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Abstract

The rapid advancement of deep learning techniques has revolutionized various domains, including

artificial intelligence (AI) algorithm optimization/acceleration and hardware design reformation. My

PhD thesis explores the intersection of these two fields, focusing on hardware-aware AI acceleration

and following AI-aided Design Automation acceleration. The objective is to develop novel approaches

and methodologies that fully explore potential acceleration opportunities to optimize and accelerate

AI computation from algorithm-level optimization and hardware-level optimization and following

hardware design automation stage. These processes are mutually coupled and mutually reinforcing,

propelling and enhance each other’s progression.

The first part of the thesis focuses on Hardware-aware AI acceleration. Given domain specific

and resource-limited hardware, efficient deployment of continuously-updated AI models requires

both algorithm-level and system-level optimization.

The first work focuses on algorithm-level domain specific inference optimization, presenting a

research study on super-resolution (SR) processing, focusing on addressing the challenge of achiev-

ing real-time inference in SR models. I develop a full-stack SR acceleration framework specifically

designed for embedded GPU devices. The study analyzes and enhances the special dictionary learn-

ing algorithm used in SR models through a novel dictionary selective strategy, aiming to compress

the model with tailored structural pruning. Additionally, we investigate the hardware programming

architecture and model structure to guide the optimal design of computation kernels, minimizing

inference latency within resource constraints.

Achieving optimal inference efficiency on hardware requires a combination of algorithm-level

model compression techniques, such as model quantization, and system-level optimization, such
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as operation reconfiguration and scheduling. The second work introduces a unified deployment

framework called BAQE, which aims to bridge the gap between algorithm-level and backend-level

optimization. BAQE constructs a global search space to simultaneously optimize model quantization

settings and backend configuration parameters. To expedite the process, I propose a searching

strategy based on multi-objective Bayesian optimization (BO) using a multi-task Gaussian model as

the surrogate model. Importantly, the framework easily adapts to different backends with varying

hardware resources due to its awareness of genuine hardware capabilities in each step. The proposed

approach evaluates all accuracy/latency metrics and historic knowledge/feedback directly on the

device within each iteration, thus accelerating the optimization process.

The second part of the thesis addresses AI acceleration of downstream task with example on

VLSI design automation. As the scale and complexity of integrated circuits are increasing very

fast, integrating deep learning into the design automation workflow may enhance the efficiency and

accuracy and handle Design For Manufactory (DFM) problems. As very large-scale integration

(VLSI) technology node continues to shrink, lithography proximity effects have become significant,

affecting manufacturability. To address this, resolution enhancement techniques (RETs) like Optical

Proximity Correction (OPC) are used. OPC optimization has gained attention in academia and

industry, with a focus on numerical optimization and machine learning. Our research identifies

pattern complexity variations and repetitive patterns in design layouts. Leveraging these findings,

we propose a self-adaptive OPC framework. It selectively employs different OPC solvers for patterns

of varying complexity and reuses optimized masks for repeated patterns, resulting in improved

efficiency.

Keywords: Deep learning, AI acceleration, Hardware-aware optimization, Domain-specific accel-

eration, Performance optimization.
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摘摘摘要要要

深度學習技術的快速發展已經徹底改變了多個領域,包括人工智能(AI)算法優化/加速和硬體設計變

革。我的博士論文探討了這兩個領域的交叉點,重點關注硬體感知的AI加速以及後續的AI輔助設計

自動化加速。研究目標是開發新的方法和方法論,充分探索潛在的加速機會,從算法層面和硬體層面

的優化以及後續的硬體設計自動化階段來優化和加速AI計算。這些過程相互耦合、相互促進,推動

和增強彼此的進展。

論文的第一部分重點介紹硬體感知的AI加速。考慮到特定領域和資源受限的硬體,對不斷更新

的AI模型進行高效部署需要同時進行算法層面和系統層面的優化。

第一項工作側重於算法層面的特定領域推理優化,展示了對超分辨率(SR)處理的研究,重點是解

決SR模型實現即時推理的挑戰。我專門為嵌入式GPU設備開發了一個完整的SR加速框架。該研究

通過一種新穎的字典選擇策略分析並增強了SR模型中使用的特殊字典學習算法,旨在通過定制的結

構化剪枝來壓縮模型。此外,我們還研究了硬體編程架構和模型結構,以指導計算核心的最優設計,在

資源約束下最小化推理延遲。

要在硬體上實現最佳推理效率,需要結合算法層面的模型壓縮技術(如模型量化)和系統層面的優

化(如操作重構和調度)。第二項工作介紹了一個名為BAQE的統一部署框架,旨在彌合算法層面和後

端層面優化之間的差距。BAQE構建了一個全局搜索空間,同時優化模型量化設置和後端配置參數。

為了加快這個過程,我提出了一種基於多目標貝葉斯優化(BO)的搜索策略,使用多任務高斯模型作為

代理模型。重要的是,由於框架在每一步中都能意識到真實的硬體能力,因此它很容易適應具有不同

硬體資源的不同後端。所提出的方法在每次迭代中直接在設備上評估所有準確性/延遲指標和歷史

知識/反饋,從而加速了優化過程。

論文的第二部分探討了VLSI設計自動化領域的AI加速。隨著集成電路的規模和複雜性急劇增

加,將深度學習集成到設計自動化工作流程中可以提高效率和準確性,並處理可製造性設計(DFM)問
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題。隨著超大規模集成電路(VLSI)技術節點的不斷縮小,光刻接近效應變得非常顯著,影響了可製造

性。為了解決這個問題,使用了分辨率增強技術(RET),如光學接近修正(OPC)。OPC優化已經引起

學術界和工業界的關注,重點是數值優化和機器學習。我們的研究識別了設計佈局中的圖案複雜度變

化和重複圖案。利用這些發現,我們提出了一個自適應OPC框架。它有選擇地為不同複雜度的圖案

採用不同的OPC求解器,並為重複圖案重複使用優化後的掩模,從而提高了效率。

關鍵字:深度學習,AI加速,硬體感知優化,特定領域加速,性能優化
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Chapter 1

Introduction

Artificial Intelligence (AI) technology has thrived in the past decade with leaping advancements

that surprised the world. On the other hand, the remarkable achievements in AI algorithms and

system developments bring more pressure on the advancement of hardware platforms, which emerge

from the water and attract more attention and challenges to meet the massive computation workload

requirement. Although many new hardware architectures and devices at different scales are proposed

to improve performance, they still need to catch up with the increase in AI algorithms’ scaling model

size and complexity.

Orthogonal to accuracy performance, speed is another dimension of model. AI model complexity

and capacity is also another concern. Given the rocket-growth of both AI performance and model

size, the mass data processing feature of latest machine learning algorithms requires latest design

with numerous data processing units and high-parallelism property. Latest bulky models have

gigantic parameter number which highly requires distributed computation and fast high-bandwidth

communication among devices clusters. Many domain specific tasks such as super-resolution are

highly suffer pressure from computation complexity cost. Some domains have special requirements

on the model inference time, such as video data analysis that strictly requires real-time inference.

Nowadays, software hardware co-design is the new trend for acceleration in the new AI era.

As the parameter-based AI models increase exponentially, the model architecture also evolves to

adapt to the computation paradigm of highly parallel extensive matrix/tensor processing. Some
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new hardware appears to support sparse computation, low-bit computation, and high-bandwidth

data movement. With GPU evolving as the mainstream computation hardware for AI, many other

domain-specific hardware emerge, such as TPU, special FPGA accelerators, etc. At the same time,

the AI algorithms and models adapt as well; model pruning has been proposed to make the models

sparse and, therefore, hold fewer parameters and smaller sizes. Quantization techniques are also in-

volved in converting the model parameters and computation from full precision (32-bit floating point)

to lower-bit data format. To adapt to different hardware resources, AI frameworks need compilation

optimization to adapt to different backend architectures, such as loop-tiling and computation kernel

fusion.

Another acceleration corner is the hardware design itself. To mitigate the gap between software

and hardware development, new manufacturing technology nodes have appeared with a shrinking

gate size such that more transistors can be put into the same area and power consumption can be

reduced. However, the advancement in lithography technology has brought more challenges, such

that the gate size approaches the wavelength of incident light, and the lithography proximity effect

will affect the final pattern printed on the chip. These advancements pose additional challenges for

the physical design stage of VLSI design flow. Here, the foundaries play a pivotal role in determining

various design rules. These rules, such as the component distance limit or routing line distance, are

crucial in ensuring the manufacturing yield. On the other hand, resolution enhancement techniques

(RETs) have been developed to improve the printability of the lithography process. Optical Proxim-

ity Correction (OPC) is one of the widely used RETs to optimize mask printability by compensating

for the diffraction effect in the lithography process. Indeed, all these techniques are still limited to

the massive design scale and bounded by time, budget, and computation limitations.

1.1 Challenges

Computational Complexity limit. Same as the AI for mask optimization that treats mask

generation as conditional image generation task. Another vision task super-resolution also suffers

extreme computation cost as image resolution gets higher to 4K. Despite the effectiveness and us-

ability of these vendor-provided commercial deployment tools, SR algorithms still face some complex

2



and thorny problems which hinder the models from traditional Deep learning optimization strate-

gies. To realize the objective of real-time inference (i.e., equal or more than 25 frames per second),

some particular properties of SR algorithms need to be considered.

Hardware-unaware inefficiency. As for AI compression on specific hardware such as quanti-

zation, the process can theoretically reduce bit-level operation number. However, selecting bit-width

and tuning the model is not the final stage in the real scenario of quantization deployment. A com-

plete deployment flow includes the important stage of backend configuration optimization on specific

backends. This is a crucial step to fully utilize the hardware resources on the device and to explore

for higher inference efficiency. Hence, it is necessary to propose a compilation method to map the

quantized DNN model into a series of backend-level kernels to launch, which remains not well solved.

Robusness of End-to-end AI. Although AI has shown much potential to promote higher

efficiency in Design Automation flow, there are many inherent challenges that may possibly hazard

the design result. Firstly, for AI-aided mask optimization specifically, the robustness is a huge

problem. To achieve efficient and desired OPC results on real designs, it is necessary to conduct a

systematic analysis of pattern distribution and complexity. Through careful examination of a real

design, we have identified several properties that can be utilized to aid in this analysis. One such

property is the presence of varying pattern densities, indicating that certain regions exhibit high

density while others are more sparse. This diversity, suggests the need for different types of OPC

solutions in different regions.

The lethal drawback is that machine learning model is a data-driven black box based on proba-

bilities. Such methods are not guaranteed to work for some critical patterns. We cannot solely rely

on AI for end-to-end solution without further checking.

1.2 Thesis Overview

. The thesis revolves around hardware-aware AI acceleration and AI acceleration for hardware design

automation. Many stages of optimization are covered with cross-level optimization.

Chapter 2 is the literature review section with background and previous works. This section

also briefly introduces the problem definition.
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Chapter 3 focuses on Hardware-aware AI acceleration with algorithm-level domain specific in-

ference optimization, presenting a research study on super-resolution (SR) processing, focusing on

addressing the challenge of achieving real-time inference in SR models. A full-stack SR acceleration

framework specifically designed for embedded GPU devices is proposed.

Chapter 4 discusses combination of algorithm-level model compression techniques, such as model

quantization, and system-level optimization, such as operation reconfiguration and scheduling. A

unified deployment framework called BAQE, which aims to bridge the gap between algorithm-level

and backend-level optimization is introduced.

Chapter 5 mainly discusses AI-aided Design Automation acceleration in terms of Design For

Manufactory (DFM). This chapter proposes a self-adaptive OPC framework to replace conventional

lithography mask optimization flow with superior performance and efficiency. A customized dynamic

pattern library is proposed to reuse repetitive patterns, using a hierarchical graph with online update

along with a greedy graph-based nearest neighbor search for fast matching.
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Chapter 2

Literature Review

2.1 Super-Resolution Algorithm Acceleration

Super-resolution (SR) techniques are crucial graphical processing methods that hold significant rel-

evance in the digital image era. They play a vital role in the generation or restoration of high-

resolution (HR) video frames from low-resolution (LR) frames. Out of all the available methods, the

basic approach is to interpolate the low-resolution (LR) image using bilinear or bicubic RGB values

obtained from nearby pixels that are spatially invariant. The significant advancements in deep learn-

ing within computer vision have paved the way for a range of robust super-resolution (SR) techniques

with impressive performance. Over the past decade, various methods have emerged, ranging from

conventional convolutional neural networks (Dong et al., 2015) to innovative generative adversarial

networks (Ledig et al., 2017a; Kim et al., 2020). In recent developments, the incorporation of dictio-

nary learning techniques alongside pixel-level local feature fusion operations (Li et al., 2020b; Wenbo

et al., 2020) has led to further enhancements in the image quality of generated high-resolution im-

ages or videos. These advancements have resulted in the recovery of richer color and texture details,

thanks to the utilization of dictionary learning and pixel-level local feature fusion operations.

As these algorithms continue to improve in performance, there is a growing focus on the efficient

and optimized deployment of deep learning-based super-resolution (SR) methods on hardware. This

aspect has garnered increased attention within the field. Over the past few years, Single-image-super
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resolution and related super-sampling techniques have found applications in real-time upscaling of

content up to 4K resolution and even higher resolution (Xiao et al., 2020) for the vast application in

upcoming 4K displays, laptops, and TVs. The process of AI-based content upscaling often involves

computationally intensive operations, primarily due to the large-scale convolution operations in neu-

ral networks. The complexity of these computations, measured in terms of Multiply-Accumulate

(MAC) operations, increases significantly with precision PSNR/SSIM. To address this issue, several

lightweight methods have been proposed, aiming to reduce model size and complexity (Dong et al.,

2016; Ahn et al., 2018). However, even the lightest method, FSRCNN (Dong et al., 2016), may not

meet the real-time requirement of 33 frames per second (fps) without specific customization or hard-

ware resource. More flexible SR compression algorithms appeared to satisfy various requirements.

SESR (Bhardwaj et al., 2022) proposes flexible model size to meet different size requirement. (Lee

et al., 2020) adopt Neural Architecture Search (NAS) to automatically search for the most efficient

model architecture to achieve extreme parameter efficiency.

Several previous methods have been proposed to facilitate the domain-specific deployment of

different these algorithms on various hardware platforms (Hao et al., 2019; Guo et al., 2020; Li et al.,

2019a; Sun et al., 2021). These models are widely employed for tasks such as object classification

(Wei et al., 2017), detection (Pinkham et al., 2020; Bai and Wang, 2019), neural language processing

(NLP) (Cao et al., 2019), and more. Despite their diverse application scenarios and variations in

task data format, these models share similar deep learning operators in their implementations,

eliminating the need for explicit special techniques. The most commonly used operators include

convolution, pooling, softmax, fully connected operations, and others. Due to the widespread use

of these operators, vendor-provided commercial tools often apply customization to achieve state-of-

the-art performance. These tools utilize fixed, manually written hardware codes tailored to specific

operators. For instance, TensorRT (GPU, [n. d.]) outperforms other tools on NVIDIA GPUs, while

Intel MKL-DNN (CPU, [n. d.]) boasts dominant inference latency on Intel CPUs.
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2.2 Learning Model Compression And Quantization

In recent times, deep neural networks (DNNs) have emerged as highly successful in various vi-

sual/language tasks. Nonetheless, the computational and memory requirements of current DNN

models present challenges for their utilization in devices with limited memory resources or ap-

plications with stringent latency demands. Consequently, there is a natural inclination towards

compressing and accelerating deep networks while preserving model performance to a significant ex-

tent. Over the past five years, substantial advancements have been achieved in this field, showcasing

remarkable progress. Previous studies have demonstrated the effectiveness of network pruning and

quantization in reducing network complexity and mitigating the issue of overfitting.

The main objective of pruning is to prune redundant, non-informative weights in a pre-trained

DNN model. (Srinivas and Babu, 2015) firstly investigated the redundancy within neurons in neural

networks and introduced a data-free pruning method to eliminate redundant neurons. Han (Han

et al., 2015b) started to treat the network as a whole pruning candidate and proposed a method to

reduce the overall number of parameters and operations in the network with a train-prune-retrain 3-

step strategy. (Chen et al., 2015) developed the HashedNets model, which employed a low-cost hash

function to group weights into hash buckets for parameter sharing. The deep compression approach

described in [10] eliminated redundant connections, quantized weights, and then utilized Huffman

coding to encode the quantized weights. In (Ullrich et al., 2017), a simple regularization method

based on soft weight-sharing was proposed, which encompassed both quantization and pruning

within a single re-training procedure. The aforementioned pruning strategies primarily focus on

connections pruning in DNNs.

On the other hand, quantization has emerged as a highly effective strategy to accelerate DNN

inference by utilizing lower numerical precision. In practical deep learning scenarios such as au-

tonomous driving and VR/AR technology, quantization enables deployment without necessitating

modifications to the original architecture. The fundamental concept behind quantization involves

replacing the FP32 numerical representation with half-precision FP16 or even Int8/Int4 formats.

This process is commonly expressed as:

quantize(r) = round(r/S)− Z, (2.1)
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Here, the operation quantize(·) represents the quantization process. The original weight/activation

r is initially scaled by a real value factor S in FP32 precision. Subsequently, it is rounded to the

nearest integer value (with truncation). The integer value Z serves as the zero point, which calibrates

the mapping value shift from the floating-point range to the integer range.

Numerous prior studies, including those mentioned in (Rastegari et al., 2016; Zhou et al., 2017;

Jacob et al., 2018; Zhao et al., 2023; Nagel et al., 2020; Yao et al., 2021; Li et al., [n. d.]), have

extensively utilized weight or activation quantization techniques with low-bit precision. Among these

approaches, integer quantization has demonstrated remarkable effectiveness in real-world deployment

scenarios due to its compatibility with hardware constraints. In general, fixed-point arithmetic

operations, such as multiplication and addition, are significantly simpler and faster when using

integer quantization. These operations involve only shift and add operations, eliminating the need

for time-consuming steps like normalization, de-normalization, or exponent alignment commonly

found in floating-point arithmetic.

The process of quantization can potentially result in a reduction in accuracy, particularly for

layers that are sensitive to precision deduction. To address this issue, mixed-precision approaches

have been proposed, as mentioned in (Dong et al., 2019; Habi et al., 2020; Hu et al., 2021; Qu

et al., 2020; Wang et al., 2020b; Zhao et al., 2021b; Zhou et al., 2018). These approaches aim

to mitigate accuracy degradation by assigning different bit precisions to each layer. However, this

fine-grained distribution of bit widths poses a precision assignment problem, with the number of

choices exponentially increasing as the network depth grows. In the work of (Wu et al., 2018a), the

Differentiable NAS (DNAS) method was employed to efficiently select the bit candidates. On the

other hand, (Dong et al., 2019) determined the bit width based on the trace of the Hessian matrix.

In the study by (Yao et al., 2021), integer linear programming was utilized to optimize the bit width

selection process.

Compared to other DNN model compression techniques like model pruning or knowledge distil-

lation, quantization heavily relies on hardware support. The availability of hardware support for

quantized data types significantly impacts the options for quantized bit-width and the resulting

acceleration ratio. Notably, NVIDIA’s Ampere GPU architecture with 3rd generation Tensor Core

offers unprecedented acceleration for tensor operations at Int1/4/8, bfloat16, and FP16 precision.
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Similarly, ARM Neon, with its Single Instruction Multiple Data (SIMD) architecture, can handle 8,

16, 32, and 64-bit vector operations. It is important to note that the effectiveness of quantization

for acceleration may vary based on the available hardware resources. With the versatile bit-width

support provided by advanced hardware, algorithm designers have greater flexibility to apply mixed-

precision quantization across different layers. Numerous previous works (Dong et al., 2019; Habi

et al., 2020; Hu et al., 2021; Qu et al., 2020; Wang et al., 2020b; Zhao et al., 2021b; Zhou et al.,

2018) have explored this direction to determine the optimal bit-width configuration for each layer

of a DNN model.

