
Voltage-Island Driven Floorplanning Considering
Level-Shifter Positions

Bei Yu, Sheqin Dong
Department of Computer Science & Technology

Tsinghua University
Beijing, China 100088

yubei.dongsq@gmail.com

Satoshi Goto, Song Chen
Graduate School of IPS

Waseda University, Kitakyushu, Japan 808-0135
goto@waseda.jp

chensong@aoni.waseda.jp

ABSTRACT
Power optimization has become a significant issue when the
CMOS technology entered the nanometer era. Multiple-
Supply Voltage (MSV) is a popular and effective method for
power reduction. Level shifters may cause area and Inter-
connect Length Overhead(ILO), and should be considered
during floorplanning and post-floorplanning stages. In this
paper, we propose a two phases framework VLSAF to solve
voltage and level shifter assignment problem. At floorplan-
ning phase, we use: a convex cost network flow algorithm to
assign voltage; a minimum cost flow algorithm to assign level
shifter. At post-floorplanning phase, a heuristic method is
adopted to redistribute white spaces and calculate the posi-
tions and shapes of level shifters. Experimental results show
VLSAF is effective.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids-Placement and
routing.

General Terms
Algorithm, Design

Keywords
Voltage-Island, Voltage Assignment, Convex Network Flow,
Level Shifter Assignment, White Space Redistribution

1. INTRODUCTION
Power optimization has become a significant issue when

the CMOS technology entered the nanometer era. High
power consumption not only shorten the battery life for
handheld devices but also cause thermal and reliability prob-
lems. As a result, many techniques were introduced to deal
with power optimization. Among the existing techniques,
Multiple-Supply Voltage (MSV)[1] is a popular and effective

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’09, May 10–12, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-522-2/09/05 ...$5.00.

method for both dynamic and static power reduction while
maintaining performance.

In the MSV design, high voltage is assigned to timing
critical blocks while lower voltage is assigned to noncritical
blocks, so the power can be saved without degrading the
overall circuit performance. Accordingly, MSV aware floor-
planning includes two major problems: voltage assignment
and floorplanning, which make the design process much more
complicated.

Level-shifter [1] has to be inserted to an interconnect when
a low voltage module drives a high voltage module or a cir-
cuit may suffer from excessive leakage energy. From [5] we
can observe that the number of level shifters increase rapidly
as modules increase and the area level-shifters consume can
not ignore. As a result, level-shifters should be considered
during floorplanning and post-floorplanning stages.

There are a number of works addressing island genera-
tion and voltage assignment in floorplanning and placement.
Among these works, MSV is considered at various stages, in-
cluding voltage assignment before floorplanning[4][5]; during
floorplanning[6][7]; and post-floorplaning / post-placement
[8][9] [10][11].

Lee et al.[5] handle voltage assignment by dynamic pro-
gramming, and level shifters are inserted as soft block ac-
cording to the voltage assignment result before floorplan-
ning. At last, power network resource are considered during
floorplanning. However, there are some deficiencies in the
work: first, voltage assignment is handled before floorplan-
ning, so physical information such as the distances among
modules are not able to be taken into account; secondly,
the search space is large if level-shifters are considered as a
module.

An approach based on ILP is used in [9] for voltage assign-
ment at the post-floorplanning stage. Level-shifter planning
and power-network resources are considered. However, their
approach does not consider level-shifter’s area consumption
and relies on the floorplanning result.

To make use of physical information such as the length of
interconnects among modules, voltage assignment problem
should be addressed during floorplanning. Ma et al.[7] trans-
form voltage assignment problem into a convex cost net-
work flow problem, and integrate it into floorplanning stage.
However, their approach consider neither level-shifters’ area
overhead nor level-shifters’ positions.

Besides area and power issue, it is also important to min-
imize the number of voltage islands for the purpose of re-
ducing the cost of power-network resource. [3] points out
that although more supply voltages may lead to more power

51

saving, two supply voltages are sufficient for practical circuit
designs. Therefore, in this paper, we consider two voltages
domains.

In this paper, we propose a two phases framework. At
floorplanning phase, we use: a convex cost network flow al-
gorithm to assign voltage; a minimum cost flow algorithm to
assign level shifter. At post-floorplanning phase, a heuristic
method is adopted to redistribute white spaces and calculate
the positions and shapes of level shifters.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the voltage-island driven floorplanning prob-
lem. Section 3 presents our algorithm flow. Section 4 reports
our experimental results. At last, Section 5 concludes this
paper.

