.575 0.643 0.656 0.657 0.682 0.684 0.715 0.734 0.753
2 2/6 0.612 0.605 0.758 0.757 0.734 0.74 0.784 0.788 0.857 0.839
3 3/6 0.633 0.615 0.854 0.865 0.877 0.881 0.916 0.914 0.940 0.937
4 4/6 0.662 0.637 0.883 0.889 0.921 0.917 0.931 0.933 0.954 0.947
5 5/6 0.738 0.648 0.905 0.898 0.927 0.922 0.952 0.944 0.966 0.951
6 6/6 0.768 0.655 0.919 0.917 0.945 0.941 0.963 0.952 0.969 0.957

Table 2: Statistics of the dataset for sub-netlist identification
with 6 different types of adders.

Architecture Rocket (test) BOOM (train)

#gates #wires #gates #wires
Brent-Kung 24340 58124 139526 366280
Cond-sum 24737 57708 138358 360455
Hybrid 25491 60287 141319 369622

Kogge-Stone 24540 57726 139005 361962
Ling 26179 62864 143903 378354

Sklansky 25208 59567 141093 369774

pre-training procedure starts from learning on easy cases denoted
as (4,1). Each time the loss goes continuously lower than a threshold
𝑡 , we change to more challenging cases with mores PIs or increased
augmenting variance (more replacements). The training dataset se-
quence is set as (4,1), (5,1), (5,2), (6,1) (6,2), (6,3), (7,1), (7,2), (7,3), (8,1),
(8,2), (8,3), (8,4). During training, we set the loss threshold 𝑡 = 0.1 and
temperature parameter 𝜏 = 0.065. The datasets we use are composed
of 50,000 5-PI netlists, 75,000 6-PI netlists, 100,000 7-PI netlists, and
100,000 8-PI netlists.

The performance of our proposed framework is evaluated on two
different downstream netlist tasks covering both local and global sce-
narios. We feed the downstream target netlists into our pre-trained
FGNN to generate node representations and further construct a
global-level representation for each netlist as described in Equa-
tion (6). The representations are then fed into a classifier (Multilayer
Perceptron, MLP) to fine-tune the model and make predictions.

5.1 Evaluation on Sub-netlist Identification
We first assess our proposed framework on a local scenario, arith-

metic block identification. Arithmetic blocks are the building blocks
within a netlist that perform certain arithmetic operations (e.g., in-
teger addition), whose boundaries are defined as the input/output
wires interacting with external circuits [6]. In general, our task is
to recognize the boundaries of target arithmetic blocks from a large
netlist design. Here we focus on identifying the output boundaries
of adders, following the same experimental setting as [6], where the
performance is measured in terms of recall and F1-score. The detail
of the dataset we use is shown in Table 2.

We consider representative baselines that are dedicated to gener-
ating node-level representations, covering the following three cate-
gories: (1) CNN-based method [5], (2) general GNN-based method
[8], and (3) customized GNN-based method that adapts to DAGs
[6]. All these baselines are trained end-to-end, and we report their
performance based on their official implementations.

To evaluate the models’ generalization ability, we fix the test-
ing/validation dataset containing all the six different adder architec-
tures (shown in table 2) and train/fine-tune the models with data
that involves only part of the adder architectures. (e.g., 𝑟𝑎𝑡𝑖𝑜 = 1/6
means using one out of six different types). The result in Table 1
demonstrates the superiority of our methods compared with sev-
eral State-of-the-Art netlist representation learning methods. Our
method stands out in all the cases and achieves 2.4% ∼ 12.3% recall
gain and 1.2% ∼ 10.5% F1-Score improvement compared with the
second-best solution [6]. Additionally, we can see that GNN-based
methods [6, 8] significantly outperform previous CNN-based work
on all the cases and achieve relatively good performance when test-
ing on data similar to the training dataset, confirming the power of
GNN in netlist representation learning. However, they are subjected
to sharp performance degradation when generalizing to unseen data.
For instance, their performance drops by around 8%when half of the
test adder structures are not involved in the training dataset (case 3).
In contrast, the performance of our FGNN is much more stable, suf-
fering from pretty minor degradation on all the cases (e.g., decreased
by only 4% on case 3). Moreover, when combined with our novel
netlist contrastive learning flow, our model’s generalization ability is
further enhanced, achieving comparable results on case 3 with other
methods’ best performance. This result shows the effectiveness of
our proposed contrastive framework in extracting high-level prior
knowledge of netlists.

