PPATuner: Pareto-driven Tool Parameter Auto-tuning in
Physical Design via Gaussian Process Transfer Learning

Hao Geng
ShanghaiTech & CUHK

Qi Xu
USTC

Abstract

Thanks to the amazing semiconductor scaling, incredible design
complexity makes the synthesis-centric very large-scale integration
(VLSI) design flow increasingly rely on electronic design automation
(EDA) tools. However, invoking EDA tools especially the physical
synthesis tool may require several hours or even days for only one
possible parameters combination. Even worse, for a new design,
oceans of attempts to navigate high quality-of-results (QoR) after
physical synthesis have to be made via multiple tool runs with
numerous combinations of tunable tool parameters. Additionally,
designers often puzzle over simultaneously considering multiple
QoR metrics of interest (e.g., delay, power, and area). To tackle the
dilemma within finite resource budget, designing a multi-objective
parameter auto-tuning framework of the physical design tool which
can learn from historical tool configurations and transfer the as-
sociated knowledge to new tasks is in demand. In this paper, we
propose PPATuner, a Pareto-driven physical design tool parameter
tuning methodology, to achieve a good trade-off among multiple
QoR metrics of interest (e.g., power, area, delay) at the physical
design stage. By incorporating the transfer Gaussian process (GP)
model, it can autonomously learn the transfer knowledge from the
existing tool parameter combinations. The experimental results on
industrial benchmarks under the 7nm technology node demonstrate
the merits of our framework.

1 Introduction

Modern synthesis-centric chip design flow benefits a lot from
the continuous scaling of feature size. However, just like a double-
edged sword, the aggressive scaling also brings side effects. Ever-
increasing design complexity challenges the current electronic de-
sign automation (EDA) solutions. Accordingly, EDA tools have been
upgraded in terms of quality of outcomes by ceaselessly integrating
sophisticated algorithms and optimization techniques at all stages
of the design flow. Concurrently, countless tunable options that can
remarkably affect the quality-of-results (QoR) are also provided as
hints for designers. This makes the parameter tuning process more
intractable in turn.

On the other hand, physical design (PD) flow comprising parti-
tioning, floorplanning, placement, clock tree synthesis, and rout-
ing via corresponding tools, heavily impacts the post-layout QoR.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC °22, July 10-14, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9142-9/22/07...$15.00
https://doi.org/10.1145/3489517.3530602

Tsung-Yi Ho Bei Yu
CUHK CUHK
Historical Parameter
Configurations (Source)
Power —
...... —Vo‘:‘\'/—\v
S—
Tool Inputs
(Target) i [Delay |

set_para

meters
Area
set para| | (icm--ooooh) 0 L e M
meters —
""" PPATuner

:%:D —> Physical Design Tool —

Figure 1: The Overview of PPATuner.

Simultaneously, it costs much more time than other stages in the
design flow. Another status quo is that the tool used in such momen-
tous step of the whole design flow typically has over ten thousand
parameter-option combinations. Applying the proposed methodol-
ogy in the physical tool parameter tuning has considerably practical
significance. In this paper, we focus on the PD tool parameter auto-
tuning issue.

An analogous problem to the parameter tuning issue of a PD tool
is design space exploration (DSE) [1] which navigates the optimal
solutions (e.g., values, designs, or tool configurations) in large de-
sign space. Likewise, DSE in our field often relates to multi-objective
“black-box” optimization. Note that a surrogate function is proposed
in lieu of the objective function in such optimization issues because
there are no explicit mathematical expressions of the latter. There-
fore, Pareto-driven “black-box” optimization approaches proposed
under the DSE problem formulation may be prospective recipes for
the parameter auto-tuning issue.

Recently, loads of prior arts [2-9] start to focus on the EDA tool
parameter tuning. Powered by machine learning techniques, [6-9]
have attained phenomenal success.

Nevertheless, the defects emerge as well. The performance of
machine learning models is jeopardized due to a lack of training pa-
rameter configurations with associated QoR metrics values reported
by the tool when handling new designs. As mentioned, running
EDA tools to obtain data for model calibration is costly during the
exploration of a new design or new preference of QoR metrics of
interest. On the other hand, since similar parameter configurations
have been already tried quite a few times in navigation of previ-
ous designs, there are quantities of prior data available. Although
designs differ from one to another, the impact of architecture prop-
erties of similar designs like pipelining may have little change.
Some studies like [9] discover that the influence of parameters can

https://doi.org/10.1145/3489517.3530602

be consistent for different designs, let alone similar designs. This
paves the way for transferring knowledge from prior tool parameter
configurations.