2. PROBLEM FORMULATION

Definition 1 (Room). Given a chip, it can be dissected
into rectangular areas and each area is assigned at most one
module. The rectangular area is defined as a Room.

Definition 2 (White Space). In each room, the space
not occupied by the module is defined as White Space.

In this paper, we use CBL[2] to represent every floorplan
generated. CBL is a topological representation dissecting
the chip into rectangular rooms. Besides, all the nets are
two-pin nets, and multi-pin nets can be decomposed into a
set of source-sink two-pin nets. The wire length of every net
is calculated by half-perimeter model.

Definition 3 (Interconnect Length Overhead).
Each level-shifter belongs to a net, if level-shifter is out-
side net’s bounding box, its net’s interconnect length would
increase. The increased length is denoted as Interconnect
Length Overhead (ILO).

For every candidate floorplan, to meet the performance
constraint, timing-critical modules are assigned a high volt-
age, and the other non-timing-critical modules are assigned
a lower voltage to maximize power saving. Besides, each
level-shifter is assigned to a rough position to minimize in-
terconnect length overhead. We refer to the problem as the
Voltage and Level-Shifter Assignment driven Floorplanning
(VLSAF).

Problem 1. (VLSAF) We are given
1) A set of m modules: N = {n1, n2, . . . , nm}. Each

module ni is hard block(fixed size and aspect ratio),
and is given two available supply voltage, and power
-delay tradeoff is represented as a delay-power curve
(DP–curve, as shown in Fig.3).

2) A netlist, which can be denoted as a directed acyclic

graph(DAG), Ĝ = (V̂ , Ê), where V̂ = {n1, n2, . . . ,

nm}, and e(i, j) ∈ Ê denotes an interconnect from
ni to nj .

3) A timing constraint Tcycle.
4) Level-shifter’s area, power and delay, denoted as als,

pls, dls.
1

After VLSAF, a chip floorplanning is generated to meet
several objectives: First, minimize the area and power cost.

1In this paper, only 2 voltages are supplied, so we assume
all level shifters have the same area, power and delay.

�������

�������������	
����
��

���
����	���������������

����������
����

�����������
��������������

��

���

������

��������

��
���������������

Figure 1: Overall of VLSAF

Secondly, satisfying timing constraint. Third, insert all the
level-shifters in need and minimize the wire length and the
interconnect length overhead.

3. VLSAF ALGORITHM

3.1 Overview of VLSAF
As shown in Fig.1, algorithm VLSAF consists of two phases:

(I)voltage and level-shifters assignment during floorplanning,
(II) White Space Redistribution(WSR) at post-floorplanning.

In Phase I, we modify the model in [7] to handle voltage
assignment and present a Min-Cost Max-Flow based method
to solve the level-shifters assignment problem. When gen-
erate a new packing, we carry out voltage and level-shifter
assignment. After voltage assignment(VA), each module is
assigned a voltage to reduce power consumption as much
as possible yet satisfies the performance constraint. After
level-shifter assignment(LSA), as many level-shifters as pos-
sible are assigned a room to minimize Interconnect Length
Overhead(ILO).

In Phase II, a heuristic method is adopted to calculate
every module’s relative position in room. Besides, every
room’s white space is divided into grids, and each level-
shifter is decided its aspect ratio and inserted to a grid.
Finally, if a level-shifter can not assign a room in LSA, it
can be inserted into a room in order to reduce interconnect
length overhead(ILO).

3.2 Voltage Assignment
During floorplanning, when a new floorplan is generated,

we can estimate the interconnect length between module i
and module j, denoted as lenij . Similar to [7], lenij can
be scaled to delay delayij according to delayij = δ × lenij ,
where δ is a constant scaling factor. We check every delayij ,
if delayij ≥ Tcycle, then time constraint can not be satisfied,
so another new floorplan is generated. Otherwise we carry
out voltage assignment.

Given netlist Ĝ = (V̂ , Ê), voltage assignment problem can
be formulated as (1):

Minimize
∑

i∈V̂

Pi(di) (1)

s.t.







