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Abstract—Placement and routing (PnR) is the most time-consuming part
of the physical design flow. Recognizing the routing performance ahead of
time can assist designers and design tools to optimize placement results in
advance. In this paper, we propose a fully convolutional network model
to predict congestion hotspots and then incorporate this prediction model
into a placement engine, DREAMPlace, to get a more route-friendly result.
The experimental results on ISPD2015 benchmarks show that with the
superior accuracy of the prediction model, our proposed approach can
achieve up to 9.05% reduction in congestion rate and 5.30% reduction in
routed wirelength compared with the state-of-the-art.

I. INTRODUCTION

Routability is one of the key concerns in modern placement for
very-large-scale integrated (VLSI) circuits [1]. With the designs getting
increasingly large and complicated, simply minimizing interconnect
wirelength can no longer guarantee good routed wirelength [2]–[5],
as poor routing congestion may lead to severe routing detour or
even failure. Thus, routability optimization is a necessity for practical
placement algorithms.

Modern routability-driven placement algorithms usually consist of a
kernel placement solver and a routability estimator. The former min-
imizes for typical placement objectives, e.g., interconnect wirelength
and overlap between cells, and the latter provides congestion feedback
to guide the kernel solver. For example, most nonlinear placement
algorithms take the feedback and inflate cells in congested regions
to reduce the routing demands in these regions [6], [7]. Quadratic
placement algorithms can also incorporate routability optimization in
rough legalization [8], [9].

To enable fast and accurate routability estimation, deep learning
is introduced for its high performance. Xie et al. propose a fully
convolutional network (FCN) to predict number of total routing hotspots
with features extracted from placement [10]. Yu et al. propose a
generative adversarial network (GAN) to learn the correlation between
FPGA placement and routing congestion [11].

However, most studies stop at modeling without really integrating the
models to the state-of-the-art global placement engines for routability
optimization. by developing a neural network model to accurately
predict routing demands, we directly integrate the model into the
placement objective for explicit routability optimization in this paper.
The main contributions of this paper are listed as follows:

• We develop a FCN-based model to predict the routing congestion
map given placement solutions.

• We integrate the model into the objective as a penalty term to
explicitly optimize routability.

• Experimental results demonstrate that we can achieve more than
5% improvement in routed wirelength compared with several state-
of-the-art placers [6], [12].

The rest of our paper is organized as follows. Section II provides
preliminaries including models and definitions. Section III presents
detailed methods and the whole optimization flow. Section IV conducts
several experiments to validate our methods, followed by a conclusion
in Section V.

TABLE I Notations.
Notation Description

x,y Physical locations of cells in the layout
E Set of nets
P Set of pins

We(·, ·) Wirelength of net e
D(·, ·) Density penalty
L(·, ·) Routing congestion penalty
λ Weight of the density penalty
γ Parameter of the wirelength model for smoothness
η Weight of the congestion penalty, starts with 8e-9

II. PRELIMINARIES

A. DREAMPlace Algorithm

We use the notations defined in TABLE I if not specially mentioned.
DREAMPlace [12] is a GPU-accelerated placement engine, implement-
ing the eplace/RePlAce family as the kernel placement algorithm It uses
weighted-average (WA) model to approximate wirelength

W̃ex(x,y) =

∑
i∈e xie

xi/γ∑
i∈e e

xi/γ
−
∑
i∈e xie

−xi/γ∑
i∈e e

−xi/γ
, (1)

We(x,y) = W̃ex(x,y) + W̃ey (x,y), (2)

DREAMPlace defines the optimization problem as,

min
x,y

∑
e∈E

We(x,y) + λD(x,y), (3)

The key contribution of DREAMPlace is that it analogs an analytical
placement problem to network training, which can get significant
speedup. Currently DREAMPlace focuses wirelength minimization,
while the support to routability optimization is limited.

B. RUDY

Rectangular uniform wire density (RUDY) [13] is a routing demand
estimation technique. It provides a two-dimensional map representing
the routing demand of different bins in the layout. To compute RUDY
map, we first need to obtain the bounding box of a net,

xhe = max
pe

xpe , xle = min
pe

xpe ; yhe = max
pe

ype , yle = min
pe

ype ;

where xle, yle, xhe , yhe denote the left, bottom, right, and top edges of the
bounding box of net e, pe denotes the pins incident to the net, xpe and
ype denote the locations of the pins. Then, we can derive the equations
for the overall RUDY computation,

we = xhe − xle, hk = yhe − yle, (4a)

µe =

{
1 x ∈ [xle, x

h
e ], y ∈ [yle, y

h
e ]

0 otherwise,
, (4b)

RUDYe(x,y) ∝ µe(
1

we
+

1

he
), (4c)

RUDY(x,y) =
∑
e∈E

RUDYe(x,y), (4d)

where RUDYe is the routing demand for a single net e. Summing up
the routing demand of all nets results in the overall RUDY map.
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Fig. 1 The overall flow of our framework.