To address the above concern, in this paper, we propose PPATuner,
a Pareto-driven parameter tuning method of the PD tool, which har-
nesses the transfer Gaussian Process (GP) as the surrogate model.
The transfer GP model learns the historical data and transfers the
useful knowledge in an automatic fashion. For a better understand-
ing of the role PPATuner plays, we visualize the tuner for a physical
design tool in Figure 1. Our contributions are summarized as fol-
lows:

e A Pareto-driven iterative auto-tuning framework is pro-
posed, which provides a good trade-off among multiple QoR
metrics of interest (e.g., power dissipation, delay, and area
utilization).

o The tuning framework incorporates a transfer Gaussian pro-
cess to achieve knowledge transfer from old tasks to new
tasks.

o Our framework takes advantage of the knowledge from exist-
ing parameter configurations so that optimal or near-optimal
parameter configurations can be found and computational
resources are conserved.

The rest of this paper is organized as follows. In Section 2, we will
give the problem formulation and the backgrounds of the Gaussian
process and transfer learning. Section 3 will describe the proposed
PPATuner in detail. Section 4 will show the experimental results,
followed by the conclusion in Section 5.

2 Preliminaries

In this section, we give our problem formulation and some back-
ground knowledge about the Gaussian process and transfer learning
in our context, for a better understanding.

2.1 Gaussian Process

A Gaussian process (GP) over a real function f(x) can be de-
scribed by its mean function u(-) and covariance function k(-,-).
In our multiple QoR metrics case, we model each QoR metric as a
draw from an independent GP distribution. Assume we try to apply
the Gaussian process (GP) model to approximate the “black-box”
function of power. X is the training set filled with tool parameter
configurations and Y is the power consumption of trained set X
(obtained by invoking a PD tool). Given a new parameter configu-
ration x, the GP will make the inference to predict the mean and
variance as follows.

u(x) = k(6 X) T (k(X,X) +)Y,

0% (x) = k(x,x) = k(x, X)T (k(X, X) + 6°I) " k(x, X), W
where the mean value m(x) is the predicted value, while the vari-
ance o2 (x) refers to the uncertainty of the prediction. This is the
advantage of utilizing the GP that it provides a well-calibrated pre-
diction as well as a predictive uncertainty. By virtue of this, GP is
frequently employed in the learning-based optimization framework
[10]. Another merit of GP is data efficiency. Opposite to other learn-
ing models like neural networks, GP requires less training data and
has a smaller number of (hyper-)parameters to optimize. The above
properties make GP be suitable for the parameter tuning task.

2.2 Transfer Learning

Transfer learning represents a set of techniques aiming at im-
proving the learning of a target domain by using the latent sim-
ilarity among the data from the source and target domains. It is
widely used in scenarios when the data from the target domain is
insufficient and the data from the source domain is adequate. In
our parameter tuning case, various parameter configurations have
been tried, while the exploration for new designs or parameter
configurations cannot be intensively performed due to the resource
limitation and stringent time-to-market constraint. Ergo, transfer
learning-like schemes are in desire. A large quantity of literature
has studied the effectiveness of knowledge transfer in other do-
mains like image processing [11], while few works have discussed
the transferable issue in PD tool parameter auto-tuning.

2.3 Problem Formulation

Our parameter tuning problem is to optimize multiple QoR met-
rics (or design objectives) in as few evaluations by the PD tool
as possible so that the total expense is minimized. Typically, the
associated solutions (a.k.a. Pareto-optimal solutions) whose QoR
metrics can be optimized without worsening at least one of the
rest constitute a Pareto set. Our tuning framework is to derive an
approximated set for Pareto-optimal parameter configurations. The
quality of these parameter settings (or performance of the proposed
tuning framework) is often evaluated with the hyper-volume error
and the average distance from reference set (ADRS) metrics.