µj − µi ≥ delayij + di ∀e(i, j) ∈ Ê (1a)

di ∈ {d1
i , d

2
i } ∀i ∈ V̂ (1b)

0 ≤ µi ≤ Tcycle ∀i ∈ V̂ (1c)

52

�

��

��

��

��

�� �� �

�	

�

��

��

��

��

�� �� �

��

Figure 2: (a)Ḡ = {V̄ , Ē}, after adding nodes s, t and
diving nodes Ni into Ii and Oi (b)Transformed Ḡ =
{V̄ , Ē} by adding edge e(s, t) to remove constraint
µt − µs ≤ Tcycle in equation (2).

where µi is the arrival time of vertex i in DAG, and di is
the delay of vertex i.

To solve the formulation by network flow algorithm, we
transform Ĝ into Ḡ = (V̄ , Ē). First, a start node s and an

end node t are added to V̂ , s interconnect the nodes whose
in-degree are zero, and nodes with zero out-degree inter-
connect t. We set V̄ = {s, t} ∪ V̂ = {s, t, n1, n2, . . . , nm}.
Besides, ni(i = 1, . . . , m) are divided into two nodes: Ii and
Oi, so V̄ = {s, t, I1, O1, I2, O2, . . . ,
Im, Om}. And Ii is connected to Oi by a directed edge. We
denote these new created edges {e(Ii, Oi)|Ii, Oi ∈ V̄ } as Ē1,
denote edges {e(s, Ik)|Ik ∈ V̄ } as Ē3, and other edges as Ē2,
and Ē = Ē1 ∪ Ē2 ∪ Ē3. The DAG Ḡ = (V̄ , Ē) is shown in
Fig. 2 (a).

The mathematical program is in (2),where dij is delay
from node i to node j.

Minimize
∑

e(i,j)∈Ē

Pij(dij) (2)

s.t.



















µj − µi ≥ dij ∀e(i, j) ∈ Ē (2a)
µt − µs ≤ Tcycle (2b)
dij ∈ {d1

ij , d
2
ij} ∀e(i, j) ∈ Ē1 (2c)

dij = delayij ∀e(i, j) ∈ Ē2 (2d)
dij = 0 ∀e(i, j) ∈ Ē3 (2e)

Compare with [7], which has more constraints as follows:
{

0 ≤ µi ≤ Tcycle ∀i ∈ V̄

lij ≤ dij ≤ uij ∀e(i, j) ∈ Ē

we introduce some modifications. First, timing constraint
used to be estimated as Tcycle−L×dls, where L is the longest
path in DAG. To reduce tolerance of timing constraint, in
module’s DP-curve, we add dls to lower voltage’s delay and
add pls to lower voltage’s power(as shown in Fig. 3), and
time constraint can be set as Tcycle. Since there are only
two possible supply voltages, power function Pij(dij) still
be convex function. Secondly, we add start node s and end
node t to remove constraint 0 ≤ ti ≤ Tcycle. Third, since
DP-curve is a linear function, in other word, for e(i, j) ∈ E1,
dij has only two choices: d1

ij and d2
ij . We can prove later

that we can solve the program optimally even if we remove
the constraint lij ≤ dij ≤ uij .

We can incorporate constraints (2b) and (2a) by trans-
forming (2b) into µs − µt ≥ −Tcycle, and define dst, s.t.
µt − µs = dst & dst ≤ Tcycle. Accordingly, Ē3 = {Ē3 ∪
e(s, t)}, and the transformed DAG Ḡ is shown in Fig.2(b).
Besides, we dualize the constraints (2a) using a nonnega-

�����

�
�
�
	

�����

�
�
�
	

���

��

�������

�������

�������

�����������
���

��� ���

Figure 3: For a module, (a)original DP-curve,
(b)modified DP-curve, adding the power and delay
of level-shifter.

tive Lagrangian multiplier vector x̄, obtaining the following
Lagrangian subproblem:

L(~x) = min
∑

e(i,j)∈Ē

Pij(dij)−
∑

e(i,j)∈Ē

(µj − µi − dij)xij (3)

It is easy to show that
∑

e(i,j)∈Ē

(ui − uj)xij =
∑

i∈V̄

xsi × µi (4)

where

xsi =
∑

j:e(i,j)∈Ē

xij −
∑

j:e(j,i)∈Ē

xji,∀i ∈ V (5)

Lagrangian subproblem (3) can be restated as follows:

L(~x) = min
∑

e(i,j)∈Ē

[Pij(dij) + xijdij] +
∑

i∈V̄

xsiµi (6)

We set V = V̄ , remove e(i, j) ∈ E3, and add an edge
e(s, i) for each node i ∈ V . The newly edges are denoted as
E3, and E1 = Ē1, E2 = Ē2. Now E = E1 ∪ E2 ∪ E3, and
the transformed DAG is denoted as G = (V, E).