2.3 Lithography Mask Optimization

The continuous reduction in VLSI technology nodes has had a significant impact on the manu-

facturability of integrated circuits, primarily due to the notable lithography proximity effect (Pan

et al., 2013). This effect can lead to complications during the printing process. To overcome this

challenge and enhance the printability of lithography, resolution enhancement techniques (RETs)

are employed.

Among the various RETs, optical proximity correction (OPC) is widely utilized. OPC optimizes

the printability of masks by compensating for the diffraction effect that occurs during lithography.

OPC methods can be classified into the following categories:

• Rule-based OPC (Park et al., 2000),

• Model-based OPC (Kuang et al., 2015; Su et al., 2016; Matsunawa et al., 2015),

• Inverse lithography technique (ILT)-based OPC (Poonawala and Milanfar, 2007; Ma et al.,

2020; Yu et al., 2021), and

• Machine learning (ML)-based OPC (Yang et al., 2019; Jiang et al., 2019; Geng et al., 2019;

Chen et al., 2021).

Rule-based techniques present a heuristic approach to tackle the issue, providing a straightfor-

ward and efficient solution. However, their suitability is limited to less complex designs. In contrast,

model-based OPC techniques utilize mathematical models of the lithography process to precisely
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adjust the mask’s edge fractures, ensuring a high level of accuracy. Nonetheless, these methods en-

counter limitations in dealing with advanced technology nodes due to constraints within the solution

space. Conversely, ILT-based methods tackle the OPC problem by solving the inverse problem of

the imaging system, employing an optimized objective function. This approach represents the most

effective analytical method for addressing the OPC challenge. In recent years, the rapid progress

of machine learning algorithms and hardware has led to remarkable advancements in ML-based

OPCs, resulting in accelerated workflows and gaining recognition in the academic field of design

for manufacturing (DFM)(Wang et al., 2023; Pei et al., 2023b; Zhao et al., 2023). Notably, studies

like(Yang et al., 2019) have utilized deep learning models to generate initial masks, reducing the

required number of iterations for ILT. Additionally, (Jiang et al., 2020) employed a deep learning

model to simulate the conventional ILT correction process.

In general, the machine learning approaches in lithography mask optimization can be categorized

into two trends based on task definition: discriminative approaches and generative approaches. For

example, (Jiang et al., 2020) is the one of the discriminative methods that utilize machine learning

model to predict the mask printability, accelerating the OPC process with EPE prediction and edge

movement guidance. Another example of generative approaches is (Yang et al., 2019) that leverages

generative adversarial networks (GANs) to generate the desired mask for a given target pattern.

A proper initial mask pattern is generated to for OPC engine to avoid redundant iterations of

modification. Typically, learning-based approaches rely on a labeled dataset and undergo supervised

training using a loss function. However, it is important to acknowledge that machine learning models

have a significant drawback of being opaque, relying solely on data and lacking interpretability.

Consequently, these methods do not guarantee effectiveness for critical patterns. In conclusion,

there is no flawless or universally superior approach. Different approaches are necessary for patterns

of varying complexities.

As for lithography simulation, machine learning-based techniques also have been suggested for

simulating lithography. For example, (Watanabe et al., 2017) utilized a CNN to establish the func-

tion model for resist model simulation. Another study by (Ye et al., 2019) presented LithoGAN, a

GAN-based architecture that aims to transform input masks into output resist patterns. Further-

more, (Shao et al., 2020) introduced a two-stage DNN-based approach that treats the mask-to-SEM
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prediction as a domain transfer problem, using CycleGAN (Zhu et al., 2017) to model the transfer

process.
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Chapter 3

Domain Specific Sparse

Super-Resolution Acceleration

Domain Specific AI acceleration is one of the critical obstacles for AI application in Design Au-

tomation flow. Similar to Mask Optimization, Super-resolution (SR) techniques plays an important

role in the digital image era treats image as 2-D matrix, same way as OPC. The SR task aims at

generating or recovering high-resolution (HR) video frames given frames with low-resolution (LR).

This section proposes several specific techniques to tackle those mentioned challenges. Firstly,

we bring in an agile yet robust SR model compression strategy to reduce the size of large mod-

els with dense parameters and heavy computation. Structured pruning was utilized to delicately

select and slim down the SR dictionaries. Meanwhile, the strategy needs to reserve the most im-

portant dictionaries and remarkably accelerate some serial computation iterations with no accuracy

degradation.

Secondly, we also strive to achieve optimal hardware-level implementation of tensor operations

given the SR models and specific hardware resources. The GPU architecture is discussed in details.

Both memory/cache resources and computing power are considered constraints of inference efficiency.

Performance and number of feasible hardware implementations are restricted by these restrictions.

Some invalid and inefficient designs are dropped and a novel design space searching algorithm based
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on Bayesian optimization is proposed focusing on efficiently finding the optimal design parameters

in regard of these hardware limitations. As a result, we manage to reduce the communication cost

and further improve bandwidth usage. Last but not least, we re-organize the original large task into

many smaller sub-tasks and run these sub-tasks in parallel.

The main contributions of this section are listed as follows:

• We build a specifically designed engine to remarkably accelerate dictionary learning, especially

on extremely large data for the first time.

• We propose a model slimming strategy for SR dictionary queries, which greatly reduces compu-

tation and communication workloads from the large data frames and heavy dictionary-related

computation.

• We propose a targeted 8-bit adaptive quantization approach to further compress the SR model

and realize further acceleration.

• We analyze both resources- and workloads-aware constraints dedicated for GPUs to guide the

search for optimal hardware implementations.

• Our method achieves faster and real-time SR processing on edge embedded GPU NVIDIA

Jetson Xavier NX and server-level 2080Ti, in comparison with TensorRT.

3.1 Preliminaries

The primary goal of the Super-resolution algorithm is to generate a high-resolution (HR) image

by restoring the lost details from a low-resolution (LR) input. Over the past few decades, numer-

ous approaches have been put forward because the SR algorithm finds extensive utility in diverse

scenarios.

For a given pair of high-resolution and low-resolution images, the transformation process, as

depicted in Equation 3.1, establishes the corresponding relationship. The high-resolution image,

represented as a vector y ∈ RHWs2 , undergoes a down-sampling operation of scale s and is blurred

using a filter to yield the low-resolution counterpart x ∈ RHW . Here, W and H denote the width
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and height of the image, respectively.

x = SHy, (3.1)

Here, H ∈ RHWs2 represents a blurring operation (such as Gaussian Blurring), and S ∈ RHW ×

HWs2 denotes the down-sampling operation. The objective of super-resolution is essentially the in-

verse of this process: given a low-resolution x, the goal is to upscale and deblur it in order to restore

y. However, a major challenge arises due to the ill-posed nature of the transformation described

in Equation 3.1. This implies that a single low-resolution x may not correspond to a unique y,

potentially having multiple valid solutions. Consequently, solving this problem becomes notably dif-

ficult as a straightforward inverse transformation cannot be learned. Moreover, in certain real-world

scenarios, accessing high-resolution y data is not feasible. For instance, the low-resolution x may be

directly captured by a digital camera, or the high-resolution information could be permanently lost

during data communication. In such cases, deriving the reverse transformation becomes even more

challenging.

To tackle these challenges, certain earlier approaches have employed basic linear interpolation

methods such as bilinear and bicubic interpolations. While these methods appear simple and

straightforward, they inevitably overlook certain variations in content and local structures. Sub-

sequently, dictionary learning algorithms have been proposed to bridge the gap in mapping, effec-

tively capturing the numerical relationships between the high-resolution (HR) and low-resolution

(LR) spaces. Through training on the embedding and query process, the model acquires the ability

to map LR patches to HR patches. In this regard, HR patches are intuitively considered as spa-

tial combinations of LR patches, and the learning objective becomes the generation of combination

coefficients. In recent times, the performance of deep learning models has witnessed remarkable

advancements, leading to the emergence of various new methods. These methods excel in learning

dictionaries and combination coefficients, resulting in significant improvements in HR quality (Dai

et al., 2019; Huang et al., 2020; Wenbo et al., 2020).

The general processing flow of the deep dictionary learning-based SR model is presented as

follows: Firstly, the initial step involves vectorizing the input LR image, represented by x ∈ RHW ,

and segmenting it into patches of size k2. Next, an upsampled matrix denoted as B ∈ RHWs2×k2

is constructed, comprising HWs2 upsampled LR patches, each with a size of k2. Subsequently, a
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series of transformation operations are performed to convert the LR batches into HR batches. To

determine the i-th pixel, denoted as yi, within the HR image vector y ∈ RHWs2 , we employ a

process of integrating the neighboring pixels from the batch Bi (i.e., the i-th row of B), centered

around the coordinate of yi. This pixel-level operation can be mathematically expressed as shown

in Equation 3.2.

yi = FiB
⊤
i , with Fi = ΦiD, (3.2)

Here, the integration coefficient vector Fi ∈ R1×k2

, also referred to as a filter, plays a significant

role. Additionally, the filter Fi and the combination coefficient vector Φi ∈ R1×L can be collectively

considered as a linear combination of the fixed pre-defined dictionary D ∈ RL×k2

. While the

dictionary D remains unchanged during model inference, the primary objective is to compute the

coefficients Φi in real-time, satisfying the given requirements. As Equation (3.2) formulates the

pixel-level operation, image-level transformation is represented accordingly in Equation (3.3):

y = FB⊤, with F = ΦD, (3.3)

In this context, we introduce F ∈ RHWs2×k2

and Φ ∈ RHWs2×L. Previous works (Yang et al., 2012;

Romano et al., 2016; Getreuer et al., 2018) have explored the learning of the coefficient matrix Φ

and the dictionary D. To simplify the learning process, LAPAR (Wenbo et al., 2020) employs a

pre-defined D comprising a set of Gaussian (G) filters and difference of Gaussian (DoG) filters. This

choice of D helps expedite the learning process. The coefficient matrix Φ is obtained as the output

of a residual network (more details about the network will be discussed in Section 3.1.1).

Considering the communication patterns of Equation (3.3), Φ and B usually occupy much more

bandwidth than D, i.e.,

HWs2 × L + HWs2 × k2 ≫ L× k2. (3.4)

The computation patterns are strongly influenced by the dictionary D, which holds significant

importance. It determines the conditions under which computations are performed on the given

data in Φ and B. The dictionary serves as a crucial link and translator connecting Φ and B. Based

on the characteristics of D, certain unnecessary data, if they do not impact performance, can be

skipped from being loaded into the on-chip cache, leading to skipped computations. The unique role
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RB4
<latexit sha1_base64="5SmicT07VPIYe5i5TExiVnwrrww=">AAAB9HicbVDLSsNAFL2pr1pfVZdugkVwVRIp6LLUjcsq9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W4WNza3tneJuaW//4PCofHzS1lGiKGvRSESq6xPNBJeshRwF68aKkdAXrONPbjO/M2VK80g+4ixmXkhGkgecEjSS1w8JjjmmD435oDYoV5yqs4C9TtycVCBHc1D+6g8jmoRMIhVE657rxOilRCGngs1L/USzmNAJGbGeoZKETHvpIvTcvjDK0A4iZZ5Ee6H+3khJqPUs9M1kFlKvepn4n9dLMLjxUi7jBJmky0NBImyM7KwBe8gVoyhmhhCquMlq0zFRhKLpqWRKcFe/vE7aV1XXqbr3tUq9kddRhDM4h0tw4RrqcAdNaAGFJ3iGV3izptaL9W59LEcLVr5zCn9gff4Aop6R/g==</latexit><latexit sha1_base64="5SmicT07VPIYe5i5TExiVnwrrww=">AAAB9HicbVDLSsNAFL2pr1pfVZdugkVwVRIp6LLUjcsq9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W4WNza3tneJuaW//4PCofHzS1lGiKGvRSESq6xPNBJeshRwF68aKkdAXrONPbjO/M2VK80g+4ixmXkhGkgecEjSS1w8JjjmmD435oDYoV5yqs4C9TtycVCBHc1D+6g8jmoRMIhVE657rxOilRCGngs1L/USzmNAJGbGeoZKETHvpIvTcvjDK0A4iZZ5Ee6H+3khJqPUs9M1kFlKvepn4n9dLMLjxUi7jBJmky0NBImyM7KwBe8gVoyhmhhCquMlq0zFRhKLpqWRKcFe/vE7aV1XXqbr3tUq9kddRhDM4h0tw4RrqcAdNaAGFJ3iGV3izptaL9W59LEcLVr5zCn9gff4Aop6R/g==</latexit><latexit sha1_base64="5SmicT07VPIYe5i5TExiVnwrrww=">AAAB9HicbVDLSsNAFL2pr1pfVZdugkVwVRIp6LLUjcsq9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W4WNza3tneJuaW//4PCofHzS1lGiKGvRSESq6xPNBJeshRwF68aKkdAXrONPbjO/M2VK80g+4ixmXkhGkgecEjSS1w8JjjmmD435oDYoV5yqs4C9TtycVCBHc1D+6g8jmoRMIhVE657rxOilRCGngs1L/USzmNAJGbGeoZKETHvpIvTcvjDK0A4iZZ5Ee6H+3khJqPUs9M1kFlKvepn4n9dLMLjxUi7jBJmky0NBImyM7KwBe8gVoyhmhhCquMlq0zFRhKLpqWRKcFe/vE7aV1XXqbr3tUq9kddRhDM4h0tw4RrqcAdNaAGFJ3iGV3izptaL9W59LEcLVr5zCn9gff4Aop6R/g==</latexit><latexit sha1_base64="5SmicT07VPIYe5i5TExiVnwrrww=">AAAB9HicbVDLSsNAFL2pr1pfVZdugkVwVRIp6LLUjcsq9gFtKJPppB06mcSZm0IJ/Q43LhRx68e482+ctFlo64GBwzn3cs8cPxZco+N8W4WNza3tneJuaW//4PCofHzS1lGiKGvRSESq6xPNBJeshRwF68aKkdAXrONPbjO/M2VK80g+4ixmXkhGkgecEjSS1w8JjjmmD435oDYoV5yqs4C9TtycVCBHc1D+6g8jmoRMIhVE657rxOilRCGngs1L/USzmNAJGbGeoZKETHvpIvTcvjDK0A4iZZ5Ee6H+3khJqPUs9M1kFlKvepn4n9dLMLjxUi7jBJmky0NBImyM7KwBe8gVoyhmhhCquMlq0zFRhKLpqWRKcFe/vE7aV1XXqbr3tUq9kddRhDM4h0tw4RrqcAdNaAGFJ3iGV3izptaL9W59LEcLVr5zCn9gff4Aop6R/g==</latexit>

Fi =
PL

l=1 �i,lDl
<latexit sha1_base64="9f1psopmSxPUKNerBOpHxcyNdwM="></latexit><latexit sha1_base64="urwyYjqzgehEil08mt+4VwcHYL8="></latexit><latexit sha1_base64="urwyYjqzgehEil08mt+4VwcHYL8="></latexit><latexit sha1_base64="SLooKrEgUD35lr/3GEunc3sbB4I=">AAACJ3icbZDLSsNAFIYn9VbrLerSzWARXEhJ3OimUlTEhYsK9gJNDJPppB06mYSZiVBC3saNr+JGUBFd+iZOegFtPTDw8/3nMOf8fsyoVJb1ZRQWFpeWV4qrpbX1jc0tc3unKaNEYNLAEYtE20eSMMpJQ1HFSDsWBIU+Iy1/cJH7rQciJI34nRrGxA1Rj9OAYqQ08swzJ0Sq7wfpVeZRWIWOTEIvZVU7u7+BU8+p92nmpfQIsmzKLjVgmWeWrYo1Kjgv7Ikog0nVPfPV6UY4CQlXmCEpO7YVKzdFQlHMSFZyEklihAeoRzpachQS6aajOzN4oEkXBpHQjys4or8nUhRKOQx93ZlvKWe9HP7ndRIVnLop5XGiCMfjj4KEQRXBPDTYpYJgxYZaICyo3hXiPhIIKx1tSYdgz548L5rHFduq2Ld2uXY+iaMI9sA+OAQ2OAE1cA3qoAEweATP4A28G0/Gi/FhfI5bC8ZkZhf8KeP7B+s+ppk=</latexit>

D<latexit sha1_base64="MxUE1mFoVOJoTEsORhuG8fNf52Q=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiHjxWsLXYhrLZvrRLN5uwuxFK6L/w4kERr/4bb/4bN20O2jqwMMy8x86bIBFcG9f9dkorq2vrG+XNytb2zu5edf+greNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj69x/eEKleSzvzSRBP6JDyUPOqLHSYy+iZhSE2c20X625dXcGsky8gtSgQLNf/eoNYpZGKA0TVOuu5ybGz6gynAmcVnqpxoSyMR1i11JJI9R+Nks8JSdWGZAwVvZJQ2bq742MRlpPosBO5gn1opeL/3nd1ISXfsZlkhqUbP5RmApiYpKfTwZcITNiYgllitushI2ooszYkiq2BG/x5GXSPqt7bt27O681roo6ynAEx3AKHlxAA26hCS1gIOEZXuHN0c6L8+58zEdLTrFzCH/gfP4ArjWQ6A==</latexit><latexit sha1_base64="MxUE1mFoVOJoTEsORhuG8fNf52Q=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiHjxWsLXYhrLZvrRLN5uwuxFK6L/w4kERr/4bb/4bN20O2jqwMMy8x86bIBFcG9f9dkorq2vrG+XNytb2zu5edf+greNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj69x/eEKleSzvzSRBP6JDyUPOqLHSYy+iZhSE2c20X625dXcGsky8gtSgQLNf/eoNYpZGKA0TVOuu5ybGz6gynAmcVnqpxoSyMR1i11JJI9R+Nks8JSdWGZAwVvZJQ2bq742MRlpPosBO5gn1opeL/3nd1ISXfsZlkhqUbP5RmApiYpKfTwZcITNiYgllitushI2ooszYkiq2BG/x5GXSPqt7bt27O681roo6ynAEx3AKHlxAA26hCS1gIOEZXuHN0c6L8+58zEdLTrFzCH/gfP4ArjWQ6A==</latexit><latexit sha1_base64="MxUE1mFoVOJoTEsORhuG8fNf52Q=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiHjxWsLXYhrLZvrRLN5uwuxFK6L/w4kERr/4bb/4bN20O2jqwMMy8x86bIBFcG9f9dkorq2vrG+XNytb2zu5edf+greNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj69x/eEKleSzvzSRBP6JDyUPOqLHSYy+iZhSE2c20X625dXcGsky8gtSgQLNf/eoNYpZGKA0TVOuu5ybGz6gynAmcVnqpxoSyMR1i11JJI9R+Nks8JSdWGZAwVvZJQ2bq742MRlpPosBO5gn1opeL/3nd1ISXfsZlkhqUbP5RmApiYpKfTwZcITNiYgllitushI2ooszYkiq2BG/x5GXSPqt7bt27O681roo6ynAEx3AKHlxAA26hCS1gIOEZXuHN0c6L8+58zEdLTrFzCH/gfP4ArjWQ6A==</latexit><latexit sha1_base64="MxUE1mFoVOJoTEsORhuG8fNf52Q=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiHjxWsLXYhrLZvrRLN5uwuxFK6L/w4kERr/4bb/4bN20O2jqwMMy8x86bIBFcG9f9dkorq2vrG+XNytb2zu5edf+greNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj69x/eEKleSzvzSRBP6JDyUPOqLHSYy+iZhSE2c20X625dXcGsky8gtSgQLNf/eoNYpZGKA0TVOuu5ybGz6gynAmcVnqpxoSyMR1i11JJI9R+Nks8JSdWGZAwVvZJQ2bq742MRlpPosBO5gn1opeL/3nd1ISXfsZlkhqUbP5RmApiYpKfTwZcITNiYgllitushI2ooszYkiq2BG/x5GXSPqt7bt27O681roo6ynAEx3AKHlxAA26hCS1gIOEZXuHN0c6L8+58zEdLTrFzCH/gfP4ArjWQ6A==</latexit>

Conv.