The hyper-volume error for a Pareto set approximation P is
defined as

_ H(P) - H(P))
T HD) ?

where P is the golden Pareto-optimal set, and H(P) is the ground-
truth of hyper-volume. If a solution set P’ is better than P”’, H(P”)
is greater than H(P”") in the QoR metrics minimization case.

Assume two of the QoR metrics of interest are power P and area
A. The ADRS performance indicator can be calculated as follows.
Given the Pareto-optimal set A = {aj,az,... |a = (P,A)} as ref-
erence and an approximated Pareto-optimal set P = {P1, P2, - -
|p = (P, A)} in bi-objective optimization,

A 1
ADRS(A,P) = — in §(a, p), 3
(A.9) |f‘|a;ﬂ§ne13 (a, p) 3)

With the aforementioned knowledge, our problem can be for-
mulated as follows.

where § (a, p) = max {‘P%f’

>

A-A
A

Problem 1 (Pareto-driven Parameter Auto-tuning). Given a
specific amount of tool parameter configurations from a target
domain, the Pareto-driven parameter auto-tuning for the physical
design tool is expected to autonomously seek for the Pareto-optimal
parameter configurations in target parameter space so that high
QoR can be achieved.

3 The Proposed Tuning Framework

In a spirit of Bayesian optimization, our tuning framework pro-
vides a solution to the PD tool parameter tuning issue: an acquisi-
tion procedure, which takes as input cheap probabilistic surrogate
models of the “black-box” functions (i.e., the mappings from PD

tool parameter configurations to post-layout QoR metrics), repeat-
edly scores promising tool parameter configurations by performing
an explore-exploit trade-off. In the following, we will first intro-
duce the surrogate model: the transfer Gaussian process. Then,
the working flow of the whole tuning framework is characterized
detailedly.

3.1 The Transfer Gaussian Process

As aforementioned, the Gaussian process belongs to non-parametric

models. It is suitable to be the core of our transfer learning scheme
in the PD tool parameter tuning issue. The main idea underneath is
to learn a transfer kernel to model the correlation of the output pre-
dictive QoR metric values when the input parameter configurations
come from prior trials (i.e., the source domain or task) and current
parameter tuning jobs (i.e., the target domain or task), which can
be considered as a measure of similarity between tasks. What to
transfer is based on how similar the source is to the target. If the
tasks are very similar, the knowledge would be directly transferred
from the source data. By contrast, if the tasks are dissimilar, the
model would only transfer the shared coefficients in the kernel
function.

Suppose yl.S denotes the observed output (e.g., one of QoR metric
of interest like power value) corresponding to the i-th input tool
parameter configuration vector x;fS in the source domain, while ij
refers to the observed QoR metric value of the j-th input x;?' in the
target domain. There exists the underlying “black-box” function
f S between the input and output for the source task. Assume we
have N tool parameter configurations for the source task and M
instances for the target, then fS is an N-dimensional vector and
7 an M-dimensional vector.

In training, the conditional distribution p (yT [ys, X7, X‘S) is

what we need to consider. Let f = (foT) and we can define a

Gaussian process over f like

p(f1X,0)=N(f|0,K), 4

with the kernel matrix K for transfer learning and 6 the whole
hyper-parameters. More specifically,

Knm ~ k (xp, Xm) (2e"7(""”‘m)¢ - 1), (5)

where n (xp, xm) = 0 if x,, and x;,, are from the same task domain,
otherwise 1 (xp, xm) = 1. The parameter ¢ represents the dissimi-
larity between § and T. The intuition behind the kernel definition
is that the additional factor makes the correlation between points
of the different tasks are less or equal to the correlation between
the ones in the same task. To estimate the (dis)similarity with limit
amount of tool runs, a Bayesian approach is exploited to combat this
difficulty. Reasonably assume ¢ follows a Gamma distribution, i.e.,
¢ ~ T'(b, a). We can get the kernel by computing the formulation
as

1 e_¢/a

abT(b) a9
(6)

I?nm = E [Knm] = k (xn, xm) / (ze_f](xn,xm)¢ - 1) ¢b_

Then, integrating out ¢, we obtain the kernel

k (xp, xm) (2 (ﬁ)b - 1) 17 (xn, xm) =1

k (xn, Xm) »

Knm = ™)

otherwise

As can be observed in Equation (7), the proposed transfer kernel
models the correlation of outputs based on not only the similarity
between inputs but also the similarity between tasks. In addition,
it measures both positive and negative correlations between tasks
and thus has a stronger expression ability.