III. ALGORITHMS

A. Overall Flow

We add a machine learning-based congestion penalty into the objec-
tive function for routability. The overall computation flow is shown in
Fig. 1. Different from DREAMPlace, it involves the computation of
congestion gradient to explicitly optimize cell placement.

The computation of the congestion penalty is shown in Fig. 3. Firstly,
three input features are extracted from the cell placement solution.
Through the inference of the pre-trained routability prediction model,
we get the predicted congestion map. Finally, we take mean squared
Frobenius norm of this congestion map as the congestion penalty.

B. Routability Prediction Model

There are many previous works on network-based routability eval-
uation [14], [11], [10]. In our proposed model, we obtain the ground
truth congestion hotspots information using Innovus global router and
choose three features composing the input M × N × 3 feature map
from the cell placement solution.

• RUDY: The RUDY map defined in Equation (4).
• PinRUDY: We further define PinRUDY as the pin density map

using RUDYe, p ∈ e as the weight each pin p incident to net e.
Suppose we divide the layout into M ×N bins, we can compute
the PinRUDY for each bin bij as follows,

PinRUDYp(i, j) =
1

we
+

1

he
, p ∈ e, p ∈ bij , (5a)

PinRUDY(i, j) =
∑
p∈bij

PinRUDYp(i, j), i ∈ [1,M ], j ∈ [1, N ], (5b)

where p denotes the pins covered by bin bij , e is the net that this
pin p is incident to.

• MacroRegion: We also adopt an M × N macro region map to
indicate the covered region of macro cells. For each bin (i, j), the
macro region map can be computed as,

MacroRegion(i, j) =

{
1 (i, j) is in a macro cell,
0 otherwise.

(6)

With the model structure illustrated in Fig. 2, we can get an output
map with size M×N , which contains congestion hotspots information.
The routability prediction problem fR can be formally expressed as,

fR : X ⊂ RM×N×3 −→ Y ⊂ RM×N . (7)

We define the prediction error of fR as mean square error and train
the parameters with Adam optimizer [15].
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Fig. 2 Prediction model.

C. Routability-Driven Placement
To incorporate routing information into DREAMPlace, we add a

new penalty term into our objective function and formulate the new
optimization problem as follows.

min
x,y

∑
e∈E

We(x,y) + λD(x,y) + ηL(x,y), (8)

The computation flow, shown in Fig. 3, describes how the gradients
of this congestion penalty with respect to cell locations are computed.
Given the cell locations (x,y), we extract input features with the func-
tions defined in Equations (4) (5) (6) and then stack these three feature
maps into a three-channel feature map M ∈ RM×N×3. We feed this
three-channel feature map M into our pre-trained model to generate a
congestion map fR(M) ∈ RM×N . The mean squared Frobenius norm is
applied to compute the congestion penalty L(x,y) := 1

MN
‖fR(M)‖22.

To successfully proceed through the gradient-based optimization, we
are required to compute the gradients of loss function L with respect
to cell locations. Note that gradients are only defined on vector fields,
therefore we use the notation ∇A to represent taking a derivative with
respect to a matrix A of size M × N as the gradient with respect to
its vectorized representation, for simplicity.

∇Af := ∇vec(A)f, (9a)

vec(A) :=
[
a1,1, · · · , aM,1, · · · , a1,N , · · · , aM,N

]>
. (9b)

Here ai,j represents the entry at ith row and jth column. With the
definition (9), the gradient with respect to fR(M) can be computed as

∇fR(M)L =
2

MN
fR(M). (10)

Now we consider full steps of gradient computation with chain rule.
Illustrated in Fig. 3, the gradient propagation have three consecutive
parts.

1) Compute gradient w.r.t. congestion map: ∇fR(M)L.
2) Back-propagate ∇fR(M)L through our pretrained neural network

model, to obtain the gradient w.r.t. stacked features: ∇ML.
3) Extract different channels of ∇ML as gradient w.r.t. three different

maps, compute gradient w.r.t. cell locations respectively and finally
sum them together.

The chain rule in matrix calculus indicates the following formulation,

∇xL = Jx(M)> · JM(fR(M))> · ∇fR(M)L. (11)

Here J denotes a Jacobian matrix. To enable the full steps of gradient
computation, we are going to complete the multiplication on the
righthand side of Equation (11) step-by-step.

In fact, the rightmost term ∇fR(M)L is explicitly calculated in
Equation (10). The middle term JM(fR(M)) represents the back-
propagation transformation matrix, therefore we can calculate the
gradient of loss w.r.t the RUDY features,

∇ML = JM(fR(M))> · ∇fR(M)L. (12)

Through the back-propagation of pre-trained neural network. As the in-
put feature M contains three channels, the gradient w.r.t. M can also be
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Fig. 3 The gradient-based optimization flow.

divided into three channels accordingly: ∇RUDY(x,y)L, ∇PinRUDY(x,y)L,
and ∇MacroRegion(x,y)L.