Conv.PixelShuf.

Dictionary

LR� x
<latexit sha1_base64="HmKduvyrVG4WyNfAZ9Vd0BmU2LA=">AAACAXicbVDLSsNAFL3xWesr6kZwM1gEN5ZEBF0W3bhwUcU+oA1lMp20QyeTMDMRS6gbf8WNC0Xc+hfu/BsnbQRtPTBw5px7ufceP+ZMacf5submFxaXlgsrxdW19Y1Ne2u7rqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJH5jTsqFYvErR7G1AtxT7CAEayN1LF32yHWfT9Ir25G6Aj9/O5HHbvklJ0x0Cxxc1KCHNWO/dnuRiQJqdCEY6VarhNrL8VSM8LpqNhOFI0xGeAebRkqcEiVl44vGKEDo3RREEnzhEZj9XdHikOlhqFvKrMN1bSXif95rUQHZ17KRJxoKshkUJBwpCOUxYG6TFKi+dAQTCQzuyLSxxITbUIrmhDc6ZNnSf247Dpl9/qkVDnP4yjAHuzDIbhwChW4hCrUgMADPMELvFqP1rP1Zr1PSuesvGcH/sD6+AYdSZaq</latexit><latexit sha1_base64="HmKduvyrVG4WyNfAZ9Vd0BmU2LA=">AAACAXicbVDLSsNAFL3xWesr6kZwM1gEN5ZEBF0W3bhwUcU+oA1lMp20QyeTMDMRS6gbf8WNC0Xc+hfu/BsnbQRtPTBw5px7ufceP+ZMacf5submFxaXlgsrxdW19Y1Ne2u7rqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJH5jTsqFYvErR7G1AtxT7CAEayN1LF32yHWfT9Ir25G6Aj9/O5HHbvklJ0x0Cxxc1KCHNWO/dnuRiQJqdCEY6VarhNrL8VSM8LpqNhOFI0xGeAebRkqcEiVl44vGKEDo3RREEnzhEZj9XdHikOlhqFvKrMN1bSXif95rUQHZ17KRJxoKshkUJBwpCOUxYG6TFKi+dAQTCQzuyLSxxITbUIrmhDc6ZNnSf247Dpl9/qkVDnP4yjAHuzDIbhwChW4hCrUgMADPMELvFqP1rP1Zr1PSuesvGcH/sD6+AYdSZaq</latexit><latexit sha1_base64="HmKduvyrVG4WyNfAZ9Vd0BmU2LA=">AAACAXicbVDLSsNAFL3xWesr6kZwM1gEN5ZEBF0W3bhwUcU+oA1lMp20QyeTMDMRS6gbf8WNC0Xc+hfu/BsnbQRtPTBw5px7ufceP+ZMacf5submFxaXlgsrxdW19Y1Ne2u7rqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJH5jTsqFYvErR7G1AtxT7CAEayN1LF32yHWfT9Ir25G6Aj9/O5HHbvklJ0x0Cxxc1KCHNWO/dnuRiQJqdCEY6VarhNrL8VSM8LpqNhOFI0xGeAebRkqcEiVl44vGKEDo3RREEnzhEZj9XdHikOlhqFvKrMN1bSXif95rUQHZ17KRJxoKshkUJBwpCOUxYG6TFKi+dAQTCQzuyLSxxITbUIrmhDc6ZNnSf247Dpl9/qkVDnP4yjAHuzDIbhwChW4hCrUgMADPMELvFqP1rP1Zr1PSuesvGcH/sD6+AYdSZaq</latexit><latexit sha1_base64="HmKduvyrVG4WyNfAZ9Vd0BmU2LA=">AAACAXicbVDLSsNAFL3xWesr6kZwM1gEN5ZEBF0W3bhwUcU+oA1lMp20QyeTMDMRS6gbf8WNC0Xc+hfu/BsnbQRtPTBw5px7ufceP+ZMacf5submFxaXlgsrxdW19Y1Ne2u7rqJEElojEY9k08eKciZoTTPNaTOWFIc+pw1/cJH5jTsqFYvErR7G1AtxT7CAEayN1LF32yHWfT9Ir25G6Aj9/O5HHbvklJ0x0Cxxc1KCHNWO/dnuRiQJqdCEY6VarhNrL8VSM8LpqNhOFI0xGeAebRkqcEiVl44vGKEDo3RREEnzhEZj9XdHikOlhqFvKrMN1bSXif95rUQHZ17KRJxoKshkUJBwpCOUxYG6TFKi+dAQTCQzuyLSxxITbUIrmhDc6ZNnSf247Dpl9/qkVDnP4yjAHuzDIbhwChW4hCrUgMADPMELvFqP1rP1Zr1PSuesvGcH/sD6+AYdSZaq</latexit>

LFB1
<latexit sha1_base64="C+m9ff5WfkY+e9JeYYKHDusOSsY=">AAAB9XicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkqiAsXFewD2lgm00k7dDIJMzdKCf0PNy4Uceu/uPNvnLRZaOuBgcM593LPHD8WXKPjfFuFldW19Y3iZmlre2d3r7x/0NJRoihr0khEquMTzQSXrIkcBevEipHQF6ztj68yv/3IlOaRvMdJzLyQDCUPOCVopIdeSHDEMb29rk/7br9ccarODPYycXNSgRyNfvmrN4hoEjKJVBCtu64To5cShZwKNi31Es1iQsdkyLqGShIy7aWz1FP7xCgDO4iUeRLtmfp7IyWh1pPQN5NZSr3oZeJ/XjfB4NJLuYwTZJLODwWJsDGyswrsAVeMopgYQqjiJqtNR0QRiqaokinBXfzyMmmdVV2n6t6dV2r1vI4iHMExnIILF1CDG2hAEygoeIZXeLOerBfr3fqYjxasfOcQ/sD6/AEox5JF</latexit><latexit sha1_base64="C+m9ff5WfkY+e9JeYYKHDusOSsY=">AAAB9XicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkqiAsXFewD2lgm00k7dDIJMzdKCf0PNy4Uceu/uPNvnLRZaOuBgcM593LPHD8WXKPjfFuFldW19Y3iZmlre2d3r7x/0NJRoihr0khEquMTzQSXrIkcBevEipHQF6ztj68yv/3IlOaRvMdJzLyQDCUPOCVopIdeSHDEMb29rk/7br9ccarODPYycXNSgRyNfvmrN4hoEjKJVBCtu64To5cShZwKNi31Es1iQsdkyLqGShIy7aWz1FP7xCgDO4iUeRLtmfp7IyWh1pPQN5NZSr3oZeJ/XjfB4NJLuYwTZJLODwWJsDGyswrsAVeMopgYQqjiJqtNR0QRiqaokinBXfzyMmmdVV2n6t6dV2r1vI4iHMExnIILF1CDG2hAEygoeIZXeLOerBfr3fqYjxasfOcQ/sD6/AEox5JF</latexit><latexit sha1_base64="C+m9ff5WfkY+e9JeYYKHDusOSsY=">AAAB9XicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkqiAsXFewD2lgm00k7dDIJMzdKCf0PNy4Uceu/uPNvnLRZaOuBgcM593LPHD8WXKPjfFuFldW19Y3iZmlre2d3r7x/0NJRoihr0khEquMTzQSXrIkcBevEipHQF6ztj68yv/3IlOaRvMdJzLyQDCUPOCVopIdeSHDEMb29rk/7br9ccarODPYycXNSgRyNfvmrN4hoEjKJVBCtu64To5cShZwKNi31Es1iQsdkyLqGShIy7aWz1FP7xCgDO4iUeRLtmfp7IyWh1pPQN5NZSr3oZeJ/XjfB4NJLuYwTZJLODwWJsDGyswrsAVeMopgYQqjiJqtNR0QRiqaokinBXfzyMmmdVV2n6t6dV2r1vI4iHMExnIILF1CDG2hAEygoeIZXeLOerBfr3fqYjxasfOcQ/sD6/AEox5JF</latexit><latexit sha1_base64="C+m9ff5WfkY+e9JeYYKHDusOSsY=">AAAB9XicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFkqiAsXFewD2lgm00k7dDIJMzdKCf0PNy4Uceu/uPNvnLRZaOuBgcM593LPHD8WXKPjfFuFldW19Y3iZmlre2d3r7x/0NJRoihr0khEquMTzQSXrIkcBevEipHQF6ztj68yv/3IlOaRvMdJzLyQDCUPOCVopIdeSHDEMb29rk/7br9ccarODPYycXNSgRyNfvmrN4hoEjKJVBCtu64To5cShZwKNi31Es1iQsdkyLqGShIy7aWz1FP7xCgDO4iUeRLtmfp7IyWh1pPQN5NZSr3oZeJ/XjfB4NJLuYwTZJLODwWJsDGyswrsAVeMopgYQqjiJqtNR0QRiqaokinBXfzyMmmdVV2n6t6dV2r1vI4iHMExnIILF1CDG2hAEygoeIZXeLOerBfr3fqYjxasfOcQ/sD6/AEox5JF</latexit>

LFBM
<latexit sha1_base64="oowtRPJCZBlBZxVtI8NhqU9mpLM=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMcQQTwoRDAPSNYwO5lNhsw+mOlVwpL/8OJBEa/+izf/xtlkDxotGCiquuma8mIpNNr2l1VYWl5ZXSuulzY2t7Z3yrt7LR0livEmi2SkOh7VXIqQN1Gg5J1YcRp4kre98UXmtx+40iIK73ASczegw1D4glE00n0voDgSmF5f1qf9m365YlftGchf4uSkAjka/fJnbxCxJOAhMkm17jp2jG5KFQom+bTUSzSPKRvTIe8aGtKAazedpZ6SI6MMiB8p80IkM/XnRkoDrSeBZyazlHrRy8T/vG6C/rmbijBOkIdsfshPJMGIZBWQgVCcoZwYQpkSJithI6ooQ1NUyZTgLH75L2mdVB276tyeVmr1vI4iHMAhHIMDZ1CDK2hAExgoeIIXeLUerWfrzXqfjxasfGcffsH6+AZTN5Jh</latexit><latexit sha1_base64="oowtRPJCZBlBZxVtI8NhqU9mpLM=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMcQQTwoRDAPSNYwO5lNhsw+mOlVwpL/8OJBEa/+izf/xtlkDxotGCiquuma8mIpNNr2l1VYWl5ZXSuulzY2t7Z3yrt7LR0livEmi2SkOh7VXIqQN1Gg5J1YcRp4kre98UXmtx+40iIK73ASczegw1D4glE00n0voDgSmF5f1qf9m365YlftGchf4uSkAjka/fJnbxCxJOAhMkm17jp2jG5KFQom+bTUSzSPKRvTIe8aGtKAazedpZ6SI6MMiB8p80IkM/XnRkoDrSeBZyazlHrRy8T/vG6C/rmbijBOkIdsfshPJMGIZBWQgVCcoZwYQpkSJithI6ooQ1NUyZTgLH75L2mdVB276tyeVmr1vI4iHMAhHIMDZ1CDK2hAExgoeIIXeLUerWfrzXqfjxasfGcffsH6+AZTN5Jh</latexit><latexit sha1_base64="oowtRPJCZBlBZxVtI8NhqU9mpLM=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMcQQTwoRDAPSNYwO5lNhsw+mOlVwpL/8OJBEa/+izf/xtlkDxotGCiquuma8mIpNNr2l1VYWl5ZXSuulzY2t7Z3yrt7LR0livEmi2SkOh7VXIqQN1Gg5J1YcRp4kre98UXmtx+40iIK73ASczegw1D4glE00n0voDgSmF5f1qf9m365YlftGchf4uSkAjka/fJnbxCxJOAhMkm17jp2jG5KFQom+bTUSzSPKRvTIe8aGtKAazedpZ6SI6MMiB8p80IkM/XnRkoDrSeBZyazlHrRy8T/vG6C/rmbijBOkIdsfshPJMGIZBWQgVCcoZwYQpkSJithI6ooQ1NUyZTgLH75L2mdVB276tyeVmr1vI4iHMAhHIMDZ1CDK2hAExgoeIIXeLUerWfrzXqfjxasfGcffsH6+AZTN5Jh</latexit><latexit sha1_base64="oowtRPJCZBlBZxVtI8NhqU9mpLM=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMcQQTwoRDAPSNYwO5lNhsw+mOlVwpL/8OJBEa/+izf/xtlkDxotGCiquuma8mIpNNr2l1VYWl5ZXSuulzY2t7Z3yrt7LR0livEmi2SkOh7VXIqQN1Gg5J1YcRp4kre98UXmtx+40iIK73ASczegw1D4glE00n0voDgSmF5f1qf9m365YlftGchf4uSkAjka/fJnbxCxJOAhMkm17jp2jG5KFQom+bTUSzSPKRvTIe8aGtKAazedpZ6SI6MMiB8p80IkM/XnRkoDrSeBZyazlHrRy8T/vG6C/rmbijBOkIdsfshPJMGIZBWQgVCcoZwYQpkSJithI6ooQ1NUyZTgLH75L2mdVB276tyeVmr1vI4iHMAhHIMDZ1CDK2hAExgoeIIXeLUerWfrzXqfjxasfGcffsH6+AZTN5Jh</latexit>

�
<latexit sha1_base64="UCqTCNN4aY7A9FBgoXfn3UfiULs=">AAAB9HicbVDLSsNAFL3xWeur6tLNYBFclUQEXRbduKxgH9CGMplO2qGTSZy5KZTQ73DjQhG3fow7/8ZJm4W2Hhg4nHMv98wJEikMuu63s7a+sbm1Xdop7+7tHxxWjo5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4PxXe63J1wbEatHnCbcj+hQiVAwilbyexHFURBmvcZIzPqVqltz5yCrxCtIFQo0+pWv3iBmacQVMkmN6Xpugn5GNQom+azcSw1PKBvTIe9aqmjEjZ/NQ8/IuVUGJIy1fQrJXP29kdHImGkU2Mk8pFn2cvE/r5tieONnQiUpcsUWh8JUEoxJ3gAZCM0ZyqkllGlhsxI2opoytD2VbQne8pdXSeuy5rk17+GqWr8t6ijBKZzBBXhwDXW4hwY0gcETPMMrvDkT58V5dz4Wo2tOsXMCf+B8/gAE3pI/</latexit><latexit sha1_base64="UCqTCNN4aY7A9FBgoXfn3UfiULs=">AAAB9HicbVDLSsNAFL3xWeur6tLNYBFclUQEXRbduKxgH9CGMplO2qGTSZy5KZTQ73DjQhG3fow7/8ZJm4W2Hhg4nHMv98wJEikMuu63s7a+sbm1Xdop7+7tHxxWjo5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4PxXe63J1wbEatHnCbcj+hQiVAwilbyexHFURBmvcZIzPqVqltz5yCrxCtIFQo0+pWv3iBmacQVMkmN6Xpugn5GNQom+azcSw1PKBvTIe9aqmjEjZ/NQ8/IuVUGJIy1fQrJXP29kdHImGkU2Mk8pFn2cvE/r5tieONnQiUpcsUWh8JUEoxJ3gAZCM0ZyqkllGlhsxI2opoytD2VbQne8pdXSeuy5rk17+GqWr8t6ijBKZzBBXhwDXW4hwY0gcETPMMrvDkT58V5dz4Wo2tOsXMCf+B8/gAE3pI/</latexit><latexit sha1_base64="UCqTCNN4aY7A9FBgoXfn3UfiULs=">AAAB9HicbVDLSsNAFL3xWeur6tLNYBFclUQEXRbduKxgH9CGMplO2qGTSZy5KZTQ73DjQhG3fow7/8ZJm4W2Hhg4nHMv98wJEikMuu63s7a+sbm1Xdop7+7tHxxWjo5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4PxXe63J1wbEatHnCbcj+hQiVAwilbyexHFURBmvcZIzPqVqltz5yCrxCtIFQo0+pWv3iBmacQVMkmN6Xpugn5GNQom+azcSw1PKBvTIe9aqmjEjZ/NQ8/IuVUGJIy1fQrJXP29kdHImGkU2Mk8pFn2cvE/r5tieONnQiUpcsUWh8JUEoxJ3gAZCM0ZyqkllGlhsxI2opoytD2VbQne8pdXSeuy5rk17+GqWr8t6ijBKZzBBXhwDXW4hwY0gcETPMMrvDkT58V5dz4Wo2tOsXMCf+B8/gAE3pI/</latexit><latexit sha1_base64="UCqTCNN4aY7A9FBgoXfn3UfiULs=">AAAB9HicbVDLSsNAFL3xWeur6tLNYBFclUQEXRbduKxgH9CGMplO2qGTSZy5KZTQ73DjQhG3fow7/8ZJm4W2Hhg4nHMv98wJEikMuu63s7a+sbm1Xdop7+7tHxxWjo5bJk41400Wy1h3Amq4FIo3UaDknURzGgWSt4PxXe63J1wbEatHnCbcj+hQiVAwilbyexHFURBmvcZIzPqVqltz5yCrxCtIFQo0+pWv3iBmacQVMkmN6Xpugn5GNQom+azcSw1PKBvTIe9aqmjEjZ/NQ8/IuVUGJIy1fQrJXP29kdHImGkU2Mk8pFn2cvE/r5tieONnQiUpcsUWh8JUEoxJ3gAZCM0ZyqkllGlhsxI2opoytD2VbQne8pdXSeuy5rk17+GqWr8t6ijBKZzBBXhwDXW4hwY0gcETPMMrvDkT58V5dz4Wo2tOsXMCf+B8/gAE3pI/</latexit>