When doing inference, given a test parameter configuration x
in the target task, the predictive distribution p (y | X, y) needs to
determine. Note that the inference process of the model is the same
as that in standard GP models. Hence, the mean and variance of the
predictive distribution of the target task parameter configuration
are

u(x) = k(x,X)T (1’€+A)_1 "
_ ®)
o(x) = ¢ —k(x,X)T (1? +A) k(2 X),

B'In 0

0 ﬁ;ll M
can be computed by the transfer kernel (Equation (6)). fs and f;
are two hyper-parameters which can be learned by maximizing the
marginal likelihood of data of the target task during training.

In general, the kernel function in transfer GP expresses that
for parameter configurations x, and x;, that are similar, the cor-
responding QoR values y(xp) and y(x,;) will be more strongly
correlated than for dissimilar points. Surely, the correlation be-
tween y(x,) and y(x,,) also depends on which tasks the inputs
parameter configurations x, and x,, come from and how similar
the tasks are. As a result, the transfer kernel represents that for
parameter configurations x, and x,, from different tasks, how the
associated QoR values y, and y,, are correlated.

3.2 The Key Steps of PPATuner

PPATuner is to find the Pareto set by navigating a parameter
space. After initialization, it iterates over several stages: model
calibration, decision-making, and selection. When any stop criteria
(e.g., all parameter configuration points have been either selected,
dropped, or predicted as one of the Pareto set) is met, the proposed
tuner will be terminated.

where A =) and ¢ = k(x,x) + ﬁt_l and k(x, X)

3.2.1 Initialization During the initialization, the proposed tuning
framework interacts with the PD tool to acquire the golden QoR
metric (e.g., area, power, and delay) values of a small number of
parameter configurations which are randomly sampled from the
parameter space ES of the source task and the space E7 of the
target task. In the multiple QoR metrics of interest scenario, we
model each parameter-to-performance mappings as a draw from
an independent GP distribution. These transfer Gaussian processes
are first calibrated with the initial data. Afterward, PPATuner will
start working iteratively.

3.2.2 Model Calibration The calibrated transfer GPs are exploited
to predict the QoR metric values as well as corresponding uncer-
tainties of the parameter configurations. It is worth mentioning
that such inference is only for the parameter configurations that
have not been discarded yet. Specifically, a vector u(x) where QoR

Power max (U (z)) Power
r—-== o
| p'/V: O o5 o©
| N / o o
15 l —'mdxHy —v'|l5 = : o °,
_____ %% © o
min(U (x)) ..'69:6; o
Dzlay Dglay

(a) (b)
Figure 2: The visualizations of concepts in PPATuner frame-
works. (a) The uncertainty region of a parameter configu-
ration and its diameter; (b) 5-accurate Pareto frontier (blue
dash lines) vs. golden Pareto frontier (red dash lines).

metric predictions (e.g., area, power, delay) of a parameter vector
x are concatenated and a vector of corresponding standard devi-
ations o(x) are acquired. Consequently, a hyper-rectangle R(x)
is constructed to imply the predictive uncertainty in QoR metric
space for a parameter configuration x, which is defined as follows.

R(x) 2 {y | p(x) —tia(x) Sy < p(x) +1ia(x)} (9

where y; in y indicates the value of associated QoR metrics (area,
power, or delay), and 7 is a coefficient which identifies how large this
region is in proportion to o. As continuously updates transfer GPs
with tool parameters and their golden QoR metric values through
the PD tool, the predictive uncertainty level diminishes. On the
back of ever-shrinking uncertainty, the uncertainty region of a
parameter configuration x in the ¢-th iteration can be formulated
like

Up(x) = Up-1(x) N R(x). (10)

We can define that the initial U_1 is the entire QoR metric space
R" (of target task) with n the number of QoR metric of interests.
The iterative intersection ensures that uncertainty regions will not
increase. In one uncertainty region U;(x) (e.g., light green area
in Figure 2(a)), the upper-bound of QoR is the optimistic predic-
tion min(U; (x)) and the lower-bound is the pessimistic prediction
max(U; (x)), as showed in Figure 2(a). Such uncertainty informa-
tion will be applied in the follow-up decision-making and selection
steps.