For every e(s, i) ∈ E3, we set dsi = µi, Psi(dsi) = 0, lsi =

0,usi =

{

K, if i 6= t
Tcycle, if i = t

, where k is a huge coefficient.

We define function Hij(xij) for each e(i, j) ∈ E as follows:

Hij(xij) = mindij{Pij(dij) + xijdij} (7)

For the e(i, j) ∈ E1, because Pij(dij) is linear function

Pij(dij) = −k × dij , dij ∈ [d1
ij , d

2
ij] (8)

where k ≥ 0 and −k denotes slope of the function, k =
Pij(d1

ij)−Pij(d2

ij)

d2

ij
−d1

ij

.

Hij(xij) = min{Pij(dij) + xijdij}
= min{(xij − k) × dij}

=

{

(xij − k) × d2
ij 0 ≤ xij ≤ k

(xij − k) × d1
ij k ≤ xij

=

{

Pij(d
2
ij) + d2

ijxij 0 ≤ xij ≤ k

Pij(d
1
ij) + d1

ijxij k ≤ xij

For the e(i, j) ∈ E2, Hij(xij) = dijxij , xij ≥ 0.

For the e(i, j) ∈ E3,Hij(xij) =

{

Kj × xij xij ≤ 0
0 xij ≥ 0

,

where Kj = Tcycle if j = t; and if j 6= t, Kj equals K.

53

���

���

���

���
���

���
���

���

���

��	
��
��
��

��
��

���

���

���

���

Figure 4: (a)No matter how to move the module,
dark area can not insert level-shifter can not be in-
serted into the dark , while blank area is Potential
White Space(PWS) of Rj (b)1st and 2nd Feasible
Region of FRij.

To transform the problem into a minimum cost flow prob-
lem, we construct an expanded network G′ = (V ′, E′). There
are three kinds of edges to consider:

• e(i, j) in E1:we introduce 2 edges in G′, and the costs
of these edges are: −d2

ij ,−d1
ij ; upper capacities:

k, M − k; lower capacities are both 0.

• e(i, j) in E2: cost, lower and upper capacity is −dij ,
0, M.

• Edge in E3: two edges are introduced in G′, one with
cost, lower and upper capacity as (−Kj ,−M, 0),
another is (0, 0, M).

Using the cost-scaling algorithm, we can solve the mini-
mum cost flow problem in G′. For the given optimal flow
x∗, we construct residual network G(x∗) and solve a shortest
path problem to determine shortest path distance d(i) from
node s to every other node. By implying that µ(i) = d(i)
and dij = µ(i) − µ(j) for each e(i, j) ∈ E1, we can finally
solve voltage assignment problem.

3.3 Level Shifters Assignment
After voltage assignment, the number of level-shifters nls

is determined, and the chip is dissected into set of rooms
R = {r1, r2, . . . , rm}. Then we carry out level-shifters as-
signment to try to assign every level-shifters one room. We
define sets of level shifters LS = {LS1, LS2, . . . , LSn}, every
set LSi(i = 1, . . . , n) contain sizei level shifters with same
source module and the same sink module, and

∑n

i=1 sizei =
nls.

To check whether a room has extra space to insert level-
shifter, we denote the White Space in room rj as wsj , whose
area can be calculated as follow:

Area(wsj) = wrj × hrj − wmj × hmj (9)

where wrj(hrj) denotes the width(height) of room rj , wmj(hmj)
denotes the width(height) of module nj .

Each level-shifter belongs to a net, and is inserted into
white space. Since we assume all modules are hard blocks,
some space of room must belong to a module(as shown in
Fig.4(a), center dashed area can not insert level shifter no
matter how to put the module).

Definition 4 (Potential White Space (PWS)). The
space of room rj can be white space through module moving
is denoted as Potential White Space(pwsj).