F
<latexit sha1_base64="mWl4I9IyYDBVEQx+i95tO5m/lLs=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiIB4r2FpsQ9lsX9qlm03Y3Qgl9F948aCIV/+NN/+NmzYHbR1YGGbeY+dNkAiujet+O6WV1bX1jfJmZWt7Z3evun/Q1nGqGLZYLGLVCahGwSW2DDcCO4lCGgUCH4Lxde4/PKHSPJb3ZpKgH9Gh5CFn1FjpsRdRMwrC7Gbar9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/myWekhOrDEgYK/ukITP190ZGI60nUWAn84R60cvF/7xuasJLP+MySQ1KNv8oTAUxMcnPJwOukBkxsYQyxW1WwkZUUWZsSRVbgrd48jJpn9U9t+7dndcaV0UdZTiCYzgFDy6gAbfQhBYwkPAMr/DmaOfFeXc+5qMlp9g5hD9wPn8AsT+Q6g==</latexit><latexit sha1_base64="mWl4I9IyYDBVEQx+i95tO5m/lLs=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiIB4r2FpsQ9lsX9qlm03Y3Qgl9F948aCIV/+NN/+NmzYHbR1YGGbeY+dNkAiujet+O6WV1bX1jfJmZWt7Z3evun/Q1nGqGLZYLGLVCahGwSW2DDcCO4lCGgUCH4Lxde4/PKHSPJb3ZpKgH9Gh5CFn1FjpsRdRMwrC7Gbar9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/myWekhOrDEgYK/ukITP190ZGI60nUWAn84R60cvF/7xuasJLP+MySQ1KNv8oTAUxMcnPJwOukBkxsYQyxW1WwkZUUWZsSRVbgrd48jJpn9U9t+7dndcaV0UdZTiCYzgFDy6gAbfQhBYwkPAMr/DmaOfFeXc+5qMlp9g5hD9wPn8AsT+Q6g==</latexit><latexit sha1_base64="mWl4I9IyYDBVEQx+i95tO5m/lLs=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiIB4r2FpsQ9lsX9qlm03Y3Qgl9F948aCIV/+NN/+NmzYHbR1YGGbeY+dNkAiujet+O6WV1bX1jfJmZWt7Z3evun/Q1nGqGLZYLGLVCahGwSW2DDcCO4lCGgUCH4Lxde4/PKHSPJb3ZpKgH9Gh5CFn1FjpsRdRMwrC7Gbar9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/myWekhOrDEgYK/ukITP190ZGI60nUWAn84R60cvF/7xuasJLP+MySQ1KNv8oTAUxMcnPJwOukBkxsYQyxW1WwkZUUWZsSRVbgrd48jJpn9U9t+7dndcaV0UdZTiCYzgFDy6gAbfQhBYwkPAMr/DmaOfFeXc+5qMlp9g5hD9wPn8AsT+Q6g==</latexit><latexit sha1_base64="mWl4I9IyYDBVEQx+i95tO5m/lLs=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiIB4r2FpsQ9lsX9qlm03Y3Qgl9F948aCIV/+NN/+NmzYHbR1YGGbeY+dNkAiujet+O6WV1bX1jfJmZWt7Z3evun/Q1nGqGLZYLGLVCahGwSW2DDcCO4lCGgUCH4Lxde4/PKHSPJb3ZpKgH9Gh5CFn1FjpsRdRMwrC7Gbar9bcujsDWSZeQWpQoNmvfvUGMUsjlIYJqnXXcxPjZ1QZzgROK71UY0LZmA6xa6mkEWo/myWekhOrDEgYK/ukITP190ZGI60nUWAn84R60cvF/7xuasJLP+MySQ1KNv8oTAUxMcnPJwOukBkxsYQyxW1WwkZUUWZsSRVbgrd48jJpn9U9t+7dndcaV0UdZTiCYzgFDy6gAbfQhBYwkPAMr/DmaOfFeXc+5qMlp9g5hD9wPn8AsT+Q6g==</latexit>

i
<latexit sha1_base64="9jtkmSnVkzQh6f031uh1XGFh3yI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/PfYzt</latexit><latexit sha1_base64="9jtkmSnVkzQh6f031uh1XGFh3yI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/PfYzt</latexit><latexit sha1_base64="9jtkmSnVkzQh6f031uh1XGFh3yI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/PfYzt</latexit><latexit sha1_base64="9jtkmSnVkzQh6f031uh1XGFh3yI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/PfYzt</latexit>

j
<latexit sha1_base64="ocTLVc574NOAe/DoMycp9A9e/3g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3bbzSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPJ/dxvP6HSPJaPZpqgH9Gh5CFn1FipMe6XK27VXYCsEy8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAmelXqoxoWxCh9i1VNIItZ8tDp2RC6sMSBgrW9KQhfp7IqOR1tMosJ0RNSO96s3F/7xuasJbP+MySQ1KtlwUpoKYmMy/JgOukBkxtYQyxe2thI2ooszYbEo2BG/15XXSuqp6btVrXFdqd3kcRTiDc7gED26gBg9QhyYwQHiGV3hzxs6L8+58LFsLTj5zCn/gfP4A0QGM7g==</latexit><latexit sha1_base64="ocTLVc574NOAe/DoMycp9A9e/3g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3bbzSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPJ/dxvP6HSPJaPZpqgH9Gh5CFn1FipMe6XK27VXYCsEy8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAmelXqoxoWxCh9i1VNIItZ8tDp2RC6sMSBgrW9KQhfp7IqOR1tMosJ0RNSO96s3F/7xuasJbP+MySQ1KtlwUpoKYmMy/JgOukBkxtYQyxe2thI2ooszYbEo2BG/15XXSuqp6btVrXFdqd3kcRTiDc7gED26gBg9QhyYwQHiGV3hzxs6L8+58LFsLTj5zCn/gfP4A0QGM7g==</latexit><latexit sha1_base64="ocTLVc574NOAe/DoMycp9A9e/3g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3bbzSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPJ/dxvP6HSPJaPZpqgH9Gh5CFn1FipMe6XK27VXYCsEy8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAmelXqoxoWxCh9i1VNIItZ8tDp2RC6sMSBgrW9KQhfp7IqOR1tMosJ0RNSO96s3F/7xuasJbP+MySQ1KtlwUpoKYmMy/JgOukBkxtYQyxe2thI2ooszYbEo2BG/15XXSuqp6btVrXFdqd3kcRTiDc7gED26gBg9QhyYwQHiGV3hzxs6L8+58LFsLTj5zCn/gfP4A0QGM7g==</latexit><latexit sha1_base64="ocTLVc574NOAe/DoMycp9A9e/3g=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3bbzSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPJ/dxvP6HSPJaPZpqgH9Gh5CFn1FipMe6XK27VXYCsEy8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAmelXqoxoWxCh9i1VNIItZ8tDp2RC6sMSBgrW9KQhfp7IqOR1tMosJ0RNSO96s3F/7xuasJbP+MySQ1KtlwUpoKYmMy/JgOukBkxtYQyxe2thI2ooszYbEo2BG/15XXSuqp6btVrXFdqd3kcRTiDc7gED26gBg9QhyYwQHiGV3hzxs6L8+58LFsLTj5zCn/gfP4A0QGM7g==</latexit>

Fi
<latexit sha1_base64="zdrhgxAK6FJJUm0+BlDRskUG4I4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LIoiMsK9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2yy09cDA4Zx7uWdOmEph0HW/ndLa+sbmVnm7srO7t39QPTxqmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gnHtzO/88S1EYl6xEnKg5gOlYgEo2gl348pjsIov5v2Rb9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnyeeUrOrDIgUaLtU0jm6u+NnMbGTOLQTs4ymmVvJv7n9TKMroNcqDRDrtjiUJRJggmZFUAGQnOGcmIJZVrYrISNqKYMbU0VW4K3/OVV0r6oe27de7isNW6KOspwAqdwDh5cQQPuoQktYJDCM7zCm5M5L86787EYLTnFzjH8gfP5AzLikcY=</latexit><latexit sha1_base64="zdrhgxAK6FJJUm0+BlDRskUG4I4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LIoiMsK9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2yy09cDA4Zx7uWdOmEph0HW/ndLa+sbmVnm7srO7t39QPTxqmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gnHtzO/88S1EYl6xEnKg5gOlYgEo2gl348pjsIov5v2Rb9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnyeeUrOrDIgUaLtU0jm6u+NnMbGTOLQTs4ymmVvJv7n9TKMroNcqDRDrtjiUJRJggmZFUAGQnOGcmIJZVrYrISNqKYMbU0VW4K3/OVV0r6oe27de7isNW6KOspwAqdwDh5cQQPuoQktYJDCM7zCm5M5L86787EYLTnFzjH8gfP5AzLikcY=</latexit><latexit sha1_base64="zdrhgxAK6FJJUm0+BlDRskUG4I4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LIoiMsK9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2yy09cDA4Zx7uWdOmEph0HW/ndLa+sbmVnm7srO7t39QPTxqmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gnHtzO/88S1EYl6xEnKg5gOlYgEo2gl348pjsIov5v2Rb9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnyeeUrOrDIgUaLtU0jm6u+NnMbGTOLQTs4ymmVvJv7n9TKMroNcqDRDrtjiUJRJggmZFUAGQnOGcmIJZVrYrISNqKYMbU0VW4K3/OVV0r6oe27de7isNW6KOspwAqdwDh5cQQPuoQktYJDCM7zCm5M5L86787EYLTnFzjH8gfP5AzLikcY=</latexit><latexit sha1_base64="zdrhgxAK6FJJUm0+BlDRskUG4I4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LIoiMsK9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2yy09cDA4Zx7uWdOmEph0HW/ndLa+sbmVnm7srO7t39QPTxqmyTTjLdYIhPdDanhUijeQoGSd1PNaRxK3gnHtzO/88S1EYl6xEnKg5gOlYgEo2gl348pjsIov5v2Rb9ac+vuHGSVeAWpQYFmv/rlDxKWxVwhk9SYnuemGORUo2CSTyt+ZnhK2ZgOec9SRWNugnyeeUrOrDIgUaLtU0jm6u+NnMbGTOLQTs4ymmVvJv7n9TKMroNcqDRDrtjiUJRJggmZFUAGQnOGcmIJZVrYrISNqKYMbU0VW4K3/OVV0r6oe27de7isNW6KOspwAqdwDh5cQQPuoQktYJDCM7zCm5M5L86787EYLTnFzjH8gfP5AzLikcY=</latexit>

Fj
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Figure 3.1: The architecture of linearly-assembled pixel-adaptive regression network (LAPAR)
(Wenbo et al., 2020)

of D in dictionary learning sets it apart from conventional deep learning algorithms, as it considers

more than just weights and features. Once the dictionary is optimized, it enables simultaneous

resolution of both communication and computation bottlenecks.

3.1.1 SR Model Architecture

By convention, dictionary learning-based models comprise layers of residual blocks, followed by

convolutions, pixel-shuffle operations, and the most important dictionary assembling, and etc.

To illustrate the model structure and inference flow, we use LAPAR (Wenbo et al., 2020), the

state-of-the-art SR model, as an example. The inference flow consists of four stages, as depicted

in Figure 3.1. In the initial stage, the input image x undergoes bicubic interpolation to upscale

it, resulting in the patch matrix B. Next, the LaparNet model takes x as input and produces the

coefficient matrix Φ as output. The LaparNet model comprises several local fusion blocks (LFBs)

(Wang et al., 2019a), pixel-shuffle layers, and convolution layers. Each LFB consists of residual

blocks, followed by concatenations, multiplications, and short-cut additions. In the third stage,

the dictionary assembling is performed to obtain the transformation matrix F . This is achieved by

querying the pre-defined dictionary D with Φ. Finally, in the last stage, the HR image y is obtained
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by filtering the up-sampled B with F , i.e., y = FB⊤. To efficiently deploy SR models on GPUs, it

is crucial to analyze the dictionary learning module in detail, which has been overlooked in previous

research.

3.1.2 GPU Programming Architecture

NVIDIA provides a well-designed high-level abstraction of their GPU architecture as shown in Fig-

ure 3.2, which enables the software engineers or algorithm designers to access hardware resources and

write easy and convenient low-level hardware implementations. Streaming multiprocessors (SMs)

are key computation modules within GPU hardware architecture. Each SM has independent shared

memory units, control logic, several processing blocks, and etc. Within each SM, each single pro-

cessing block is composed of a batch of computation cores (CUDA cores, Tensor Cores, and etc.),

register files, load/store units, and etc.

NVIDIA provides CUDA programming model (Cheng et al., 2014) in order to help implement

computation tasks with parallelism on GPU. The programming model is designed as follows: A host

device (CPU) is included to control the data movement or execution of CUDA kernels. Kernels will

be launched and run on a device (GPU) to realize a parallel computation, as shown in Figure 3.2.

Each kernel will be launched with a computation grid, and multiple blocks will be assigned to each

cell of the grid. Following the single instruction multiple threads (SIMT) mechanism, each block is

further partitioned into a group of threads. Each thread runs the same piece of code with different

data synchronously. Each kernel will launch all threads to execute the same code piece at once after

the program is compiled. Meanwhile, different thread blocks may execute in order, given hardware

resource constraints.

3.1.3 Low Precision Inference

Currently, the dominant data format in most Deep Learning applications is 32-bit single-precision

floating-point. To mitigate model inference latency while maintaining high throughput, quantization

is employed. This technique allows for the utilization of integer instructions or lower bit data

formats, resulting in reduced inference time without substantial accuracy loss. A study conducted

by (Wu et al., 2020) demonstrated that on NVIDIA GPUs, tensor operators that involve intensive
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Figure 3.2: GPU memory hierarchy and communication mode.

mathematical computations can achieve a speed-up of 16 times when using 8-bit signed integer data

format instead of FP32. Similarly, tensor operators that primarily rely on memory operations can

experience a speed-up of up to 4 times.

Several post-training quantization (PTQ) methods have been introduced to safely quantize mod-

els to 8-bit without requiring retraining. In a data-free approach, (Nagel et al., 2019) successfully

implemented 8-bit quantization. To address the quantization challenge, (Nagel et al., 2020) pro-

posed a layer-wise calibration strategy that minimizes the Hessian of the task loss. An analytical

solution for quantization clipping range selection was put forth by (Banner et al., 2019). In addition,

previous studies have pushed the boundaries of quantization to extremely low-bit formats, such as

ternary (2-bit) or even binary (1-bit) data formats, as explored by researchers (Courbariaux et al.,

2014; Han et al., 2015a; Mellempudi et al., 2017; Courbariaux et al., 2015; Hubara et al., 2016).

Scale quantization, also known as symmetric quantization, is an efficient approach with good

support of GPU hardware support. Each floating-point parameter is transformed into an 8-bit

integer with a range mapping:

s =
ϵ

2b−1 − 1
, (3.5)
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x̂ = clip(round(
x

s
),−2b−1 + 1, 2b−1 − 1). (3.6)

Let us consider the variables x as the original floating-point number and x̂ as the quantized integer.

The quantization process, as depicted in Equation 3.6, can be understood as a sequence of three

steps: scaling, rounding, and clipping. Initially, the floating-point value x is multiplied by a scaling

factor s and then rounded to the nearest neighboring integer. Subsequently, this integer is clipped

within the range [−2b−1 + 1, 2b−1 − 1] to ensure it falls within the representative range of an 8-bit

value. In the case of 8-bit signed integer, the range is [−127, 127]. The corresponding clipping

range in floating point value is [−ϵ, ϵ] and scaling factor s is calculated by Equation (3.5). For

multiplication of 2 tensors A and B with scale factors sA and sB, the quantized computation can

be simply conducted as:

A ·B = Â · B̂ · sA · sB (3.7)

3.1.4 Dictionary Slimming

The LAPAR algorithm, known for its exceptional performance in lightweight super-resolution (SR)

tasks, has demonstrated state-of-the-art capabilities even with a compact model size (number of

parameters ¡1M) (Wenbo et al., 2020). Despite its lightweight architecture, the LAPAR algorithm

still falls short of meeting the real-time inference requirements, even when leveraging the powerful

NVIDIA TensorRT (GPU, [n. d.]). In the context of SR tasks, the inference speed is primarily

influenced by the large spatial scale of feature maps rather than the number of parameters. This is

illustrated in the breakdown of running time presented in Figure ??. Figure ?? clearly highlights

that the dictionary learning process serves as the bottleneck, accounting for the largest percentage

of time cost. This can be attributed to the lack of customized support in existing commercial tools

for certain specialized operations or extreme-scale feature maps. These tools typically offer efficient

and reliable implementations for common deep neural network (DNN) layers such as convolution,

rectified linear unit (ReLU), and batch normalization (BN). As a result, certain computation graphs

may experience significant time costs due to the absence of tailored optimization for these operations.

Slimming and reducing the size of the dictionary not only helps in saving computation costs but

also alleviates the communication burden on hardware resources. To compress the dictionary, we
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propose a dictionary slimming strategy. Ideally, the dictionary D should be informative enough to

provide ample embedding data for restoring image details. However, we also aim to avoid excessive

bulkiness and redundant information in the dictionary D. By slimming the dictionary, we can

achieve the desired outcome of performing inference under stringent speed requirements without

significant accuracy degradation. To control the slimming process, we introduce a sparsity threshold

α ∈ (0, 1) that reflects the desired sparsity level of the dictionary D ∈ RL×k2

. Following slimming,

only the most essential α · L items out of the original L will be retained. It is worth noting that

aggressive slimming of the dictionary to a specific ratio α can be challenging and may not yield

optimal results. To simplify the problem, we adopt an iterative approach where we gradually reduce

the sparsity from 1 to α. During each iteration t with sparsity αt, where αt < αt−1, we retain the

most important αtL items from the current dictionary and discard the rest. In the next iteration,

the sparsity goal is updated as αt+1 = αt −∆α to further prune additional items.

After removing redundant items through pruning, we proceed to fine-tune the LaparNet to adapt

to the newly slimmed dictionary. This is accomplished by minimizing the reconstruction error. The

problem can be formulated as follows:

β,W = arg minβ,W
1
N

∥∥∥Y −
∑L

i=0 βiΦD
∥∥∥
2

2
,

s.t. Φ = LaparNet(X,W ),

∥β∥0 ≤ αL,

(3.8)

where N is the batch size of the input images. W denotes the parameters in LaparNet, whose output

is the coefficient vector Φ. Y is the output tensor after querying the original unpruned dictionary

with no fine-tuning. Selector β determines which item of D is pruned. i-th item of D will be

neglected if βi = 0.

Furthermore, we extend the modifications made to Equation 3.8 by incorporating the evaluation

of the final image in the super-resolution (SR) pipeline. To capture the discrepancy between the

image generated by the compressed model and the ground truth high-resolution (HR) image Hgt,
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Figure 3.3: Visual illustration of dictionary slimming, the upper flow represents original dictionary
query and filtering, namely stage 3 + stage 4 in Figure 3.1, The flow below demonstrates the slimming
process of the dictionary query.

we define the reconstruction error using Equation 3.9:

β,W = arg minβ,W
1
N

∥∥Hgt − FW,βB
⊤∥∥2

2
,

s.t. FW,β =
∑L

i=0 βiΦD,

Φ = LaparNet(X,W ),

∥β∥0 ≤ αL.

(3.9)

Both β and W serve as optimization objectives in our approach. To simplify the problem and

improve efficiency, we employ an alternating optimization strategy, wherein each objective is opti-

mized in turn. In the first step, we focus on finding the optimal selector β to meet the sparsity

requirement αt, while keeping the parameters of the LaparNet fixed. In the second step, we fix β
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and fine-tune the parameters W to minimize the reconstruction error as defined in Equation 3.9.

Directly optimizing the selector β with an ℓ0 norm constraint is known to be NP-hard. However, we

address this challenge by employing LASSO regression. By introducing an ℓ1 regularization term

(He et al., 2017) into the original loss function, we can effectively optimize the sparsity. This is

illustrated in Equation 3.10.

β = arg minβ
1
N

∥∥Hgt − FW,βB
⊤∥∥2

2
+ λ∥β∥1,

s.t.∥β∥0 ≤ αL.

(3.10)

The complete selection strategy is illustrated in Algorithm 1.

Algorithm 1 Dictionary Selection Strategy

1: Input: D ∈ RL×k2

, small λ0, target α, tolerance ϵ;
2: Input: pre-trained W0 , coefficient matrix Φ;
3: t← 0, α0 ← 1.0, β0 ← 1 ∈ RL, γ0 ← 1 ∈ RL;
4: L ← reconstruction error ▷ Equation (3.9)
5: repeat
6: αt+1 ← αt −∆α;
7: λt+1 ← λt;
8: while |βt+1|0 > αt+1 · L do
9: Fix Wt, update βt+1 ← argminβ L (Wt,βD)

+λt+1 |β|; ▷ Equation (3.10)
10: λt+1 ← 2 · λt+1

11: end while
12: λleft ← 0.5λt+1, λright ← λt+1;
13: while

∣∣αt+1 · L− |βt+1|0
∣∣ > ϵ · L do

14: λt+1 = 1/2(λleft + λright);
15: Fix Wt, update βt+1 ← argminβ L (Wt,βD)

+λt+1 |β|;
16: if |βt+1|0 < αt+1 · L then
17: λleft ← λt+1;
18: else if |βt+1|0 > αt+1 · L then
19: λright ← λt+1;
20: end if
21: end while
22: Fix βt+1, update Wt+1 ← argminW L (W , βt+1D);

▷ Equation (3.11)
23: t = t+ 1;
24: until αt ≤ α

Prior to channel selection, it is necessary to gather calibration data, which includes the output

feature maps of the LaparNet before querying the dictionary, as well as the corresponding high-

resolution ground-truth images. To control the sparsity, we carefully adjust the regularization weight
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λ in Equation 3.10. We adopt a greedy approach to search for the optimal values of β. Starting

with a small λ, we iteratively increase its value, doubling it at each iteration. This progressively

strengthens the sparsity regulation until the desired level α is achieved. Towards the end of the

slimming process, if the step size of λ becomes excessively large due to the exponential update, we

employ a binary search within the range [λt, λt+1] to finely adjust the slimming ratio, approaching

αt+1 with precision. This adjustment is depicted in lines 12–20 of Algorithm 1.