3.2.3 Decision-making One goal of this stage is to determine
whether the undecided configuration points are dominated by oth-
ers. More specifically, the undecided point x, which is §-dominated
by any other point x” (undecided or determined to be Pareto-
optimal), will be dropped and off the table in the following iterations.
Above dropping rule can be written in Equation (11).

max(U; (x")) < min(Us (x)) + 8, (11)

where § is the relaxation coefficient vector. This kind of coefficient
provides users a precision controller of final Pareto solutions.
Another goal is to predict whether the undecided configura-
tion points are Pareto-optimal with the least amount of points
selected for the PD tool evaluation. If the undecided point x is not
8-dominated by any other point x” (undecided or determined to
be Pareto-optimal), it will be regarded as the Pareto-optimal point.
The mathematical expression of Pareto-optimal judging is shown

in Equation (12).
max(Us (x)) < min(Us (x)) + 8. (12)

Equation (12) indicates that the found parameter configurations are
at most -worse than any Pareto-optimal points according to all of
the QoR metrics. In other words, the solutions are §-accurate. For a
better understanding, we sketch the related concepts in Figure 2(b).
In Figure 2(b), we exemplify a power vs. delay case. The orange
points constitute the Pareto frontier, while the green points are the
QoR metrics of parameter configurations we find. The parameter
configurations whose QoR metric points (e.g., green dots) are in
the light blue area are at least §-accurate.

Algorithm 1 The PPATuner

Input: the historical parameter configuration dataset DS, the
target parameter configuration dataset DY for initialization, the
number of maximum iterations T, ax-
Output: the predicted Pareto-optimal parameter configuration set.
. # Initialization:
. Initializing the transfer GP models with DS and D;
: while existing not decided configurations or t < Ty do

Model Calibration:

The transfer GP models further calibration with x; and
associated golden QoR metric values;

LS N N

6: Uncertainty regions construction; > Equations (9) and (10)

7 # Decision-making:

8: Dropping §-dominated configurations; > Equation (11)

9: Pareto-optimal configurations deciding; > Equation (12)

10: # Selection:

11: Choosing and sending the configurations x; for the PD tool
evaluation; > Equation (13)

12: t—1t+1;

13: end while

3.2.4 Selection After the finish of the decision-making step, a
parameter configuration x; (Pareto-optimal or undecided) with
the longest diameter [(the concept of diameter is illustrated in
Figure 2(a)) of its uncertainty region U; (x) is sampled to feed the PD
tool for golden QoR metric values. The sampling rule is illustrated
in Equation (13).

xj = argmax [y-v/|,. (13)

Y.y U, (x)

The selection scope is not limited to undecided parameter con-
figurations but also covering the predictive Pareto-optimal ones.
Therefore, it is not hard to imagine that the intuitive idea of the
selection is choosing the points that may benefit searching the
Pareto set.

3.3 The Overall Tuning Framework

For a better understanding, the whole framework is summarized
in Algorithm 1. The historical data in the source task is exploited
with a few parameter configurations in the target task to initialize
the transfer GP model (lines 1-2). The whole auto-tuning algorithm
works by iteratively performing the transfer GP model calibration,
decision-making, and selection (lines 3-13). The iterative refinement
will stop when reaches the maximum iterations or all the parameter

Table 1: The statistics of parameters of the PD tool on bench-
marks. “-" in the table means the parameter is not consid-
ered in this benchmark.

Parameters ‘ Sourcel ‘ Target1 ‘ Source2 ‘ Target2
| Min Max | Min Max | Min Max | Min Max
freq 950 1050 1000 1300 - - - -
place_rcfactor - - - - 1.00 1.30 1.00 1.30
place_uncertainty 50 200 20 100 - - - -
flowEffort standard extreme | standard extreme | standard extreme | standard extreme
timing_effort - - - - medium high medium high
clock_power_driven - - - - FALSE TRUE FALSE TRUE
uniform_density FALSE TRUE FALSE TRUE - - - -
cong_effort AUTO HIGH AUTO HIGH
max_density 0.65 0.90 0.65 0.90 - - - -
max_Length 160 310 160 300 250 350 250 350
max_Density 0.65 0.90 0.65 0.90 0.50 1.00 0.50 1. 00
max_transition 0.19 0.34 0.10 0.35 - - - -
max_capacitance 0.08 0.13 0.08 0.20 0.07 0.12 0.05 0.15
max_fanout 25 50 25 50 25 40 25 39
max_AllowedDelay 0.00 0.25 0.00 0.25 0.06 0.12 0.00 0.12

configurations have been decided. Eventually, the predicted Pareto-
optimal parameter combinations will be fed into the PD tools and
then go through the physical design flow for evaluation.