We can rewrite the gradient w.r.t. cell location x as follows,
∇xL = Jx(RUDY(x,y))> · ∇RUDY(x,y)L

+ Jx(PinRUDY(x,y))> · ∇PinRUDY(x,y)L,
(13)

Note that the macro regions remain fixed, which indicates that its
Jacobian matrix is always a zero matrix, so we cancel out its gradient.

From Equation (4) of RUDY map, we can explicitly find the approx-
imation of Jacobian matrices on the righthand side of Equation (13).
Here we say approximation because the RUDY and PinRUDY functions
are actually not differentiable everywhere, which forces us to replace
gradients with subgradients. We take Jx(RUDY(x,y)) as an example.

Jx(RUDY(x,y)) =
∑
e

Jx(RUDYe(x,y)), (14)

where the entry at ith row and jth column of Jx(RUDYe(x,y)) is
∂vec(RUDYe(x,y))i

∂xj
∝ −µe(i′, j′) ·

1

w2
e

∂we

∂xj
, (15)

where i′ := i mod M, j′ := floor(i/M) represents the corresponding
bin location of ith entry of vectorized RUDYe(x,y) map. We cancel
out he as it is not related to horizontal locations. Note that we is related
to the maximal and the minimal, which introduces non-differentiability,
so we use a subgradient for gradient descent. From Equation (15), we
can only consider cells that have a pin connected to net e, otherwise
the derivative ∂we/∂xj is zero. Suppose that the jth cell at (xj , yj)
has a pin at (x̃j , ỹj) connected to net e, the derivative can be set to

∂we

∂xj
= δjk − δjl, (16)

where k := argmax(x̃t,ỹt)∈e x̃t and l := argmin(x̃t,ỹt)∈e x̃t are the
indices of pins that have maximal and minimal horizontal coordinate in
this net respectively. The notation δjk is the Kronecker delta function.

Similarly to calculate Jx(PinRUDY(x,y)). Back to Equation (13),
we propagate the gradient and calculate ∇xL Let J(x,y) be the
objective function that is required to be minimized in Equation (8).

∇xJ =
∑
e∈E

∇xWe(x,y) + λ∇xD(x,y) + η∇xL(x,y). (17)

Our proposed placer utilizes gradients (∇xJ,∇yJ) to adjust all
movable cells and optimize the objective function.
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Fig. 4 Prediction model evaluation.

IV. EXPERIMENTAL RESULTS

We conduct comprehensive evaluations to demonstrate the accuracy
of the prediction model and the effectiveness of the proposed framework
through two perspectives: congestion and routed wirelength.

A. Experimental Setup

The prediction model was developed in Python with PyTorch, and
train on NVIDIA TITAN XP GPU. The congestion penalty operator is
implemented in C++ and CUDA, and the incorporation uses Python.
It is executed in the same environment with the proposed prediction
model. Innovus version is v16.24 on a CentOS Linux server. NTU-
place4dr [6] is executed on the CPU threads in the experiments.

B. Routability Prediction Model

We conduct experiments on ISPD 2015 benchmarks [16] with fence
region constraints removed, as DREAMPlace does not support them yet.
Fourteen of these benchmarks are used for training. For each design,
we generate at least 100 different placements by DREAMPlace at
different overflows and parameter settings. We then generate congestion
information as the golden results using Cadence Innovus global router.
Furthermore, this model is tested on the other four designs. We adopt
the following two metrics, NRMS and SSIM [17], to evaluate the model.

NRMS indicates the element-wise difference between the prediction
result and the ground truth and SSIM gives the structural similarity
between them. Fig. 4 plots the evaluation of our proposed routability
prediction network, where more than 90% of the test cases are in good
performance with the metrics in [17] (NRMS < 0.2; SSIM > 0.8).

C. Routability-driven Placement

We still use the ISPD 2015 contest benchmarks to evaluate our
congestion-driven placer With two state-of-the-art placers, DREAM-
Place [12] and NTUplace4dr [6] as baselines. We again use Cadence
Innovus global router to evaluate the routing performance.

We define the congestion rate as a metric to evaluate the performance
of optimizing congestion hotspots.

Definition 1. (Congestion Rate - CR) CR shows the average lack of
routing resources after global routing. It is defined as,

CR =

∑H
i=1

∑W
j=1 Lk(i, j)

HW
, (18)

where Lk is the number of demand resources exceeds what is available.

CR reflects the level of congestion. We report Horizontal, H-CR,
and Vertical, V-CR separately to show the effect in different directions.
Also, we use the classic metric, Routed Wirelength, WL, to measure
the routing performance. WL is estimated by Innovus global router.