After the selector β optimization, we need to fine-tune the parameters W accordingly, as shown

in Algorithm 1.

W = arg min
W

1

N

∥∥Hgt − FW,D′B⊤∥∥2
2
. (3.11)

However, tuning all parameters in the LaparNet at each iteration can be computationally expen-

sive and time-consuming. In Equation 3.11, we introduce D′ as the compressed dictionary, obtained

by neglecting layers during the previous LASSO step. To efficiently adjust the output of the Lapar-

Net to align with the newly compressed dictionary D′, we focus on reconstructing the parameters

of the last layer, just before the dictionary query. This approach allows for faster tuning, and we

achieve it by utilizing linear regression to learn a channel-wise factor for the original parameters,

resulting in improved efficiency. The parameters in the last layer, denoted as WD′, are multiplied

by a regression coefficient γ specific to each channel. By doing so, we can reformulate the parameter-

tuning step from Equation 3.11 to Equation 3.12. Here, γ represents the channel-wise coefficient

used to scale the parameters of the updated WD′new on each channel.

After the tuning, a new coefficient matrix Φ′ will be generated to query the slimmed dictionary

D′. The visualization of the complete dictionary query and filtering flow after slimming is shown in

Figure 3.3.

γ = arg minγ
1
N

∥∥∥Hgt −
∑L

i=0 γiFW,D′B⊤
∥∥∥
2

2
,

W new
D′ = γWD′ .

(3.12)

According to the results presented in Figure 3.4, slimming the dictionary does not impact the

performance of the original super-resolution (SR) model. The information preserved in the dictionary

exhibits sufficient sparsity, and a well-trained model is capable of capturing valuable information even

when certain items are set to zero. In our experiments, we demonstrate that the dictionary can be
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Figure 3.4: Single image super-resolution (SISR) performance of our model with different dictionary
compression ratios in comparison with other SR methods. LAPAR-A (Per.%) represents our model
with dictionary size shrunk to Per.%. PSNR means peak signal-to-noise ratio. SSIM means struc-
tural similarity index measure. PSNR and SSIM are two common metrics to measure the quality of
images. The higher, the better.

slimmed down to only 10% of its original size without any noticeable loss in accuracy. Furthermore,

for a fair comparison, we highlight that the compressed model outperforms other widely-used SR

models, such as those mentioned in (Dong et al., 2016; Kim et al., 2016).

3.1.5 Constraint-Based Optimization of Deployments On GPU

While reducing the size of the dictionary can contribute to speeding up the dictionary query pro-

cess, the subsequent filtering operation remains a bottleneck in terms of inference latency. This

filtering operation involves performing a Hadamard product between two tensors and then applying

a reduce-sum operation along the channel dimension to convert the tensor into a 2-D image. De-

spite the significance of such computations in super-resolution (SR) tasks, they are often overlooked

by current mainstream deployment tools. In this section, we introduce a domain-specific low-level

design that leverages the parallelization capabilities of GPUs to enhance computation throughput

from a hardware perspective. Figure 3.5 illustrates an example of the proposed computation engine,

which embodies the aforementioned design principles.

To implement the Hadamard product and reduce-sum in a parallel manner within the exist-

ing inference flow, we follow a specific approach. During the inference stage, all tensor data,

including images and filters, is stored consecutively in the (N,C,H,W ) format, representing the

(batch size, channel, height, width) dimensions of each tensor. This linear memory arrange-
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Figure 3.5: An example of the proposed computation engine for image filtering operation.

ment enables efficient parallel processing. Since both computation operations are spatially indepen-

dent, we can assign the calculation of values at each 2-D location on the H ×W map to different

computation units, as depicted in Figure 3.5. Each block represents a distinct computation unit, and

the color of the data indicates which block it is assigned to. For example, purple data is assigned to

block 0, while orange data is assigned to block 1. To optimize thread assignment, we strive to assign

consecutive data to consecutive threads as much as possible. Simultaneously, data with the same in-

dex but from different channels are assigned to the same thread. For instance, data at location (1, 1)

and (1, 2) are respectively assigned to threads 0 and 1 in block 0 for all channels. The Hadamard

product begins by performing element-wise multiplication between F and B. Subsequently, the

products for each channel are accumulated to produce the final high-resolution images. These steps

can be computed in parallel for each 2-D location index. In essence, the computation assigned to
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each thread corresponds to multiplying two vectors, where each pair of vectors consists of channel

data from F and B at the same 2-D location. In our implementation, each thread performs addition

and multiplication simultaneously by adding the intermediate product of each channel to the final

result. All threads execute the same code in parallel, carefully avoiding thread divergence issues

(Cheng et al., 2014). Furthermore, we consider the cache-memory mechanism and aim to minimize

frequent interactions in our design. As illustrated in Figure 3.2, each Streaming Multiprocessor

(SM) has an exclusive shared memory/L1 cache for all blocks within it. We take advantage of this

architecture to optimize memory access and reduce latency.

However, it is important to note that parallelism cannot be endlessly extended. We must con-

sider complex limitations at both the hardware and programming model levels, as these factors have

a significant impact on the performance of parallel implementations. To begin with, the compu-

tation patterns are determined by the number of assigned threads, blocks, and other parameters.

However, the computing capabilities of different GPU devices can vary, leading to varying limits on

thread/block configurations. To provide an example, let’s consider the edge device NVIDIA Jetson

Xavier NX, which incorporates a Volta microarchitecture GPU. At the hardware level, each NX

device consists of six streaming multiprocessors (SMs). Each SM has a fixed shared memory size

(on-chip memory) of 96KB and contains four physical processing blocks. These processing blocks

house 16 FP32 cores, 8 FP64 cores, 16 INT32 cores, 2 Tensor cores, and a 64KB shared register file.

At the programming model level, the computation kernel is launched as a computation grid, where

each cell represents a thread block. It’s important to note that the concept of a thread block here

is virtual and differs from the previous processing block. Each thread block is assigned to a single

SM. When discussing hardware resource limits, it is necessary to introduce the concept of a warp. A

warp represents the basic execution unit in an NVIDIA GPU, comprising 32 consecutive threads. In

the current SIMT architecture, each thread block is further divided and assigned to multiple warps

after being scheduled to an SM. Warp scheduling in the GPU is unordered within each thread block.

The only limitation is the number of active warps with regard to the available SM resources. When

a warp becomes idle due to race conditions, the SM can schedule other available warps to maximize
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utilization. The number of warps for a thread block can be determined as follows:

Warps Per Block =

⌈
Threads Per Block

Warp Size

⌉
, (3.13)

The programming model also imposes limitations on the number of warps within a thread block to

accommodate the sizes of warp schedulers, instruction registers, and other factors. Furthermore, we

need to consider memory constraints. There are two levels of data sharing among parallel executions:

1. Sharing data in the shared register files among parallel threads within the same processing block.

2. Sharing data among processing blocks within the same SM. Both scenarios can potentially lead

to race conditions where multiple threads access the same data in memory simultaneously.

We need to balance the contradiction between parallelism and congestion by carefully selecting

an appropriate block size. The size of a block is restricted by both the size of input data and

available on-chip resources. Meanwhile, once the resources are available, the tasks will be assigned

to occupy the resources to accelerate the computations as much as possible. In other words, the

parallelism is maximized so as to reach the upper-bound value of resource utilization. We denote

the size of input data to be D = H ×W × C, which is three-dimensional. The threads blocks can

also be regarded as three-dimensional with size (nx, ny, nz). Based on the detailed analysis above,

we can formulate a series of constraints to this optimization problem. We assume each GPU has S

SMs inside, where each SM holds P processing blocks. We assume that each processing block has

R register files, and the maximum threads number is each warp in WS. The CUDA programming

model also sets a warp number limit to each block Tsm. Tr denotes input data assigned to each

SM (evenly). Each processing block will manage and schedule the computational resources inside

implicitly, and the computational resources constraints Tsm is prefixed at a constant value given

fixed compute capability. The number of warps T in each processing block is upper-bounded by

both Tr and Tsm. Another constraint comes from the input data size. Therefore, these constraints
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Figure 3.6: The visualized solution space. The solution points below the dotted points are legal
configurations.

can be formulated as:

Tr = (H ×W × C)/(S × P ×R),

T ≤ min(Tr, Tsm),

nx × ny × nz ≤WS × P × T,

1 ≤ nx ≤ H,

1 ≤ ny ≤W,

1 ≤ nz ≤ C.

(3.14)

By applying these constraints, we can reduce the search space by ignoring wasteful choices and

therefore saving optimization workloads. For example, for T ∈ [Tr, Tsm], these T values are legal

while on-chip resources are not fully utilized, and the system parallelism can be further improved.

The search space regarding these constraints is visualized in Figure 3.6. To the best of our knowledge,

we are the first to take these constraints for deployments of DNN models on GPUs into consideration,

as compared with e.g., (Chen et al., 2018b).

Despite the constraints mentioned above, the optimization process may still suffer from slow

performance due to the time-consuming on-board compilation and execution of each candidate con-

figuration. To address this issue, we employ Bayesian Optimization as an alternative to grid search

or manual tuning (Gardner et al., 2018; Bai et al., 2021). Bayesian Optimization offers superior
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efficiency by leveraging the comprehensive information obtained from past experiments to better

sample candidate values for nx, ny, and nz. The key components of Bayesian optimization consist

of a probabilistic surrogate model, denoted as S (·), which enables fast evaluation of inference latency,

and an acquisition function, denoted as A(·), which selects the most informative candidates based

on the largest upper confidence bound (UCB) (Srinivas et al., 2009). Our implementation utilizes a

Gaussian process (GP) model as the surrogate model. The complete searching process is outlined in

Algorithm 2. Initially, we randomly sample a small batch of configurations N̂ from the search space

N . These configurations are used to initialize the surrogate model, which is a Gaussian process

model in our implementation. Several rounds of sampling and updating the surrogate model are

performed. Finally, we select the configuration with the best inference speed as the optimal choice.

Algorithm 2 Configuration Search Process

1: Input: search space N , round T , surrogate model S(·), acquisition function A(·);
2: Get initial samples: N̂ ← Sample(N );
3: Get sample performance: P̂ ← Eval(N̂ ); ▷ On-board test
4: Get Optimal in sample: (nx ,y,z )

∗, p∗ ← argmaxnx,y,z∈N̂ P̂ ;

5: for i← range(|N̂ |,T ) do
6: S(y |(nx ,ny ,nz ), N̂ )← Fit(P̂ , N̂ ); ▷ Fit GP Model
7: (nx,y,z)i ← argmax(nx,y,z)∈N A(S(y |(nx ,y,z ), N̂ ),nx ,y,z );
8: pi ← Eval((nx, ny, nz)i); ▷ On-board test
9: P̂ ← P̂ ∪ pi , N̂ ← N̂ ∪ (nx ,y,z )i ; ▷ Add to samples

10: if pi > p∗ then
11: (nx ,ny ,nz )

∗ ← (nx ,y,z )i ;
12: p∗ ← pi ;
13: end if
14: end for
15: Output: (nx ,ny ,nz )

∗;

3.2 Adaptive 8-bit Quantization

As shown in ??, The inference latency of the dictionary query and filtering step was significantly

reduced by dictionary compression and hardware constraint-aware optimization. After these steps,

typical deep learning operators such as convolution and ReLU in LaparNet become the most time-

consuming stage, occupying up to 70% of inference time.

Different from other computer vision tasks such as object detection or classification, super-

resolution is a fine-grained task where the RGB value of high-resolution images is recovered. We
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Figure 3.7: SR performance of 8-bit inference in comparison with SOTA baseline SR methods and
original Lapar-A model. Lapar-A(10%) represents the model with the dictionary shrunk to 10% size.
Lapar-A(10%)-8bit represents the model with naive 8-bit scale quantization. Lapar-A(10%)-ours is
our adaptive 8bit approach.

adopt the 8-bit post-training quantization (PTQ) technique to further accelerate the inference by

fully increasing the math throughput of hardware using 8-bit data type for both weight and activa-

tions of LaparNet. The reason why we choose the simple 8-bit quantization instead of some other

SOTA quantization methods is threefold: Firstly, the RGB value of each pixel ranges from 0 to 255,

which can be represented using no less than 8 bits. In this way, 8-bit is the lower bound bit-width

to avoid significant information loss. Secondly, the priority of maintaining accuracy is higher than

the model compression, so we do not necessarily need to quantize the model to lower bits aggres-

sively. Last but not least, 8-bit integer computations are well supported by the current mainstream

accelerator with mature hardware and software support

By convention, the rounding step in Equation (3.7) is a simple yet fixed rounding-to-nearest

action, which is intuitive. And the naive approach for clipping range selection is to minimize the

KL-divergence of activations at each layer:

α∗ = argmin
α

DKL(act8−bit||actFP32), (3.15)

where act denotes the activation value distribution, which can be derived from a calibration set.

KL-divergence is capable of measuring the information loss of clipping and rounding of quantization

by calculating the entropy of quantized and unquantized data distribution.
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However, despite the effectiveness of KL-divergence-guided clipping scale in minimizing layer-

wise information loss from quantization, it is unable to prevent significant performance degradation.

When we apply naive scale quantization, both PSNR and SSIM experience a significant drop, even

lower than baseline methods. This is illustrated in Figure 3.7. In their work, (Nagel et al., 2020)

raised concerns regarding the commonly used rounding-to-nearest step in integer quantization. They

pointed out that quantization clipping and rounding can be viewed as a shift in weight values from

the original full-precision network. This shift leads to differences in the coefficient vector Φ extracted

from LaparNet, resulting in performance degradation:

Ψ(X,W ,∆W ) = loss(X,W + ∆W )− loss(X,W ), (3.16)

where W is the weight and X is the input. ∆w is the weight value shift from rounding and

clipping and, degradation Ψ is evaluated by the task loss change from quantization. However, direct

optimization of such value differences is not easy. As quantization aims to minimize the disturbance

on the final result, we can simplify the optimization goal with an equivalent objective: minimizing

SR task loss difference. Then we can expand the equation by second-order Taylor expansion, as

indicated by (Nagel et al., 2020). The objective of minimizing the accuracy loss can be derived:

argmin
∆W

E [loss(X,W + ∆W )− loss(X,W )]

≈ argmin
∆W

E [∆W⊤∇W loss(X,W )

+ ∆W⊤∇2
W loss(X,W )∆W ].

(3.17)

Instead of focusing solely on minimizing the weight shift ∆W through the rounding-to-nearest

step, it may not always be the optimal choice. In Equation (3.17), the first term becomes negligible

due to the convergence of training, causing the first-order gradient ∇W loss(X,W ) to approach

zero. Consequently, the objective of quantization relies on the second term, where the Hessian

matrix ∇2
W loss(X,W ) becomes crucial. (Li et al., 2020a) has provided mathematical proof that this

second-order error optimization can be transformed into Equation (3.18), where ∆Φ represents the

difference in the coefficient vector Φ before and after quantization, and ∇2
Φloss(X,W ) denotes the

Hessian matrix associated with the coefficient vector Φ. This transformation allows for optimization

by leveraging the coefficient vector difference ∆Φ, which is more readily obtainable during the
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forwarding inference step.

argmin
∆W

E [∆W⊤∇2
W loss(X,W )∆W ]

≈ argmin
∆W

E [∆Φ⊤∇2
Φloss(X,W )∆Φ].

(3.18)

To adjust the value of ∆W , the original scale quantization is modified with fixed rounding-down

and a controllable adaptive term V added before clipping:

W + ∆W = clip(round(
W

s
) + σ(V ),−ϵ, ϵ), (3.19)

where V is a continuous variable in real number, which can be regarded as a tunable parameter and

updated through gradient descent during optimization. The rectified sigmoid function σ(·) (Louizos

et al., 2018) is to force the adaptive value within range [0, 1] and has non-vanishing gradient around

0 or 1. The overall optimization objective is:

argmin
V

E[∆Φ⊤∇2
Φloss(X,W )∆Φ] + λ

∑

i

(1− |2σ(Vi)− 1|τ ). (3.20)

The second regularization term is to encourage σ(Vi) to converge to value 0/1 with an appropriately

annealed hyper-parameter τ .

While we have the formulation presented in Equation 3.20, optimizing all V for the entire

network remains challenging due to the model’s size. To address this complexity, we adopt a finer

granularity approach by dividing the network into a series of quantization submodules and iteratively

tuning the V values for each submodule. This allows us to reduce the complexity associated with

optimizing V and focus more on quantization error at the submodule level. By shrinking the

size of each submodule, we decrease the computational complexity involved in optimizing V for

individual submodules. However, finer-grained submodules may potentially lead to local optima for

each submodule, deviating from the global optimal solution. In order to achieve the highest restored

accuracy, careful selection of submodule sizes is crucial, as depicted in Figure 3.8. Considering the

network structure of LaparNet, we treat each individual residual block as a separate submodule

and perform quantization on submodules one by one using the first term in Equation 3.20. To

approximate the first term of the objective in Equation 3.20, we utilize the l2-norm of the difference

between the quantized and unquantized output tensors, denoted as |ΦW + ∆W −ΦW |2F , at each
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Figure 3.8: Visualization of quantization submodule for V optimization. We divide LaparNet with
each submodule either stacked with less than 4 layers or ended with an Short-Cut node. In practice,
most submodules share the same structure with a residual block in LaparNet.

submodule.

3.3 Experimental Results

Hardware Implementation: We validate our high-performance accelerator on NVIDIA Jetson

Xavier NX, an edge device with embedded GPU. Metrics, including acceleration ratio and Super-

resolution quality, are all compared with the state-of-the-art tool NVIDIA TensorRT to show the

performance. NX integrates an ARM v8.2 64-bit CPU processor and a 384-core NVIDIA Volta GPU

with 48 Tensor Cores. For a fair comparison, we choose 15W of power as the experimental setting,

where it delivers up to 21 TOPS computing power. The clock frequency of the ARM processor is

2-core 1900MHz, and 4/6 core 1400MHz. The clock frequency of the GPU processor is 1100MHz.

The accuracy comparison is evaluated on NVIDIA GeForce RTX 2080 Ti with 4352 FP32 FPUs

(CUDA cores) and 544 Tensor cores for accuracy evaluation via PyTorch.

Software Implementation: The experimental environment is CUDA 11.0 and TensorRT 7.1.3.

We use 32-bit floating point precision data type for full-precision evaluation and 8-bit integer data

type for quantized model evaluation. The model-level training and accuracy evaluation are based

on the official LAPAR code repository(SR-, [n. d.]).
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Table 3.1: Inference Time (ms) and Acceleration ratios.