It is worth mentioning that our approach also supports batch
trials. For the side of the physical design tool, we have several
software licenses so that the parallels trials are supported when
enquiring the physical design tool (lines 10-11). The generation of
benchmarks is also based on parallel invoking.

4 Experimental Results and Analyses

We implement our algorithm based on Python and the certain
PD tool employed in the paper is Cadence Innovus Implementation
System (version 16.2). The experimental platform is a Xeon Silver
with the 4114 CPU processor. To evaluate the whole performance
state of our framework, we compare it with the cutting-edge frame-
works [6, 7, 9, 12] by exploring the parameter space of the PD tool
on the target industrial benchmarks.

4.1 Benchmark Statistics

In our experiments, we exploit industry benchmarks under 7nm
technology node, where three of them (i.e., Sourcel, Source2, and
Targetl) are generated by the same multiply accumulate (MAC)
design (around 20k cells after placement) with different parameters
and the Target2 is by the larger MAC design (about 67k cells).

Collecting configuration points with the golden QoR metric val-
ues is arduous due to the time-consuming running of a PD tool.
More specially, 3 hours are required for smaller MAC design going
through the PD flow, while the larger design costs 2 days by invok-
ing the Innovus tool. Hence, exhaustively enumerating the feasible
tool parameter configurations is unrealistic. Necessary parameter
space pruning is inevitable. Recommended by the sophisticated IC
designers, several vital parameters of the PD tool which impact
final design quality are considered. Then, to effectively represent
the parameter space, the Latin hyper-cube selecting scheme is ex-
ploited to choose the parameter configuration points. After that,
parameter points will be given to the tool for the actual PD flow
running so that their QoR metric values can be obtained. Until now,
we have obtained offline benchmarks. With sorting and comparing,
the golden QoR metric values of the Pareto frontier are achieved. To
abstain from misunderstanding, “the golden values” or “real Pareto
set” is defined as the best that can be found in the benchmarks.

For a better understanding, the statistics of parameters are listed
in Table 1. There are 5000 parameter configuration points built upon
the distinct combinations of 12 PD tool parameters in Sourcel and
Target1, respectively. Source2 and Target2 have 1440 and 727 points
considering 9 parameters respectively. The data types of parameters
include floating and integer. We supplement descriptions of some
parameters for further reference. f1owEf fort configures the flow
to give a trade-off between best-quality result and best turnaround
time, and uniform_density enables even cell distribution for
designs with less than 70% utilization, and cong_effort specifies
the effort level of relieving congestion, and max_density con-
trols the maximum density of local bins during global placement,
while max_Length belongs to DRV rule parameters including
max_capacitance/ max_transition/ max_fanout, and
max_Density defines the maximum value for density (area uti-
lization).

4.2 Whole Performance Against the SOTA

Four outstanding prior works are selected as baselines. TCAD’19
[12] is an active learning-based optimization framework, while ML-
CAD’19 [6] uses the classical Bayesian optimization flow with the
lower confidence bound (LCB) function as the acquisition function.
DAC’19 [7] which is inspired by the solution to matrix completion
issue in recommender systems proposes the tensor decomposition
and recommender system-based tuning algorithm. ASPDAC’20 [9]
integrates the feature impotence-guided sampling strategy and
utilizes ensemble boosting tree-based regressor to navigate the op-
timal parameter configurations. Among them, we have requested
the source code of TCAD’19 and MLCAD’19, while DAC’19 and
ASPDAC’20 are reimplemented by ourselves. Three metrics, hyper-
volume error, the ADRS, and the number of tool runs, are used for
performance indicators. Because the modeling time (i.e., calibrating
model) of all methods requires far less time (e.g., usually in a few
seconds) than tool runs (hours or days). We employ the number of
tool runs to count the runtime overhead, which is a replacement to
the conventional running time. To test the PPATuner, two practical
scenarios requiring transferring knowledge are set up. Experimen-
tal results are shown quantitatively and qualitatively. Unfortunately,
due to the space limitation, only the power vs. delay QoR metric
space in Scenario Two is used as a visual example.