5.2 Evaluation on Nelist Classification
For the global scenario, we choose the netlist classification task,

which targets distinguishing between netlists of different functions.
Here we focus on classifying arithmetic netlists, including adder,
subtractor, multiplier, and divider. The training netlists are randomly
generated in word-level Verilog and synthesized into gate-level cir-
cuits by Synopsys Design Compiler. Different constraints are used
during synthesis to involve diverse architectures for each module.
The validate/test dataset is composed of netlists with unseen archi-
tectures to evaluate the generalization ability. Specifically, we use
adder/multiplier designs from [25], whose architectures are distin-
guished from training ones. The test subtractor designs are generated
similarly as training data but with different constraints and thus dis-
parate architectures. The netlists operate on word lengths ranging
from 8 to 32 bits, with the number of gates ranging from hundreds
to thousands. The statistic of the datasets is shown in Table 3. For
evaluation, we use accuracy as the performance metric.

We reimplemented several representative prior works [5, 7, 14]
as the baseline methods for comparison. These works have covered



Table 3: Statistics of the dataset for netlist classification, in-
cluding adder, subtractor, multiplier, and divider. We try to
avoid involving similar designs used for training in the test
dataset.

Module Train Validate / Test
architectures # architectures #

Adder

Brent-Kung,

450

Block Carry Look-head,

100 + 300

Cond-Sum, Carry Look-head,
Hybrid, Carry Select,

Koggle-Stone, Carry-skip,
Ling, Ripple-Carry

Sklansky

Subtractor
Hybrid,

250
Brent-Kung,

50 + 150Koggle-Stone, Cond-Sum,
Ling Sklansky

Multiplier 550

Wallace,

150 + 500

Dadda,
Array, Overturned-stairs,

Booth-Encoding (4,2) compressor,
(7,3) counter,

Redundant binary addition
Divider Array 250 Array 50 + 200
Total / 1500 / 350 + 1150

Table 4: Summary of performance on netlist classification in
terms of accuracy. The second column gives the ratio of the
training data size to the testing data size. Our proposed FGNN
+ NCL framework achieves the best performance on all the
cases and suffers fromslighter degradationwhen the training
data scale is reduced.

Case Ratio GIN [7] EV-CNN [5] DVAE [14] Ours

1 1.3 0.762±0.020 0.904±0.011 0.913±0.005 0.975±0.008
2 1 0.745±0.026 0.896±0.009 0.902±0.007 0.962±0.007
3 0.7 0.737±0.022 0.884±0.003 0.895±0.009 0.960±0.009
4 0.5 0.730±0.015 0.877±0.006 0.885±0.010 0.951±0.005
5 0.3 0.725±0.028 0.859±0.015 0.871±0.003 0.945±0.007

CNN-based method [5], general GNN-based method [7], as well as
customized GNN-based method that adapts to DAGs [14]. All these
baselines are trained end-to-end, and we report their performance
based on their official implementations.

To thoroughly test the models’ generalization ability and robust-
ness against the scarcity of training data, we fix the validation/testing
data and train/fine-tune the models with datasets of different scales.
The results are summarized in Table 4. From the table, we can see
that our proposed framework shows substantial performance supe-
riority over the baseline methods across all the cases. Remarkably,
when trained with an unreduced dataset (first row), our framework
correctly classifies 97.5% target netlists, achieving a performance
gain of 6.2% accuracy over the second-best method [14]. Moreover,
our proposed framework suffers from slighter performance degrada-
tion when trained with decreasing data size. From the last row of
the table, we can see that our method manages to achieve relatively
high accuracy (94.5%) even with a training data size that is only
30% of the testing data size, dropped by only 3.1% compared with
the best performance. In contrast, the performance of the baseline
methods [5, 7, 14] on the same case is decreased by 5.0%, 4.6% and
4.9% respectively.

6 Conclusion
Learning feasible representations from raw gate-level netlists is

critical for applying machine learning techniques to EDA. In this

work, a novel netlist representation learning framework based on a
graph contrastive scheme that extracts basic boolean functionality
of netlists is proposed. FGNN, a specialized graph neural network, is
further introduced to improve the performance of the framework. Ex-
perimental results on in-order and out-of-order RISC-V designs and
two distinct downstream tasks verified the framework’s effective-
ness. The proposed framework can be applied to more downstream
netlist tasks, which will be left for future work.
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