Input size Scale
NVIDIA GeForce RTX 2080 Ti NVIDIA Jetson Xavier NX

PyTorch TensorRT Ours Acc. (PyTorch) Acc. (TensorRT) TensorRT Ours Acc. (TensorRT)

64× 64

×2 6.94 1.30 1.02 ×680.39% ×127.45% 12.37 9.04 ×136.84%

×3 8.26 1.94 1.40 ×590.00% ×138.57% 22.62 14.28 ×158.40%

×4 9.86 2.79 1.88 ×524.46% ×148.40% 35.83 20.54 ×174.44%

128× 128

×2 8.74 3.59 2.66 ×328.57% ×134.96% 52.12 37.25 ×139.92%

×3 13.04 6.19 4.16 ×313.46% ×148.80% 90.33 54.26 ×166.48%

×4 18.07 9.71 6.13 ×294.78% ×158.40% 144.34 81.29 ×177.56%

180× 320

×2 17.12 12.40 9.25 ×185.08% ×134.05% 177.57 124.12 ×143.06%

×3 30.83 21.66 14.63 ×210.73% ×148.05% 325.07 200.02 ×162.52%

×4 44.69 34.69 22.12 ×202.03% ×156.82% 534.99 318.60 ×167.92%

360× 640

×2 67.36 50.26 37.47 ×179.77% ×134.13% 748.72 530.23 ×141.21%

×3 105.32 88.45 59.20 ×177.90% ×149.41% 1466.91 973.25 ×150.72%

×4 406.93 141.08 91.09 ×540.02% ×154.88% - - -

Average - 61.43 31.17 20.91 ×352.27% ×144.49% 328.26 214.81 ×156.28%

Inference time on NVIDIA Jetson Xavier NX with input size 360× 640 and scale 4 is not available due to
the memory limit of the edge device.

Dataset: The proposed accelerator is evaluated on common single image super-resolution (SISR)

Set5(Bevilacqua et al., 2012), Set14(Ledig et al., 2017b), B100(Martin et al., 2001), Urban100(Ledig

et al., 2017c), Manga109(Lai et al., 2017a) dataset.

3.3.1 Performance Evaluation

In order to demonstrate the effectiveness of our design in achieving speed-up, we conducted com-

parisons with the original model on both NVIDIA Jetson Xavier NX and RTX 2080 Ti devices.

To showcase the generalization ability and robustness of our approach, we evaluated the inference

performance across various input frame sizes and scale ratios. The obtained results are based on

32-bit floating point precision, and the corresponding running times are presented in Table 3.1. We

successfully achieved real-time inference with SR output of 540P quality. Notably, our design out-

performs PyTorch, delivering a 352.27% faster inference on the RTX 2080 Ti. Overall, our design

surpasses TensorRT with a 144.49% faster inference on the RTX 2080 Ti and a 156.28% improve-

ment on the Jetson Xavier NX, on average. Moreover, when compared to TensorRT, our accelerator

34



achieves a remarkable speed-up ranging from +27.45% to +77.56%. It is interesting to observe

that Jetson Xavier NX exhibits more pronounced acceleration compared to the RTX 2080 Ti. This

observation implicitly verifies that our design is particularly effective for embedded GPUs that have

limited computation and communication resources.

In Section 3.3.1, we provide a comparison of the SR results’ quality between our design and

other well-known models, which serve as baseline methods. The performance evaluation is based

on two widely used metrics for measuring the quality of restored high-resolution frames: PSNR

(peak signal-to-noise ratio) and SSIM (structural similarity index measure). Higher values for these

metrics indicate better performance. Remarkably, despite our model being a compressed version

with 90% of the dictionary slimmed out, while the other baseline models are not subject to such

compression, our design still outperforms most of the baseline models in terms of both PSNR and

SSIM.

In order to validate the sparsity within the dictionary and its potential for acceleration, we

conducted an ablation study on the slimming ratio as depicted in Figure 3.9. In this study, a slimming

ratio of 100% represents the original uncompressed dictionary. Notably, the results demonstrate a

linear decrease in time costs with respect to the compression ratio for various scales. The query and

filtering processes for the dictionary exhibit a significant acceleration potential, with speeds reaching

approximately 20 times faster than the original uncompressed version.

3.3.2 Compressed 8-bit Analysis

We show the practicability of our adaptive 8-bit post-training quantization by comparing it with

other baseline methods on all five benchmarks and different upscaling factors. During the implemen-

tation process, we find out the tensor multiplication operation is sensitive to low-bit quantization

and strongly affects the SR task accuracy. One possible reason is that large tensor multiplication

may cause a wide activation value distribution, which may lead to information loss after clipping on

the range during quantization. Therefore, we manually tick off the quantization node for the “mul”

operation and analyze the effectiveness of other steps in our quantization flow. As shown in Table 3.2

that even compressed with quantized 8-bit inference, our approach still achieves comparable or even

better performance with other SOTA baseline methods implemented in full precision.
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Scale Method Params MAC Set5 Set14 B100 Urban100 Manga109

×2

SRCNN(Dong et al., 2014) 57K 53G 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.74/0.9661

FSRCNN(Dong et al., 2016) 12K 6G 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9694

VDSR(Kim et al., 2016) 665K 613G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9729

DRRN(Tai et al., 2017) 297K 6,797G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.92/0.9760

LapSRN(Lai et al., 2017b) 813K 30G 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740

SRFBN-S(Li et al., 2019b) 282K 680G 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757

FALSR-A(Chu et al., 2021) 1,021K 235G 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256 -

SRMDNF(Zhang et al., 2018) 1,513K 348G 37.79/0.9600 33.32/0.9150 32.05/0.8980 31.33/0.9200 -

TPSR(Lee et al., 2020) 60K 14G 37.38/0.9583 33.00/0.9123 31.75/0.8942 30.61/0.9119 -

SESR-M11(Bhardwaj et al., 2022) 27K 6.3G 37.58/0.9593 33.03/0.9128 31.85/0.8956 30.72/0.9136 37.40/0.9746

Ours 528K 153G 37.98/0.9604 33.59/0.9181 32.19/0.8999 32.09/0.9281 38.60/0.9771

×3

SRCNN(Dong et al., 2014) 57K 53G 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107

FSRCNN(Dong et al., 2016) 12K 5G 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080 30.98/0.9212

VDSR(Kim et al., 2016) 665K 613G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310

DRRN(Tai et al., 2017) 297K 6,797G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.74/0.9390

SelNet(Choi and Kim, 2017) 1,159K 120G 34.27/0.9257 30.30/0.8399 28.97/0.8025 - -

CARN(Ahn et al., 2018) 1,592K 119G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 -

SRFBN-S(Li et al., 2019b) 376K 832G 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404

Ours 575K 96G 34.35/0.9267 30.33/0.8420 29.11/0.8054 28.12/0.8523 33.48/0.9439

×4

SRCNN(Dong et al., 2014) 57K 53G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505

FSRCNN(Dong et al., 2016) 12K 5G 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280 27.90/0.8517

VDSR(Kim et al., 2016) 665K 613G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809

DRRN(Tai et al., 2017) 297K 6,797G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.46/0.8960

LapSRN(Lai et al., 2017b) 813K 149G 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845

CARN(Ahn et al., 2018) 1,592K 91G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 -

SRFBN-S(Li et al., 2019b) 483K 1,037G 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008

TPSR(Lee et al., 2020) 61K 4G 31.10/0.8779 27.95/0.7663 27.15/0.7214 24.97/0.7456 -

SplitSR (HI=2)(Liu et al., 2021) 94k 99G 31.53/0.8950 28.18/0.7887 27.28/0.7458 25.20/0.7704 -

SESR-M11(Bhardwaj et al., 2022) 32.14K 1.85G 31.27/0.8810 27.94/0.7660 27.20/0.7225 25.00/0.7466 28.73/0.8815

Ours 640K 76G 32.15/0.8944 28.61/0.7817 27.59/0.7366 26.14/0.7873 30.39/0.9072

We also analyze the inference speed of our implemented 8-bit inference. As shown in Table 3.3,

we achieve significant speed-up even in comparison with our previous ICCAD2021 work. In general,

our quantized implementation is 49.25% faster. More specifically, the acceleration ratio increases

as the input size gets higher. The inference flow switches from compute-bound to memory-bound

when the model and tensor size are bigger. Therefore, in this case, the low-bit inference is more

effective. As for the full-precision “mul” operation, such kernels are already well optimized for GPU

devices. As we profile the time consumption, all “mul” kernels combined only hold < 2% of total

inference time, including the data transformation. We show the time consumption of “mul” kernels

at different scale and input size in Table 3.3. This way, such a full-precision kernel will not introduce
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Figure 3.9: Time consumption of the dictionary query and filtering with different compression ratios.
Different input image sizes and scaling factors (from 2 to 4) are evaluated.

much overhead to the processing speed.

We also conduct a detailed ablation study to verify the effectiveness of each method applied

in our quantization flow As shown in Table 3.4. For data calibration and tuning of the adaptive

variable V , we use Manga109 as the validation and test dataset.

3.3.3 Discussions

We present the impressive performance of our domain-specific high-performance SR accelerator

through comprehensive experimental results, showcasing its effectiveness on the NVIDIA Jetson

Xavier NX, which is equipped with limited power and hardware resources. Our approach addresses

the challenges posed by dictionary learning algorithms used in the SR task, which exhibit specific

memory and computation patterns that are not feasible for existing deployment toolkits. Further-

more, we face the challenge of dealing with large input frames and intermediate feature maps, which
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Table 3.2: Performance evaluation of our fully-compressed Lapar-A (10%) at 8-bit inference on all
benchmarks with other unquantized full-precision (FP32) state-of-the-art baseline methods.

Benchmark Scale Baseline (SOTA) Ours (8-bit)

Set5
×2 37.82/0.9595 37.87/0.9597
×3 34.29/0.9255 34.30/0.9262
×4 32.13/0.8937 32.07/0.8926

Set14
×2 33.55/0.9168 33.47/0.9169
×3 30.29/0.8407 30.27/0.8410
×4 28.60/0.7806 28.50/0.7798

B100
×2 32.12/0.8987 32.07/0.8983
×3 29.06/0.8034 29.02/0.8035
×4 27.58/0.7349 27.45/0.7334

Urban100
×2 31.93/0.9256 32.00/0.9268
×3 28.06/0.8493 28.10/0.8514
×4 26.07/0.7837 26.07/0.7857

Manga109
×2 38.06/0.9757 38.28/0.9750
×3 33.02/0.9404 33.41/0.9429
×4 29.91/0.9008 30.24/0.9047

Table 3.3: Quantized 8-bit acceleration analysis in comparison with full-precision ICCAD21 (Zhao
et al., 2021a). “mul” denotes the time consumption of “mul” kernel and corresponding data trans-
formation.

Input size Scale ICCAD21 (mul) (Zhao et al., 2021a) Ours (8-bit) Acc.

64× 64
×2 1.02 (0.04) 1.02 ×100.00%
×3 1.40 (0.10) 1.36 ×102.94%
×4 1.88 (0.09) 1.91 ×98.43%

128× 128
×2 2.66 (0.18) 2.09 ×127.27%
×3 4.16 (0.19) 3.40 ×122.35%
×4 6.13 (0.20) 5.13 ×119.49%

180× 320
×2 9.25 (0.43) 5.85 ×158.12%
×3 14.63 (0.44) 10.33 ×141.63%
×4 22.12 (0.44) 16.55 ×133.66%

360× 640
×2 37.47 (0.98) 20.72 ×180.84%
×3 59.20 (1.01) 36.49 ×162.24%
×4 91.09 (1.02) 63.33 ×143.83%

Average - 20.92 (0.42) 14.02 ×149.25%
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Table 3.4: Ablation Study on the performance influence of each quantization option. Performance
metrics are PSNR/SSIM. The left-most column in bold is original full-precision FP32 Lapar-A for
comparison with no quantization applied.

Methods Original (a) (b) (c)

Quantized ✓ ✓ ✓
Naive-8bit ✓ ✓

Exclude mul ✓ ✓
Adaptive-8bit ✓

×2 38.65/0.9772 33.97/0.8977 37.74/0.9711 38.50/0.9762

×3 33.51/0.9441 31.30/0.8626 33.06/0.9415 33.45/0.9437

×4 30.38/0.9073 29.26/0.8381 30.02/0.9036 30.32/0.9065
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Figure 3.10: Comparison between our proposed model after compression and other lightweight
methods (<1M parameters) on Set5 for ×4 setting. Circle sizes are set proportional to the numbers
of parameters. “Ours” denotes our full-size LAPAR model and “Ours-C16, 8, 4” denote our LAPAR
models with embedding channel number reduced from 32 to 16, 8 and 4.

impose significant memory pressure on the hardware.

In Figure 3.10, we observe a clear trade-off between performance and scale in the SR task.
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Different models need to be carefully selected based on specific hardware resources and scenarios.

While some models are compact with fast inference and support large frames, they may sacrifice

accuracy and fail to restore sufficient texture details in high-resolution frames. For a fair comparison

of scaling up the SR task to 720P with a 4x ratio under our consistent GPU hardware setting, we

find that super-lightweight state-of-the-art (SOTA) models like SESR-M11 (Bhardwaj et al., 2022)

or TPSR (Lee et al., 2020) can achieve inference times under 3ms per frame but may not meet

the required accuracy, as depicted in Figure 3.10. On the other hand, the SOTA baseline model

SplitSR (Liu et al., 2021) outperforms the former two baselines in terms of performance but exhibits

a significantly longer inference time of 19ms.

In contrast, our dictionary-based approach consistently outperforms all other baselines with an

inference time of 16ms per frame. Additionally, we introduce a Pareto curve in Figure 3.10 to

demonstrate the flexibility of our deployed dictionary-based algorithm. To create the curve, we

scale down our model to 1.56% of its full size, which is similar to the size of the smallest baseline

model. We achieve this by halving the embedding channel number of all residual blocks at each

point, starting from 32 and progressing to 16, 8, and 4. As shown in Figure 3.10, our deployed

algorithm achieves the highest performance-scale efficiency at channel sizes of 32, 16, and 8, except

for the extremely compressed 4-channel case, which exhibits slightly lower PSNR than SESR-M11

(Bhardwaj et al., 2022).

To the best of our knowledge, our proposed accelerator represents the first successful achievement

of superior performance in SR applications on edge embedded GPUs.

3.4 Summary

This Chapter presents hardware-aware AI optimization with the development of a domain-specific

high-performance acceleration for deploying super-resolution models based on the LAPAR frame-

work. In our framework design, we introduce a strategy for dictionary slimming, aimed at extracting

the most informative dictionary items to enhance the efficiency of inference. Additionally, we have

designed a hardware-aware acceleration engine, which effectively utilizes the limited hardware re-

sources to optimize the inference process. Furthermore, we conducted experiments involving low-bit
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inference, employing an adaptive 8-bit quantization strategy to further enhance the acceleration.

Through various evaluations, our system demonstrates superior performance compared to the state-

of-the-art tools TensorRT and PyTorch, specifically on edge embedded GPUs such as the NVIDIA

Jetson NX and 2080 Ti, without any compromise in terms of quality.
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Chapter 4

Hardware-Aware Quantization

Acceleration With Bayesian

Optimization

Quantization has emerged as a highly effective strategy for accelerating AI inference using lower

numerical precision. In practical deep learning scenarios, such as autonomous driving and VR/AR

technology, quantization enables deployment without requiring changes to the original architecture.

Although some researchers (Dong et al., 2019; Hawks et al., 2021; He et al., 2018; Wang et al.,

2020a; Yao et al., 2021) have tried to introduce hardware information into the quantization stage,

these hardware-aware approaches still mainly focus on the quantization stage with only bit-width

selection as the objective. Some works simply insert indirect constraints/limitations to their quanti-

zation objective, such as the number of operations, number of memory references, etc. The study (Liu

et al., 2022) has shown that computation amount (FLOPS/BOPs), parameter numbers, or memory

accesses of the model may not be good proxies for inference latency. For example, quantization can

affect the memory alignment, which relates to the inference latency but is hard to analyze statically

through the proxies. On the other hand, backend configuration search space is related to and varies
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Figure 4.1: Current quantization model deployment is a 2-stage flow composed of quantization at
the model level and compilation optimization at the backend level. PTQ/QAT denote post-training
quantization and quantization aware training. Decoupling these two steps may lead to potential
unexplored search space. Each “Bit setting” denotes a bit-width assignment for layers in the model.

along with the pre-determined model bit-width setting. As visualized in the lower area in Figure 4.1,

decoupling these two stages may result in inadequate search, where some subspace on backend and

quantization bit-setting combination are unexplored, which may possibly result in sub-optimal de-

ployment results. Another challenge of existing quantization methods is transferability. The same

quantization scheme may show different speed-up ratios on different hardware backends, as shown in

Figure 4.2, which indicates potential bias when transferring quantization configuration to different

backends. Most previous works leave the necessity to genuinely evaluate the real performance of

the quantized model on different hardware backends. HAQ (Wang et al., 2019b) relies on a simu-

lator to retrieve the power/latency of an FPGA-based accelerator. HAWQ-V3 (Yao et al., 2021)’s

ILP solver requires pre-collected latency, bit operations count, as well as the Hessian score of each

kernel on specific hardware. They avoid it because exploration is time-consuming, considering the

large search space and huge time cost per evaluation. Firstly, mixed precision search space has

complexity O(kn), where k is the number of bit candidates supported by the backend and n is the

number of layers in the model. Moreover, for each bit-width configuration, the deployment flow

requires backend-level compilation of the loop scheduling parameters and data layout, which is also

a time-consuming process.

Given these challenges, we propose BAQE framework to reconstruct the quantization deploy-
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Figure 4.2: Inference latency comparison with example model Resnet-50 and data type in Int4, Int8
and Int32. Red dotted line indicates the speed-up ratio from quantization, which differs for Jetson
Orin NX and RTX 3070. Speed-up from quantization on NX is marginal, and Int8 inference is even
slightly faster than Int4. In comparison, the RTX3070 speed-up is more noticeable.

ment flow to simultaneously search for quantization bit-width settings and backend configuration.

The contribution of this section is listed as follows:

• We discuss the backend adaption challenge for DNN quantization deployment and propose

BAQE to bridge the gap between algorithm-level and backend-level optimization.

• A unified search space is built to synchronously optimize both the model quantization bit-width

setting and backend configuration parameters together.

• A two-stage searching strategy is proposed to efficiently reach the optimal solution in the

unified search space without prior backend information.

• Experiments show that our approach achieves superior inference time and accuracy trade-off

and quickly reaches Pareto optimality.

4.1 Preliminaries

4.1.1 Hardware-Aware Quantization.

One of the primary objectives of DNN quantization is to enhance inference latency, which is highly

dependent on the underlying hardware. Several methods, such as those discussed in (Dong et al.,

2019; Hawks et al., 2021; He et al., 2018; Wang et al., 2020a; Yao et al., 2021), have considered the
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Figure 4.3: Example of flatten 2-D convolution workload partition on CUDA programming archi-
tecture with hierarchical parallelism. 2-D matrix operations are split into tiles, which are assigned
to multiple thread blocks in GPU device.

limitations of hardware resources and formulated the problem as a constrained optimization task.

The goal is to minimize information loss or accuracy degradation while simultaneously adhering

to memory/speed metrics such as model size or GFLOPs. In the work of (Wang et al., 2019b),

reinforcement learning (RL) was utilized to determine the optimal bit-width configuration. This in-

volved mapping to a simulator to obtain feedback on energy consumption and latency. Furthermore,

(Yao et al., 2021) extended this awareness by directly compiling all layers at different bit-widths on

the target hardware to measure the actual latency before making precise bit-width selections.

4.1.2 Hardware Backend Deployment Optimization.

In the present era, most deep learning layers involve dense tensor operations that can be decomposed

into a multi-level representation of for-loops. However, the original execution order of these loops
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may not fully exploit the computational units or memory bandwidth available. Various approaches,

such as loop reordering, loop unrolling, and loop tiling, have been developed to enhance execution

efficiency and reduce memory cache misses. Similarly, transforming the data layout to align with

the loop order can yield the same beneficial effects. In the case of the GPU Backend, the selection of

the “tile size” refers to the number of parallel threads assigned to each CUDA block for execution.