�

�

�

�

�

�

���

���

	�

	�

	�

	�

	�

��
 ��

Figure 5: (a)LS1 drives from module 1 to mod-
ule 3 and LS2 drives from module 2 to module 5.
(b)Corresponding network graph, LS1 can be as-
signed to room 1,3,4, while LS2 can be assigned to
room 2,3,5.

pwsj can be considered as two horizontal channels and
two vertical channels, as shown in Fig. 4 (a), we denote the
width of vertical channel as wcj = wrj −wmj , and the width
of horizontal channel as hcj = hrj − hmj .

Definition 5 (Feasible Region (FR)). For a net re-
quiring level shifter i, its bounding box is denoted as bi, we
define level-shifter i’s feasible region as FRi and FRi =
{wsj |∀j, bi ∩ rj 6= 0}.

For room rj , if its white space wsj belongs to level-shifter
i’s Feasible Region FRi, the part of wsj in bi is denoted as
1st Feasible Region(fr1ij), while the other part of wsj is
denoted as 2nd Feasible Region(fr2ij).

We set w = max(wij −wcj , 0) and h = max(hij − hcj , 0),
then the area of fr1ij can be calculated as follows:

Area(fr1ij) = wij × hij − w × h (10)

We construct a network graph G∗ = (V ∗, E∗), and then
use a min-cost max-flow algorithm to determine which room
each level shifter belong to. A simple example is shown in
Fig.5.

• V ∗ = {s, t} ∪ LS ∪ R.

• E∗ = {(s, LSi)|LSi ∈
LS} ∪ {(LSi, rj)|∀frij} ∪ {(rj , t)|rj ∈ R}.

• Capacities: C(s, LSi) = sizei, C(LSi, rj) =

sizei, C(rj , t) =
Area(wsj)

als
.

• Cost: F (s, LSi) = 0, F (rj , t) = 0; F (LSi, rj) = Fij ,
which will discussed below.

We define area percent of fr1ij as pij , 0 ≤ pij ≤ 1.

pij =

{

Area(fr1ij)

Area(wsj)
, Area(wsj) 6= 0

0, others
(11)

Define cost of edge e(LSi, rj), Fij is a function of pij :

Fij(pij) = ⌈
1

pij + µ
+ (1− pij)× k × (Term1ij + Term2ij)⌉

(12)
where µ is a small coefficient, k is a undetermined coefficient
and Term1ij , T erm2ij is penalty terms, and Term1ij =
{

hrj−hij

wcj
, wcj 6= 0

0, wcj = 0
, Term2ij =

{

wrj−wij

hcj
, hcj 6= 0

0, hcj = 0
.

54

Equation (12) has some special characters. First, it is
a monotonically decreasing function of pij , which means
we are inclined to put level-shifter in the room which has
higher percentage of 1st FR. Besides, it can not be too
large even fr1ij is very small, so we add coefficient µ and
maxFij(pij) ≃ ⌈ 1

µ
⌉. Third, we observe that even two room

have the same pij and pij ≤ 1, if level shifter is inserted in
fr2ij , the room has longer fr2ij may cause longer length.
Consequently, in equation (12), we add the penalty term
Term1ij and Term2ij.

3.4 White Space Redistribution (WSR)
After floorplanning, most level-shifters are assigned to

rooms. We define set ELS containing level-shifters that
can not be assigned to a room. In room rj , we should
pack a module nj , and a group of level shifters Lsj =
{ls1, ls2, . . . , lspi}, and the condition below must be satis-
fied.

Area(nj) +

pi
∑

k=1

Area(lsk) ≤ Area(rj)

Traditional room-based floorplanner will pack the mod-
ules at the lower-left corner or the center of the rooms. Dif-
ferent from the traditional block planning method, to fa-
vor the level-shifters insertion, a heuristic method(called as
WSR) is adopted to calculate modules’ and level-shifters’
relative positions in rooms. The framework of algorithm
WSR is below:

Algorithm WSR:
1. For each module nj , calculate its relative position

in rj .
2. For each room rj , generate grids in white spaces, and

then insert Lsj into grids.
3. Insert level-shifters in ELS.
4. Move modules again under demand of Power Network.