TABLE II exhibits the experimental results on the ISPD 2015
benchmarks and reports comparison on H-CR, V-CR, WL and runtime,
RT. As the results shows, the benchmark, which is marked as gray –
matrix_mult_c, has a very poor performance using NTUplace4dr.
By contrast, our proposed algorithm is more robust. Here we do



TABLE II Experiment results on ISPD 2015 benchmarks.

Benchmark NTUplace4dr [6] DREAMPlace [12] Ours
H-CR V-CR WL (e+06 um) RT (s) H-CR V-CR WL (e+06 um) RT (s) H-CR V-CR WL (e+06 um) RT (s)

des_perf_1 0.101 0.038 1.32 331 0.143 0.129 1.23 10.868 0.153 0.126 1.23 44.07
des_perf_a 0.022 0.038 2.25 345 0.015 0.021 2.05 12.834 0.020 0.028 1.91 44.51
des_perf_b 0.001 0.002 1.75 349 0.005 0.010 1.71 11.829 0.004 0.010 1.71 45.99

fft_1 0.125 0.093 0.52 79 0.106 0.063 0.45 7.656 0.101 0.061 0.45 43.66
fft_2 0.821 0.002 0.53 113 0.664 0.006 0.44 7.636 0.665 0.006 0.44 48.05
fft_a 0.116 0.015 0.82 111 0.248 0.016 1.08 7.317 0.191 0.015 0.97 42.78
fft_b 0.211 0.067 1.05 101 0.177 0.026 1.21 7.942 0.142 0.047 1.12 46.81

matrix_mult_1 0.156 0.057 2.57 297 0.165 0.340 2.19 13.69 0.168 0.334 2.19 52.9
matrix_mult_2 0.210 0.073 2.41 344 0.253 0.238 2.28 13.69 0.251 0.242 2.28 52.25
matrix_mult_a 0.017 0.028 3.65 374 0.145 0.113 5.45 15.30 0.020 0.024 3.49 47.91
matrix_mult_b 0.032 0.035 3.67 307 0.044 0.025 4.51 14.91 0.020 0.028 3.47 50.5
matrix_mult_c 48.956 29.719 126.71 2674 0.089 0.017 4.87 14.38 0.029 0.016 3.42 48.41
pci_bridge32_a 0.110 0.056 0.54 121 0.192 0.098 0.52 7.33 0.076 0.036 0.43 44.64
pci_bridge32_b 0.001 0.004 0.77 95 0.001 0.005 0.83 8.08 0.002 0.008 0.65 43.72
superblue12 0.034 0.495 46.70 10813 0.125 0.374 38.1 96.18 0.131 0.379 36.46 547.8
superblue14 0.064 0.056 29.50 7010 0.041 0.051 26.1 54.26 0.055 0.081 25.28 168.35

superblue16_a 0.186 0.031 33.40 7068 0.090 0.013 28.2 54.92 0.164 0.028 28.70 170.21
superblue19 0.022 0.089 20.50 7890 0.033 0.093 17.0 42.23 0.039 0.091 16.70 97.84

Average 0.131 0.069 8.94 2102.82 0.141 0.091 7.68 22.28 0.124 0.087 7.27 91.13
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Fig. 5 The runtime breakdown on ISPD2015 mgc_des_perf_1.

not count this fail benchmark when calculating the average metrics
of NTUplace4dr. The results show that we can get 9.05% reduction
in total congestion rate and 5.30% reduction in routed wirelength
compared with DREAMPlace, and 18.68% reduction compared with
NTUplace4dr [6].

Fig. 5 plots the runtime breakdown of our proposed method on
mgc des perf 1. The most time-consuming part is the computation
of congestion penalty gradients ∇L, which takes 46.10% of the total
runtime. Since it is a non-differentiability problem, it needs to be com-
puted discretely instead of using a fast mathematical implementation.
Furthermore, it takes 17.23% of the total runtime to compute congestion
penalty L, which includes features extraction, inference, and l2-norm
computation. Actually, the l2-norm operator in PyTorch takes 13.6%
of the total time, which can be further optimized in the future. Even
though the average runtime of our proposed approach is 4× slower
than DREAMPlace, it is nearly 23× faster than NTUplace4dr due to
the native support for GPU acceleration.

V. CONCLUSION

In this paper, we develop a routability-driven placer based on a deep
learning model. With fully convolutional networks, we can achieve
efficient and relatively accurate routing congestion modeling at the
placement stage. We further integrate the model to the placement
objective for explicitly guiding the cell movement. The evaluation
on modified ISPD2015 benchmarks have shown that the network can
achieve rather accurate prediction. Eventually, we can achieve up to
9.05% reduction in the congestion rate and 5.30% reduction in routed
wirelength compared with DREAMPlace and NTUplace4dr.
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