It is crucial to choose an appropriate tile size that strikes a balance between communication and

parallelism.

By re-scheduling the aforementioned loops along with the operations, it becomes possible to

explore the optimal configuration of the backend by reorganizing the low-level implementation.

In the field of DNN compilation, several approaches, as mentioned in (Chen et al., 2018a,c; Mu

et al., 2020; Zheng et al., 2020), have proposed techniques for automatically tuning these backend

parameters. The work of (Chen et al., 2018a,c) initially employed a simulated annealing algorithm

as a search strategy to optimize the backend configuration. On the other hand, both (Mu et al.,

2020) and (Zheng et al., 2020) utilized guided genetic algorithms and evolutionary search methods

to explore the search space of backend configurations.

4.2 Methodology

4.2.1 Overview of BAQE Framework

Figure 4.4 visually describes the framework of BAQE. In the first step, we establish a comprehensive

and extensive search space encompassing both model-level and backend-level parameters, as detailed

in Section 4.2.2. Subsequently, in Section 4.2.3, we employ a TED-based method as an initial step

to generate diverse samples across the search space for the bit-width b and backend configuration

parameters hp. This step ensures a broad exploration of the parameter space. Following that, in

Section 4.2.4, BAQE leverages a multi-objective Bayesian optimization (BO) algorithm to search for

the optimal values of b and hp. The performance of each configuration is evaluated on the target

device, and automatic deployment and tuning take place at each iteration, as described in Section

4.2.6.
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Figure 4.4: Overview of the framework of BAQE. Our framework searches for bit-width settings b and
backend configuration parameters hp (loop scheduling parameters) simultaneously. Quantization
scaling factor s and network parameters are tuned on the device at each searching step.

4.2.2 The Unified Global Search Space

The unified global search space S is expanded from the original mixed-precision space to:

S = (b1, b2, ..., bl, w1, w2, ..., wl,

s1, s2, ..., sl, hp1, hp2, .., hpj),

(4.1)

where b: [b1, b2, ..., bl]
⊤ are the bit-width of each layer l to quantize, s: [s1, s2, ..., sl]

⊤ are the corre-

sponding scaling factors. w: [w1, w2, ..., wl]
⊤ are the model weights. hp: [hp1, hp2, .., hpj ]

⊤ denotes

the backend configuration parameters, including loop orders, tiling size, and data layout. This

new search space is more comprehensive with extended variables, whereas also more complicated.

Here the b1, b2, ..., bl and hp1, hp2, .., hpj are discrete variables while s1, s2, ..., sl are continuous. In

correspondence, our framework chose both auto-tuning and discrete sampling strategies.

In order to provide a clear understanding of the backend configuration parameters hp, we present

a visualization of a 2-D convolution in Figure 4.5. As illustrated in Figure 4.5, rearranging the loop

topology enables the inner loops to access and process contiguous data from memory, while preserving

the output values. This reordering effectively reduces memory pressure by minimizing cache miss

rates. Furthermore, using a data layout with dimensions “nchw” proves to be more efficient for

memory retrieval when the loop on Hin/Win is nested inside the loop Cin. Loops can also be

unrolled into tiles of multi-threads and mapped to hardware thread blocks for parallel execution, as
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for b in range(0,B):
for i in range(0,C_out):

for j in range(0,C_in):
for h in range(0,H_in):
for w in range(0,W_in):
for i_k in range(0,H_k):
for j_k in range(0,W_k):

Out[b][i][h][w]+= W[i][j][i_k][j_k]
*In[b][j][h+i_k][w+j_k]

1. Loop Tiling. 
2. Loop Unrolling

3. Data Layout 
Transformation. 

e.g. nchw      nhwc
4. Loop 

Reordering.

Figure 4.5: Example of pseudo implementation of the 2-D convolution kernel. Annotations in red
color denote backend-level optimization methods on this multi-loop code piece, which can increase
parallelism or optimize memory read/write efficiency.

shown in Figure 4.3.

4.2.3 TED-based Initial Sampling

As mentioned earlier, BAQE serves as a backend-adaptive framework that operates without prior

knowledge of the backend domain. In situations where initial knowledge of the specific hardware

backend is limited, it becomes necessary to collect actual latency/accuracy data through online

tuning and evaluation. This process is crucial for accurate optimization, as it allows for real-time

adjustments based on the observed performance. Consequently, the optimization flow heavily relies

on efficient sampling and searching techniques to address the challenge of acceleration while ensuring

thorough exploration of the parameter space.

Transductive experimental design (TED) is a sampling strategy that effectively enhances the

quality of samples for regression tasks, even in the absence of labels or prediction values for the

sample data. This aligns well with our problem context, as the hardware platform is essentially

a black box where prior knowledge is lacking. The primary objective of experimental design is to

carefully select a set of candidates, denoted as (b,hp)0, (b,hp)1, ..., that offer maximum information

content. In this context, we represent each candidate as x, and it can be defined as follows:

xi = [b⊤,hp⊤]i = [b1, b2, .., bl, hp1, hp2, ..., hpj ]. (4.2)

Suppose we are trying to build a linear regression of [b,hp] on performance y, which can be formu-
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lated as:

min
w

Φ(w) =

m∑

i=1

(w⊤xi − yi)
2 + µ∥w∥2. (4.3)

In this case, m represents the number of samples, w denotes the regression weight, and µ signifies

the regularization coefficient. The maximum likelihood estimate, denoted as ŵ, is obtained by

minimizing the function Φ(w). The estimation error, w− ŵ, possesses a mean of 0 and a covariance

of σ2Cw. In this context, σ is a constant, and Cw refers to the inverse Hessian of Φ(w).

Cw = ([B,HP ]⊤[B,HP ] + µI)−1

= (X⊤X + µI)−1,

(4.4)

Here the set of all m sampled bit-width and backend parameters can be represented as X =

[x1,x2, ...,xm]. It is important to note that the covariance reflects the level of confidence in the

estimation. A higher degree of confidence indicates greater informativeness of the sampled data. In

essence, maximizing the trace Tr(Cw) aims to enhance the level of informativeness. However, a

potential drawback is that Cw may not align with the quality of all other data points in the search,

introducing a limitation to consider.

When sampling m candidates (b,hp) from the search space S, we denote the set of all data

points to search as V = [v1,v2,v3, ...]
⊤, where each vi represents a combination of bit-width and

backend configuration (b,hp). The regression error associated with predicting the performance on

V is characterized by σCV , where:

CV = V CwV ⊤

= V ([B,HP ]⊤[B,HP ] + µI)−1V ⊤

= V (X⊤X + µI)−1V ⊤.

(4.5)

With the original goal of optimizing sample informativeness, we replace the Cw and switch to

minimize trace of CV . In addition, we try to add non-linearity with a kernel function k: k(xi,xj) =

∥xi−xj∥2

2σ2 , replacing original sample data matrix with element distance. In the covariance matrix,

all data points V is replaced with KV X that (KV X)ij = k(vi,xj). The sample product X⊤X is
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replaced with KXX where (KXX)ij = k(xi,xj). Then our initial sampling objective becomes:

max
X

Tr(KV X(KXX + µI)−1KXV )

s.t. X ⊂ V, |X| = m.

(4.6)

After deriving the optimization objective, the initial sampling strategy of BAQE is constructed

and listed in Algorithm 3. Note that here the kernel function k(·, ·) is replaceable with any non-

linear distance function. The initial sampling of BAQE iteratively chooses the most informative

bit-width/backend parameters to sample x∗ while dynamically updating K for each iteration.

Algorithm 3 TED-Based Initial Sampling

1: Input: Bit/backend parameters space S, regularization coefficient µ, sample size m.
2: Output: Sample X with |X| = m.
3: X ← ∅,V ← S;
4: K ← (K)ij = k(vi,vj),∀vi,vj ∈ V;
5: for i in range(0,m) do
6: x∗ ← argmaxx∈V Tr(KV x(Kxx + µI)−1KxV );

▷ KV x,Kxx,KxV are from rows/columns of K
7: X ←X ∪ x∗, V ← V \x∗;
8: K ←K − Tr(KV x∗(Kx∗x∗ + µI)−1Kx∗V );
9: end for

10: Return X;

4.2.4 Multi-objective Exploration

After gathering the initial dataset of (b,hp), our next step is to navigate through the search space.

Determining the optimal quantized bit widths and backend configuration parameters that strike a

balance between on-device inference time, accuracy, and model size within a limited time budget

is a challenging task. This challenge arises due to two primary reasons. Firstly, the relationship

f between a post-quantized DNN model and its on-device inference time and model accuracy is

intricate and unknown. Secondly, the process of tuning and evaluating the accuracy of a DNN model

is time-consuming. To address this problem, we propose a multi-objective exploration approach

based on Bayesian optimization (BO). This methodology aims to find effective solutions that optimize

the trade-offs between the aforementioned objectives.

Bayesian optimization (BO) encompasses two key components, namely the surrogate model and
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the acquisition function. To construct the surrogate model, we utilize the initial dataset generated

by the algorithm proposed in Section 4.2.3. This surrogate model is often implemented using a

Gaussian process, acting as a representation of the underlying relationship f discussed earlier. The

acquisition function plays a crucial role in guiding the direction of the multi-objective exploration.

It determines the selection of candidate solutions, encompassing bit widths and loop scheduling

parameters, based on predictions obtained from the surrogate model. By evaluating the quantized

DNN model’s on-device inference time, accuracy, and other relevant factors, we optimize the overall

exploration runtime. BO proceeds iteratively, selecting new candidate solutions at each iteration.

In the following sections, we explain in detail the structure of our proposed surrogate model and the

acquisition function for multi-objective exploration.

Surrogate model. Regarding the exploration focusing on multi-objectives, i.e., on-device inference

time, accuracy, and model size, we propose the Gaussian process with deep kernel learning (DKL-GP)

as the surrogate model. Without loss of generality, suppose a set of candidates X = {x1,x2, ...,xn},

where xi = (b,hp)i. Each candidate xi is applied to the DNN model, and the corresponding metrics,

such as on-device inference time, model accuracy, and size, are defined as:

Y =

(
y1,y2, ...,yn

)⊤
=




y11 y12 y13

y21 y22 y23
...

...
...

yn1 yn2 yn3




, (4.7)

where yil refers to the value of the i-th input xi for l-th metric. DKL-GP places a Gaussian process

(GP) prior fl for these metrics, respectively, as shown in Equation (4.8).

yil ∼ N (fl(xi), σ
2
l ), (4.8)

where the variance for the l-th metric is denoted as σl. We introduce a positive semi-definite matrix

Kf to represent the inter-objective similarities, while Kx captures the covariance function over the

input xi. The inter-objective similarity illustrates how an observation of one metric can influence

the predictions of another metric. For instance, a larger DNN model size often results in increased

on-device inference time due to the higher computational requirements. To model the correlations
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between metrics, we utilize the DKL-GP technique and employ Equation 4.9.

cov(fl(x), fk(x′)) = Kf
lkK

x(x,x′), (4.9)

The inter-objective similarities between metrics l and k are represented by Kf
lk. By incorporating

Equation 4.9 into the DKL-GP approach, we can effectively capture correlations among the metrics

(Bonilla et al., 2007). These correlations play a vital role in balancing the trade-offs between on-

device inference time, model accuracy, and size during the exploration procedure. For instance,

when provided with a new input x∗, DKL-GP predicts its metric mean values with:

fl(x
∗) = (Kf

·l ⊗Kx(x∗,X))⊤Σ−1Y ;

Σ = Kf ⊗Kx(X,X) + D ⊗ I,

(4.10)

The l-th column of Kf is denoted as Kf
·l . The Kronecker product is represented by ⊗. We use D to

indicate the diagonal matrix, where the diagonal elements are σ2
l , and I refers to the identity matrix.

To parameterize the kernels for Kf and Kx, we employ a stacked multilayer perceptron (MLP)

approach. This allows us to model the deep kernels, which offer improved robustness compared

to previous kernel formulations such as automatic relevance determinant (ARD). Equation (4.11)

shows the example deep kernels,

cov(x,x′) = σ2 exp
(
−β⊤Σ−1β

)
;

β = (ϕ(x,www)− ϕ(x′,www)),

(4.11)

where www denotes weights of multilayer perceptions, and ϕ are non-linear transformations.

Acquisition function. BAQE utilizes the improvement of Pareto hypervolume (EPVI) as the cho-

sen acquisition function to direct the multi-objective search. Throughout the Bayesian optimization

(BO) process, the evaluation of performance on bit-width b and backend configuration parameters

hp encompasses on-device inference time, accuracy, and model size. However, the Gaussian Pro-

cess, employed for modeling the surrogate function, can only handle a single performance metric for

evaluation. Given this limitation, we aim to formulate a new objective that adequately captures all

three dimensions of the objective. This task presents a challenge since these three factors exhibit

negative correlations. For instance, compressing the model size or reducing the bit-width may result
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Figure 4.6: 2-D visualization of the idea of Pareto Hypervolume (PV) and Expected Improvement
of Pareto Hypervolume (EPVI).

in a loss of accuracy. Similarly, increasing accuracy through higher precision incurs higher infer-

ence latency. In light of this, our optimization objective shifts from co-optimization to identifying a

favorable trade-off point that achieves overall optimality. Within BAQE, we adopt the Expected Im-

provement of Pareto Hypervolume (EPVI) as the acquisition function. This choice enables efficient

guidance of the optimization process towards the Pareto frontier of the three objectives.

In Figure 4.6, we illustrate the concept of Pareto Hypervolume and EPVI using a 2-D visual-

ization. In the 3-D space of (accuracy, latency, model size) represented as Ω(x, y, z), we consider

a reference point pref . The Pareto Hypervolume refers to the “half-arch” space bounded by pref

and the optimal points (depicted as blue dots in Figure 4.6) on the Pareto frontier P. This volume

represents a Lebesgue measure of the Pareto optimality across the three dimensions. Its formulation

is as follows:

PVΩ(P, pref ) =
∑

p∈Ω

[1(p ≽ pref )[1−
∏

p′∈P
1(p ⪯̸ p′)]], (4.12)

where 1(·) is 1 if the statement is true and 0 otherwise. “≽” denotes “better or equal” at all three

dimensions. The PV bound by pref is the green area in Figure 4.6. pref is manually selected on

space Ω.

With the definition of PV, the improvement of Pareto hypervolume (PVI) is rather clear; namely,

the optimality/PV increased from a new positive sample point p+ in Ω that surpasses the old frontier

(red area in Figure 4.6):

PV IΩ(P, pref , p+) = PVΩ(P ∪ p+, pref )− PVΩ(P, pref ), (4.13)
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while the expected PV improvement (EPVI) is:

EPV IΩ(P, pref ) = Ep+|Ω[PV IΩ(P, pref , p+)]

=
∑

p+∈Ω

Prob(p+|Ω) · PV IΩ(P, pref , p+).
(4.14)

Our approach constructs the acquisition function using Equation 4.14 to identify the point p+

that maximizes the expected improvement. The probability Prob(p+|Ω) is modeled using a multi-

objective Gaussian Process (GP) for the dimensions of accuracy, latency, and model size. We

optimizes the process by iteratively selecting x∗ from a set of candidates X in a manner that

maximally increases the likelihood of the DKL-GP function f(·):

x∗ = argmax
f(x)=p+

EPV IΩ(P, pref ). (4.15)

4.2.5 Complete Exploration Flow

In addition to providing a visualization and description for each component mentioned earlier, we

provide a comprehensive flow description below. The entire process of multi-objective exploration

in BAQE is outlined in Algorithm 4.

To begin with, the TED-based initial sampling procedure generates the first batch Xinit, which

serves as the training dataset for fitting the DKL-GP surrogate model.

In our experiments, the selection of the initial sample size m is not critical, as any number greater

than 10 demonstrates satisfactory convergence. For both the Resnet-18 and Resnet-50 benchmark

models, we choose 10 as the value for m. As discussed, the TED-based sampling approach aims

to maximize the trace KV X(KXX + µI)−1KXV , which indirectly minimizes the covariance of the

performance regression model. At a high-level, this step reduces the prediction uncertainty of the

regression model by employing a more sparse sampling strategy across the search space S.

Subsequently, the Bayesian optimization (BO) process continues by sampling from all candidates

V and selecting the combination (b,hp) that maximizes the expected improvement in Pareto hy-

pervolume. Each candidate is associated with a multilayer perceptron model denoted as ϕ(·). In our

experiments, the multilayer perceptron ϕ(·) consists of four linear layers, with the first three layers

followed by a ReLU layer to introduce non-linearity. The dimensions of the linear layers are set as
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Algorithm 4 BAQE Complete Exploration Flow

1: Input: Bit/backend parameters space S, Stopping iteration number N , initial smaple size m,
regularization coefficient µ.

2: Output: Pareto optimal solution set Xoptim.
3: X ← ∅,V ← S;
4: //Initial sampling

5: (b,hp)← TED(S, µ,m);
6: Take Xinit ← (b,hp) as initial set and deploy on board to evaluate on-device performance Yinit;
7: Y ← Yinit,X ←Xinit;
8: //Remove initial samples from candidates

9: V ← V \Xinit;
10: //Multi-objective BO iterations

11: for i = 1← N do
12: Fit DKL-GP on Y and X;
13: x∗ ← argmaxx∈V EPV I(x|V );
14: on-device performance y∗ ← Auto-deploy&tuning
15: // Add the new sample from candidates

16: X ←X ∪ x∗,Y ← Y ∪ y∗;
17: V ← V \x∗;
18: end for
19: Construct Pareto frontier and select Pareto optimal Xoptim from X;
20: Return Xoptim;

1000, 500, 50, and 48, respectively. Prior to calculating the covariance in DKL-GP, each candidate

x is embedded as a feature using the aforementioned multilayer perceptron model.

4.2.6 Automatic Deployment and Tuning

During each iteration of the Bayesian optimization (BO) process, a data sample x = (b,hp) is

selected from a large pool of candidate samples. However, the weight w and scaling factor s remain

at their initial values. At each iteration, BAQE adjusts the continuous variables w0, w1, ..., wl and

s0, s1, ..., sl. To obtain accurate performance feedback, BAQE incorporates automatic deployment

and tuning at each sampling stage to update w and s. We avoid fine-tuning with simulated quanti-

zation as it often introduces significant accuracy bias, especially in deeper networks. Instead, BAQE

strives for genuine evaluation to ensure reliable performance updates.

Our framework is not limited to Post-Training Quantization (PTQ) or Quantization-Aware Train-

ing (QAT). However, for the sake of fair comparison, we adopt the QAT scheme used in the baseline

approach. During the tuning process, only a small batch of calibration data, which amounts to 0.01%
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of the ImageNet dataset, is sufficient. The fine-tuning stage does not require extensive training. Our

main objective is to obtain an indication of on-device performance as feedback, rather than achieving

a highly trained model. Furthermore, we have the flexibility to further optimize the backend-level

parameters during the on-device compilation and execution. Lastly, in order to streamline the opti-

mization process for a given hardware backend, BAQE excludes certain combinations of (b, s,w,hp)

that have already been explored.