4.2.1 Scenario One: Same Design Given the same design, ac-
cording to the reason like different designers’ preference of final
design quality (e.g., area over power), distinct parameters will be
considered to tune. We conduct the experiment to test the per-
formance in this Scenario (denoted as Scenario One). Sourcel is
harnessed as the source task and Target1 is the target. 200 data
points in the source task and no more than 5% of the data in the
target task are used for the training of PPATuner. Table 2 records
the associated results on Targetl. Column “Multi-objective” lists
three QoR metric spaces to be explored: area vs. delay, power vs.
delay, and area vs. power vs. delay, and columns “HV”, “ADRS”, and
“Runs” are the evaluation metrics referring to hyper-volume error,
the average distance from the reference set, and the number of
tool runs, respectively. As Table 2 suggests, with less runtime over-
head (i.e., tool runs) on Target1, PPATuner averagely outperforms
TCAD’19 with a 57.4% decrease on the hyper-volume error and a
41.0% drop on the ADRS value and reduces half the hyper-volume

Table 2: The whole performance comparison on Target1 benchmark.

Multi-obiective \ TCAD’19 [12] | MLCAD'19 [6] DAC’19 [7] | ASPDAC20[9] | PPATuner
! | HV ADRS Runs | HV ADRS Runs | HV ADRS Runs | HV ADRS Runs | HV ADRS Runs
Area-Delay 0.142 0068 509 |0.122 0061 400 | 0129 0.075 627 | 0.133 0.063 400 | 0.050 0.041 251
Power-Delay | 0.237 0235 512 | 0.199 0.256 400 | 0.243 0.266 596 | 0.190 0.178 400 | 0.095 0.099 259
Area-Power-Delay | 0.185 0.064 503 | 0.160 0.058 400 | 0.214 0.100 577 | 0.195 0.086 400 | 0.096 0.075 247
Average 0.188 0122 508 |0.160 0.125 400 | 0195 0.147 600 | 0.173 0.109 400 | 0.080 0.072 252.333
Ratio 2350 1.694 2.013 | 2000 1736 1585 | 2438 2.042 2378 | 2163 1514 1585 | 1.000 1.000 1.000
Table 3: The whole performance comparison on Target2 benchmark.
Multi-obiective \ TCAD’19 [12] | MLCAD'19 [6] DAC’19 [7] | ASPDAC20[9] | PPATuner
) | HV ADRS Runs | HV ADRS Runs | HV ADRS Runs | HV ADRS Runs | HV ADRS Runs
Area-Delay 0.103 0099 95 |0140 0104 70 |0.133 0092 132 | 0114 0116 70 | 0.053 0.049 65
Power-Delay | 0.113 0.092 93 |o0.121 0.094 70 |0.27 0077 125 |0.122 0119 70 | 0039 0050 63
Area-Power-Delay | 0.107 0.084 88 | 0.099 0.074 70 |0.105 0.103 137 | 0.140 0.08 70 | 0.059 0.042 58
Average 0.108 0092 92 |[0120 0091 70 |0.122 0091 131333 | 0.125 0.107 70 | 0.050 0.047 62
Ratio 2160 1957 1484 | 2400 1.936 1129 | 2440 1936 2.118 | 2.500 2.277 1129 | 1.000 1.000 1.000
error and 42.4% the ADRS compared with MLCAD’19. Besides, our
method is better than DAC’19 with a drop of 59.0% hyper-volume o
s ata
error and more than 50.0% ADRS value and also excels ASPDAC’20 A0 4 Real Pareto
. . . A
on all evaluation indicators. £ TCAD’19
. - . . - . 420 Ty A MLCAD'19
4.2.2 Scenario Two: Similar Designs With the similar but differ- - +’l‘ A + DACIS
. . . L
ent sized designs at hand, fast transferring knowledge from smaller 200 X ASPDAC’20
. =
design to larger design is essential. Another experiment is per- X PPATuner
formed to evaluate the performance under this assumption (defined 350 >§k*_}_ ‘
as Scenario Two). Source2 is the source task with Target2 as the X x
target. Similarly, 200 data points in the source task and no more
. . 360
than 5% of the data in the target task are used for the training of 7200 400 600 800];0?0 1200 1400 1600 1800
elay