3.4.1 Relative Position Calculation
If a level-shifter lsi is assigned into room rj , a prefer re-

gion is provided. If lsi is inserted in the prefer region, then
interconnect would not lengthen. For each level-shifter to
insert in room rj , a force is produced to push the mod-
ule nj apart from the level-shifter. We consider the force
produced by lsi in x- and y-direction separately, denoted
as Fix and Fiy . For example, as shown in Fig. 6(a), if
lsi prefers to locate in the lower-left corner of rj , then Fix

pushes nj to right and Fiy pushes nj to upper. To cal-
culate Fix and Fiy , prefer area is defined as a quaternion
(w1ij , w2ij , h1ij , h2ij), where w1ij(w2ij) is the distance from
prefer area to left(right) boundary of rj , h1ij(h2ij) is the
distance from prefer area to upper(lower) boundary of rj , as
shown in Fig. 6(b).

Fix and Fiy can be calculated as equation (13).

Fix =
w2ij−w1ij

wrj
, Fiy =

h2ij−h1ij

hrj
(13)

To calculate the position of module nj , we define four
variables Fright, Fleft, Fup, Fdown as follows:















Fright =
∑

i Fix, ∀Fix ≥ 0
Fleft =

∑

i Fix, ∀Fix < 0
Fup =

∑

i Fiy, ∀Fiy ≥ 0
Fdown =

∑

i Fiy, ∀Fiy < 0

(14)

���

��� ���

���

���

���

	
�

����

����

��������

��	

Figure 6: In room rj, (a)if level-shifter lsi prefers
to locate in lower-left corner (dark area is prefer
region), then lsi produces forces (Fix, Fiy) to pushes
module nj upper and right. (b)w1ij , w2ij , h1ij , h2ij are
defined to calculate forces (Fix, Fiy).

Relative position of nj in room rj is denoted as (Xnj , Ynj),
then

Xnj =
(wrj − wmj) × Fright

Fright − Fleft

(15)

Ynj =
(hrj − hmj) × Fup

Fup − Fdown

(16)

3.4.2 Grids Generation and LS Insertion
In room rj , after calculating module nj ’s relative posi-

tion, at most four rectangular white spaces are generated.
We divide each white spaces into rectangular grids, whose
area are all als. So room rj records a set of grids Gj =
{g1, g2, . . . , gm, m × als ≤ Area(rj) − Area(nj)}, and each
grid has its position. Level-shifters in set Lsj are sorted by
area of prefer region. Smaller prefer region, higher priority.
Then each level-shifter picks one grid in order.

After every level-shifter assigned choosing a grid, each
level-shifter in ELS picks free grid to insert for the purpose
of minimizing wire length.

Finally, in room rj , if not all the grids are inserted by level
shifter, module nj may remove. If nj is in low voltage, it
removes toward left and down to reduce total area, while if
nj is in high voltage, it removes toward the center of power
network to minimize power network resource.

4. EXPERIMENTAL RESULTS
We implemented algorithm VLSAF in the C++ program-

ming language and executed on a Linux machine with a
3.0GHz CPU and 1GB Memory. Fig. 7 shows the experi-
mental results of the benchmarks n50 and n200.

In simulated annealing, we use the cost function as follow:

Φ = λAA + λW W + λP P + λRR + λNN (17)

where A and W represent the floorplan area and wire length;
P represents the total power consumption; R represents the
power network resource; and N records the number of level
shifters that can not be assigned. When temperature is
higher than a coefficient we assume all the level shifters can
be assigned, so λN is set 0 at the beginning of annealing.

The previous work [5] is the recent one in handling floor-
planning problem considering voltage assignment and level-
shifter insertion. Table 1 shows comparisons between our
experimental result and [5]. The column Power Cost means
the actual power consumption, column PNR means power
network resource consumption. VLSAF can save 17% power

55

Table 1: The Comparison Between the VLSAF and the Previous Work

Benchmark Max Power Power Cost PNR LS Number White Space (%) Run Time(s)
[5] VLSAF [5] VLSAF [5] VLSAF [5] VLSAF [5] VLSAF

n10 216841 216840 189142 965 1007 0 9 4.87 9.44 6.001 3.24
n30 205650 190717 146483 1369 1436 57 25 9.03 11.32 115.07 35.11
n50 195140 172884 135316 1514 1460 119 114 21.10 16.66 569.36 116.97
n100 180022 179876 123526 1671 1354 92 153 34.07 26.71 1768 688.13
n200 177633 174818 130050 2040 1763 399 203 46.52 29.66 4212 1969.12
n300 273499 219492 234389 2147 1997 452 337 44.10 37.74 4800 2392.8
Avg - 192438 159818 1617.7 1502.8 186 140.2 26.61 21.92 1911.74 857.56
Diff - - -17% - -7.2% - -24.7% - -17.6% - -55.2%

Table 2: VLSAF v.s. VAF+LSI

Wire Length w. LS ILO(%) White Space(%) Run Time(s)
VLSAF VAF+LSI VLSAF VAF+LSI VLSAF VAF+LSI VLSAF VAF+LSI

n10 13552 17937 0.89 2.29 9.44 10.46 3.24 2.09
n30 44225 43282 0.31 0.85 11.32 10.75 35.11 23.13
n50 92678 95666 1.20 2.27 16.66 18.12 116.97 39.81
n100 185622 191522 1.03 2.40 26.71 26.40 688.13 327.01
n200 366003 365792 1.64 4.28 29.66 30.06 1969.12 1304.3
n300 560042 600348 0.67 1.37 37.74 35.36 2392.8 1772.03
Avg 210404 219091 0.96 2.24 21.92 21.86 857.56 578.06
Diff - +4% - +133% - -0.3% - -32.5%

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

sb0

sb1

sb2

sb3

sb4

sb5

sb6

sb7

sb8

sb9

sb10

sb11

sb12

sb13 sb14

sb15

sb16

sb17

sb18

sb19

sb20

sb21

sb22sb23

sb24

sb25

sb26

sb27

sb28

sb29

sb30

sb31

sb32

sb33

sb34

sb35

sb36

sb37

sb38

sb39

sb40

sb41

sb42

sb43

sb44

sb45

sb46

sb47

sb48

sb49

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18 19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

62 63

64

65

66

67

68

69

70

71

72

73

74
75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105
106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141
142

143 144

145

146

147

148

149

150

151152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170
171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Figure 7: Experimental results of n50 and n200

and 7.2% PNR. The column White Space and the column
Run Time show our framework is about 2X faster while
white space can be saved by 17.6%.

In Table 2, we compare VLSAF with VAF+LSI, which
solves level-shifter assignment and insertion only at post-
floorplan stage. We can see that in VAF+LSI, wire length
and interconnect length overhead(ILO) will be increased by
4% and 133%. High ILO may cause delay estimation among
modules inaccurate, or even lead to timing constraint viola-
tion. Accordingly, VLSAF is effective and significant with a
reasonable more runtime.

5. CONCLUSIONS
We have proposed a two phases framework to solve voltage

assignment and level shifter insertion: phase one is voltage
and level-shifter assignment driven floorplanning; phase two
is white space redistribution at post- floorplanning stage.
Experimental results have shown that our framework is effec-
tive in reducing power cost while considering level shifters’
positions and areas.

6. REFERENCES
[1] David Lackey, Paul Zuchowski and J. Cohn. Managing

power and performance for system-on- chip designs
using voltage islands. ICCAD, pages 195–202, 2002.

[2] Xianlong Hong, Sheqin Dong. Non-slicing floorplan
and placement using corner block list topological
representation. IEEE Transaction on CAS,
51:228–233, 2004.

[3] M.Hamada and T.Kuroda. Utilizing surplus timing for
power reduction. CICC, pages 89–92, 2001.

[4] W.L.Hung, G.M.Link and J.Conner.
Temperature-aware voltage islands architecting in
system-on-chip design. ICCD, 2005.

[5] W.P.Lee and Y.W.Chang. Voltage island aware
floorplanning for power and timing optimization.
ICCAD, pages 389–394, 2006.

[6] J.Hu, Y.Shin and R.Marculescu. Architecting voltage
islands in core-based system-on-a-chip designs.
ISLPED, pages 180–185, 2004.

[7] Q.Ma and F.Y.Young. Network flow-based power
optimization under timing constraints in msv-driven
floorplanning. ICCAD, 2008.

[8] W.K.Mak and J.W.Chen. Voltage island generation
under performance requirement for soc designs.
ASP DAC, 2007.

[9] W.P.Lee and Y.W.Chang. An ILP algorithm for
post-floorplanning voltage-island generation
considering power-network planning. ICCAD, pages
650–655, 2007.

[10] H.Wu, I.M.Liu and Y.Wang. Post-placement voltage
island generation under performance requirement.
ICCAD, 2005.

[11] R.Ching and F.Y.Young. Post-placement voltage
island generation. ICCAD, 2006.

56