PPATuner. Table 3 shows the corresponding results on Target2. It is
crystal clear that with fewer PD tool runs on Target2, the proposed
algorithm surpasses TCAD’19 with the average hyper-volume error
and the ADRS value of 0.050 and 0.047, while it has a less hyper-
volume error and smaller ADRS value compared to MLCAD’19.
In addition, PPATuner behaves better than DAC’19 by decreasing
59.0% hyper-volume error and shrinking half ADRS value. With
about 56.0% average reductions on hyper-volume error and ADRS,
PPATuner shows a better performance against ASPDAC’20. The
visualization of Pareto frontiers in the power vs. delay space is
illustrated in Figure 3, which demonstrates that our learned Pareto
points are much closer to the real ones.

5 Conclusion

In this paper, for the first time, we have proposed PPATuner, a
Pareto-driven parameter auto-tuning flow of the PD tool, which
adaptively transfers the knowledge from prior tuning tasks to new
jobs via transfer Gaussian process model. The proposed framework
not only reduces the human labor in the design loop, but also makes
use of the existing experience so that the computational resource
is saved within a shorter time-to-market. The experimental results
on industrial benchmarks under the 7nm technology node have
demonstrated the efficacy and effectiveness of the framework.

Acknowledgment
This work is supported by HiSilicon Technologies Co., ACCESS
- Al Chip Center for Emerging Smart Systems, Hong Kong SAR,

Figure 3: The visualization of Pareto frontiers in power
vs. delay space on Target2 benchmark. The units for power
and delay are mW and ns, respectively.

and The Research Grants Council of Hong Kong SAR (Project
No. CUHK14209420).

References

[1] H.-Y. Liu, I Diakonikolas, M. Petracca, and L. Carloni, “Supervised design space
exploration by compositional approximation of Pareto sets,” in Proc. DAC, 2011,
pp. 399-404.

[2] M. M. Ziegler, H-Y. Liu, G. Gristede, B. Owens, R. Nigaglioni, and L. P. Carloni,

“A synthesis-parameter tuning system for autonomous design-space exploration,”

in Proc. DATE, 2016, pp. 1148-1151.

M. M. Ziegler, H.-Y. Liu, and L. P. Carloni, “Scalable auto-tuning of synthesis

parameters for optimizing high-performance processors,” in Proc. ISLPED, 2016,

pp. 180-185.

C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, and Z. Zhang, “A parallel bandit-based

approach for autotuning FPGA compilation,” in Proc. FPGA, 2017, pp. 157-166.

C. H. Yu, P. Wei, M. Grossman, P. Zhang, V. Sarker, and J. Cong, “S2FA: An

accelerator automation framework for heterogeneous computing in datacenters,”

in Proc. DAC, 2018, pp. 1-6.

Y. Ma, Z. Yu, and B. Yu, “CAD tool design space exploration via Bayesian opti-

mization,” in Proc. MLCAD, 2019, pp. 1-6.

J. Kwon, M. M. Ziegler, and L. P. Carloni, “A learning-based recommender sys-

tem for autotuning design fiows of industrial high-performance processors,” in

Proc. DAC, 2019, pp. 1-6.

A. Agnesina, K. Chang, and S. K. Lim, “VLSI placement parameter optimization

using deep reinforcement learning,” in Proc. ICCAD, 2020, pp. 1-9.

Z.Xie, G.-Q. Fang, Y.-H. Huang, H. Ren, Y. Zhang, B. Khailany, S.-Y. Fang, J. Hu,

Y. Chen, and E. C. Barboza, “FIST: A feature-importance sampling and tree-based

method for automatic design flow parameter tuning,” in Proc. ASPDAC, 2020, pp.

19-25.

(3]

[10] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the
human out of the loop: A review of Bayesian optimization,” Proceedings of the
IEEE, vol. 104, no. 1, pp. 148-175, 2015.

[11] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A
comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109,
no. 1, pp. 43-76, 2020.

[12] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization for high
speed adders: A Pareto driven machine learning approach,” IEEE TCAD, vol. 38,
no. 12, pp. 2298-2311, 2019.