4.3 Experiments

Platforms. We assess the performance of the benchmark models on three distinct platforms. The

first platform is the NVIDIA Jetson Orin NX system-on-module (SoM) edge device, equipped with

16 GB LPDDR5 RAM. This device is based on NVIDIA’s Ampere architecture, comprising 1024

CUDA cores and 32 tensor cores. It features an 8-core ARM Cortex-A78E CPU and offers three

power modes: 10W, 15W, and 20W. To ensure a fair comparison, all experiments here are conducted

using the 15W mode. The second platform is a PC device powered by a 14-core Intel i7-12700H

CPU and 64GB RAM. Additionally, the PC is equipped with an NVIDIA RTX3070 GPU drawing

130W of power. This GPU, also built on the Ampere architecture, possesses 5160 CUDA cores and

184 tensor cores, along with 8GB GDDR6 RAM. The final platform is a server platform featuring

a 10-core Intel Xeon(R) 4210R CPU and 128GB RAM. It is equipped with an NVIDIA RTX 3090

GPU consuming 350W of power. This GPU, also based on the Ampere architecture, encompasses

10496 CUDA cores and 328 tensor cores, along with 24 GB RAM. In our implementation, we have

chosen three platforms with GPUs based on the same architecture. This ensures that they possess

the same computational units, such as CUDA cores and tensor cores, while differing in quantity.

This approach enables consistent support for the same bit-width types and facilitates handling of

identical bit-width computations, effectively eliminating other environmental variances.

Dataset. The ImageNet-1K dataset serves as the dataset for both training and evaluation in

the classification task. To ensure a fair evaluation of accuracy, we employ all 50,000 images from

the validation set to calculate the Top-1 score. During the optimization process, auto-tuning is
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performed on the model weight and scaling factor. For the Resnet-18 model, we utilize only 0.01%

of the training set, while for the Resnet-50 model, we use 0.05% of the training set. For the final

evaluation of quantized performance, we utilize the entire ImageNet-1K evaluation set.

QAT/PTQ. In our practical implementation, we opted for Quantization-Aware Training (QAT)

while making only minor adjustments to the model. For the QAT process, we utilized a small subset

of the ImageNet dataset, specifically 0.01% for Resnet-18 (and 0.05% for Resnet-50). We trained the

models with a batch size of 128 and a learning rate of 0.0001 for a single epoch. It is important to

note that the QAT process is decoupled from the exploration stage. The small subset of the dataset

used during the QAT process can also serve as a calibration set for Post-Training Quantization

(PTQ) if desired.

Implementation Details. To establish our benchmark, we have chosen the widely used Resnet-18

and Resnet-50 models. Our BAQE framework is constructed using BOTorch and TVM (Chen et al.,

2018a). We have extended the TVM (Chen et al., 2018a) framework to incorporate support for

the third-generation Tensor Cores and a wider range of bit-width options (Int4, Int8, FP32, Int32),

enabling practical mixed-precision quantization. In our implementation, the precision of each layer’s

weight and activation values is consistently maintained to align with the genuine multiplication and

addition calculations performed by the underlying hardware.

4.3.1 Search Strategy Analysis

We assess the search efficiency of BAQE in optimizing both bit-width and backend configurations

through visual and numerical comparisons. We have recorded the results of the initial thirty sampling

trials. Our baseline methods encompass random search within our unified search space and Simulated

Annealing (SA) with XGBoost serving as the performance prediction model, which aligns with the

strategy employed by TVM (Chen et al., 2018a).

Visual Analysis. To provide a visual demonstration, we have selected the highly representa-

tive Jetson Orin NX as the backend and evaluated the search process using Resnet-18. We have

recorded the results of the initial thirty sampling trials. For clear visualization, we have utilized a

two-dimensional coordinate system with latency and Top-1 score. As depicted in Figure 4.7, our
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Figure 4.7: Comparison of performance of searched samples. Blue dots denote all Pareto optimal
points, which is a projection from (Accuracy, Latency, Size) to (Accuracy, Latency). Red dots are
found in Pareto points by searching. Gray dots denote searched sub-optimal points that are not on
the Pareto frontier. Our BAQE found the most optimal points within the same search time.

BAQE search strategy successfully identifies the most optimal bit-width and backend configura-

tions, delivering a balance between inference speed and accuracy. Moreover, even the remaining

sub-optimal points are situated near the frontier, indicating that BAQE exhibits superior search

quality.

Numerical Analysis. In order to evaluate both the search quality and efficiency, we have conducted

numerical comparisons. To demonstrate the adaptiveness and generality of BAQE, we have assessed

all three backends and two benchmark models, as presented in Table 4.1 and Table 4.2. In terms

of efficiency, we have collected the normalized search time required to obtain an equivalent number

of optimal points. For quality evaluation, we have determined the number of Pareto optimal points

within the thirty trials. Additionally, we have calculated the average distance to the reference

set (ADRS) as another metric. ADRS provides an indication of the extent to which the sample

performance vector Y deviates from the Pareto frontier points P:

ADRS(Y ,P) =
1

|Y |
∑

p∈Y

min
p′∈P

D(p, p′), (4.16)

where D denotes Euclidean distance in the performance space. Results in Table 4.1 and Table 4.2

show that our method is superior in efficiency and quality.

Search Time Cost. BAQE has a fixed search time budget of 40 trials (10 from inital TED and

30 from BO process). In comparison, conventional baselines takes ILP + collecting real latency of

each layer/bit pair, of which time complexity is O(kn). BAQE holds the search time advantage.
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Table 4.1: Normalized Searching Results on Resnet-18.

Backend Search strategy
Normalized Normalized Optimal

ADRS search time points

Jetson NX Orin
(Edge device)

Random Search 1.061 2.533 0
SA+XGBoost 1.038 1.533 1

BO+DKLGP (Ours) 1.000 1.000 5

RTX 3070
(PC)

Random Search 1.113 1.941 0
SA+XGBoost 1.197 1.471 3

BO+DKLGP (Ours) 1.000 1.000 6

RTX 3090
(Server)

Random Search 1.452 2.333 1
SA+XGBoost 1.806 1.533 1

BO+DKLGP (Ours) 1.000 1.000 4

Table 4.2: Normalized Searching Results on Resnet-50.

Backend Search strategy
Normalized Normalized Optimal

ADRS Time points

Jetson NX Orin
(Edge device)

Random Search 1.306 2.214 0
SA+XGBoost 1.158 2.357 1

BO+DKLGP (Ours) 1.000 1.000 3

RTX 3070
(PC)

Random Search 1.695 3.250 1
SA+XGBoost 1.128 3.167 0

BO+DKLGP (Ours) 1.000 1.000 2

RTX 3090
(Server)

Random Search 1.161 2.143 0
SA+XGBoost 1.297 2.143 0

BO+DKLGP (Ours) 1.000 1.000 2

4.3.2 Quantization Performance Analysis

We evaluate the performance of BAQE and the state-of-the-art hardware-aware quantization method,

HAWQ-V3 (Yao et al., 2021), by comparing the Pareto points on all three backends in terms of on-

device inference speed and accuracy, as shown in Table 4.3. HAWQ-V3 (Yao et al., 2021) utilizes a

bit-width setting generated using an ILP solver. It is worth noting that our search strategy generates

a group of samples that lie on the Pareto frontier, representing optimal performance trade-offs. For

each benchmark and backend, we provide three samples with varying levels of accuracy, speed, and

model size, demonstrating the search efficiency and capability of BAQE. To ensure a fair comparison,

we assess the hypervolume of our Pareto set against HAWQ-V3 (Yao et al., 2021). In this analysis,

we set the reference point as (0, 0, 0) and normalize the final values. The results, as presented in Ta-

ble 4.4, reveal that BAQE outperforms the baseline, achieving an improvement ranging from 6% to

96%. We shows better top-1 score and shorter inference latency, which indicates BAQE’s searching

efficiency and ability.
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Table 4.3: Performance comparison with SOTA HAWQ-V3 (Yao et al., 2021) in model size (MB),
inference latency (ms) and Top-1 score (%).

Benchmark Method
Jetson Orin NX (Edge) RTX 3070 (PC) RTX 3090 (Server)

Model Latency Top-1 Model Latency Top-1 Model Latency Top-1

Resnet-18

HAWQ-V3 (Yao et al., 2021) 7.09 3.81 70.58 6.51 0.28 70.01 7.08 0.18 70.09

BAQE (Ours)

6.40 3.93 67.96 10.88 0.27 72.55 8.61 0.17 71.07

8.01 4.13 70.25 6.25 0.26 67.05 6.62 0.16 68.65

9.51 4.50 71.29 6.62 0.25 68.64 9.37 0.17 70.86

Resnet-50

HAWQ-V3 (Yao et al., 2021) 18.81 12.60 75.48 18.54 0.68 76.27 18.57 0.37 76.02

BAQE (Ours)

19.91 10.78 76.38 16.98 0.66 76.45 18.19 0.37 76.07

16.56 10.73 75.72 16.55 0.70 76.28 16.43 0.37 75.98

15.68 10.40 75.27 15.68 0.67 75.27 16.80 0.35 75.55

Table 4.4: Comparison in normalized hypervolume.

Benchmark Method Jetson Orin NX RTX 3070 RTX 3090

Resnet-18
HAWQ-V3 (Yao et al., 2021) 1 1 1

BAQE (Ours) 1.06 1.08 1.13

Resnet-50
HAWQ-V3 (Yao et al., 2021) 1 1 1

BAQE (Ours) 1.96 1.52 1.53

Table 4.5: Example comparison of Latency with/without Loop-level optimization on Orin NX.

Model w.o. hp Optim. w. hp Optim. Acce. Ratio

Resnet-18 13.63 ms 4.519 ms × 301.6% ↑

Furthermore, this result table substantiates our assumption that, given different backends, higher

latency does not necessarily result in slower inference times. The interaction of backend configura-

tions disrupts the linear relationship between these metrics. Hence, it is evident that indirect metrics

such as the number of parameters and FLOPs/BOPs are not reliable indicators. On-device evalu-

ation, which provides ultimate feedback in the form of on-device latency and accuracy, accurately

reflects real-world performance.

Ablation on hp Optimization. To further validate our assertion that optimizing hardware param-

eters, in addition to bit-width, is crucial during quantization, we conduct an ablation study with and

without loop-level optimization, as presented in Table 5.3. This analysis aims to provide justification

for our motivation and demonstrate the significance of hardware parameter optimization.
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Figure 4.8: 3-D performance distribution of all (b,hp) on three different backends with benchmark
model Resnet-18.
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Figure 4.9: 3-D performance distribution of all (b,hp) on three different backends with benchmark
model Resnet-50.

4.3.3 Pareto Optimality Analysis

When visualizing the performance in a 2-D projection on the (Accuracy, Latency) space, we can

observe the distribution of performance as well as the searched optimal samples with Pareto optimal

performance. For a comprehensive understanding, the original 3-D performance distribution in the

search space is visualized in Figure 4.8 and Figure 4.9. The notations used in the main paper remain

consistent here, where Blue dots represent all Pareto optimal points, Red dots indicate Pareto points

discovered through the search process, and Gray dots denote sub-optimal points that were searched

but do not lie on the Pareto frontier.

It is important to note that we have emphasized in both the introduction and experiments that
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Figure 4.10: Relation of latency and model size for all (b,hp) on three different backends with
benchmark model Resnet-18.
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Figure 4.11: Relation of latency and model size for all (b,hp) on three different backends with
benchmark model Resnet-50.

model size alone does not guarantee an accurate indication of performance; it is merely a metric

related to memory consumption. On-device performance is influenced by various factors, particularly

when hardware resources are limited. In order to illustrate this, we plot the relationship between

latency and model size in Figure 4.10 and Figure 4.11. From these plots, we can observe a slight

positive correlation between latency and model size, but with significant variance. As we transition

from server to edge devices like Jetson NX, this positive correlation diminishes. This finding aligns

with our claim that using model size as an indirect indicator of speed or latency is not reliable.

On-device evaluation is indispensable for accurate performance assessment.

4.4 Summary

In this work, we discuss the several challenges of the current quantization methodology in a real

deployment scenario. Decoupling quantization and deployment may cause some search space unex-

plored. In addition, we also stress the inevitability of on-device evaluation because of the factor of
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backend configuration. To mitigate the problems, we propose a backend-adaptive DNN deployment

framework to realize synchronous algorithm-level and backend-level optimization as a thorough so-

lution for quantization deployment. We unify the model-level and backend-level search space and

design a multi-objective search strategy to efficiently find the optimal set of bit-width settings and

backend configurations. Experiments not only verify our proposition but also demonstrate the effi-

ciency and effectiveness of our framework.
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Chapter 5

AI-Accelerated Adaptive Mask

Optimization Framework

The continuous shrinking of VLSI technology nodes has led to a significant impact on the manufac-

turability of integrated circuits. This is due to the non-negligible lithography proximity effect (Pan

et al., 2013), which can cause issues during the printing process. Resolution enhancement techniques

(RETs) are employed to address this challenge and improve the printability of the lithography pro-

cess. One of the most widely used RETs is optical proximity correction (OPC), which optimizes mask

printability by compensating for the diffraction effect that occurs during the lithography process.

As Figure 5.1 suggests the diverse patterns in real design where machine learning may fail at

corner cases. Furthermore, upon conducting a more detailed examination of each sub-region, we

have observed a certain degree of similarity in the pattern distribution across different sub-regions.

Numerous patterns are recurrently positioned throughout the entire design layer, featuring com-

parable geometric shapes but varying locations. This pattern repetition allows us to exploit their

shared geometric characteristics, leading to the idea that the OPC solution for one pattern can be

applied to similar patterns, thereby enhancing efficiency. Inspired by these findings, we introduce a

self-adaptive framework called AdaOPC, specifically designed for performing OPC on real designs.

Firstly, AdaOPC incorporates pattern analysis capabilities, enabling the classification of sub-
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Figure 5.1: Visualization of a real design layer. Two key observations served as the motivation for
our OPC framework design. Firstly, patterns were found to be distributed unevenly throughout the
design layout, exhibiting varying levels of complexity. We classified intricate patterns as critical,
while simple patterns were labeled as non-critical. Secondly, a significant proportion of the patterns
displayed a high degree of repetition across the entire layout.

regions as either critical or non-critical. This classification allows for the appropriate selection of the

OPC solver. In particular, densely scattered sub-regions exhibit not only the diffraction effect but

also the optical interference caused by neighboring components, both of which collectively impact the

final printed image. These intricate patterns, requiring robust and rigorous numerical optimization

methods, are considered critical and are better suited for achieving higher manufacturability. On the

other hand, sub-regions with sparsely scattered patterns are simpler, making them more amenable

to mask optimization processes utilizing machine learning models, which offer superior inference

speed through learned representations.

Secondly, considering the presence of numerous recurring patterns on the design layer, all sharing

the same geometric shape as depicted in Figure 5.1, we explore the possibility of reusing optimized

masks for these repetitive patterns to eliminate redundant OPC iterations. However, our idea faces

three significant obstacles:

1. Slicing the large design layout into smaller patterns, as illustrated in Figure 5.2, unavoidably

introduces a shift in the location of patterns with identical geometric shapes. The question
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Figure 5.2: Slicing repeating full layout inevitably causes some location shift on repeating patterns.

arises: Can an optimized mask with a location shift be effectively reused? And if so, how?

2. How can we accurately and efficiently match a given query pattern with the corresponding

pattern from a vast repository of stored patterns?

3. How to measure the geometric similarity of patterns with location shift?

To address the aforementioned questions, we have developed a dynamic pattern library with

online updating capabilities, enabling us to store and reuse both repeating patterns and optimized

masks. This is achieved through the construction of a dynamic hierarchical graph. Furthermore,

we have mathematically demonstrated the shift equivariance property of the lithography process,

affirming the feasibility of mask reuse. By accurately calculating the shift of the design pattern and

calibrating the mask accordingly, we ensure the effective reuse of masks despite pattern location

shifts. We have implemented a graph-based approximation method for efficient pattern matching,

enabling us to quickly identify the nearest neighbors within a short query time. We summarize the

contributions of this section as follows:

• We propose a self-adaptive workflow that allows for flexible selection of OPC solvers.

• We prove the feasibility of mask resue to speed up the OPC process for real design patterns

and provide an efficient mask shift calibration method in practice.

• We generate design patterns embedding by supervised contrastive learning for similarity mea-

surement and pattern matching.
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• We construct a dynamic pattern library using a hierarchical graph with online update along

with a greedy graph-based nearest neighbor search for fast matching.

• We bring a new weighting strategy during last modification stage to handle the sizing problem.

• With experiments on different pattern cases from a real design layout, we proved our framework

can reduce over 90% runtime while still preserving the optimal OPC performance.

5.1 Preliminaries

5.1.1 Lithography Simulation Model

The lithography process begins with projecting an input mask M ∈ Rh×w onto a wafer plane through

a series of optical lenses. This projection results in an aerial image, represented as I ∈ Rh×w.

The aerial image is subsequently utilized to form a coating on the wafer using photoresist, which

ultimately creates the desired final pattern Z ∈ Rh×w. Traditionally, simulating the lithography

process involves two sequential stages: first, the optical projection model, followed by the photoresist

model.

The projection process in coherent imaging systems has been widely studied using the Hopkins

diffraction model (Hopkins, 1951) for mathematical analysis. Nevertheless, a different method em-

ploying singular value decomposition (SVD) has emerged as a favored alternative because of its

computational efficiency. Originally introduced by (Cobb, 1998), this SVD-based approximation

breaks down the Hopkins diffraction model into a sum of coherent systems via eigenvalue decompo-

sition:

I(x, y) =

N2∑

k=1

wk|M(x, y)⊗ hk(x, y)|2, x, y = 1, 2, ...N (5.1)

In this equation, k represents the kernel index within the coherent system, while hk denotes the

parameters of the k-th kernel itself. The weight assigned to the k-th kernel is symbolized by wk. An

approximation of order K is demonstrated in (Gao et al., 2014) as follows:

I(x, y) ≈
K∑

k=1

wk|M(x, y)⊗ hk(x, y)|2, (5.2)

For our experiment, we chose K = 24 to approximate the model. After the optical simulation,
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Figure 5.3: OPC evluation creteria: (a) Visualization of EPE measurement (b) Visualization of
PVBand.

the resulting lithography intensity I is input into the photoresist model, which produces the final

binary pattern Z based on an exposure resist threshold Ith:

Z(x, y) =





1, if I(x, y) ≥ Ith,

0, if I(x, y) < Ith,

(5.3)

Although DNN models frequently provide faster computation, we have chosen to use the Hopkins

model because of its analytical properties. By employing a white box model, we can perform

mathematical analysis on the pattern shift equivariance property during the lithography process.

5.1.2 OPC Evaluation Criteria

Edge Placement Error (EPE). After the lithographic process, the printed pattern on the wafer

may display geometric deviations from the intended design target. These deviations are typically

evaluated using the edge placement error (EPE) metric. Figure 5.3a demonstrates the EPE mea-

surement process, where a collection of measuring points is selected along the perimeter of the target

design pattern, including both horizontal and vertical edges. At each coordinate (x, y), if the dis-

tance D(·) between the printed image and the target surpasses a predetermined threshold thEPE at
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a particular measuring point, it is classified as an EPE violation:

EPE violation(x, y) =





1, D(x, y) ≥ thEPE ,

0, D(x, y) < thEPE .

(5.4)

Process Variation Band (PV Band). In real-world lithography processes, variations in the

manufacturing conditions can lead to inconsistencies between the intended and the actual printed

patterns. These discrepancies may cause printing errors, as the final printed images can exhibit

a range of contour variations depending on factors such as the focus or defocus depth and the

intensity of the incident light. To quantify the resilience of the printing process against variations,

the concept of the Process Variation Band (PV Band) is introduced. The PV Band represents

the region of dissimilarity (XOR) between the innermost and outermost contours of the printed

patterns, as illustrated in Figure 5.3b. This metric provides a means to assess the influence of

process variations on the quality of the printed output.

PVBand =

N2∑

x,y

|Zout − Zin|, (5.5)

In the equation above, N represents the dimensions of the pattern. The printed pattern correspond-

ing to the outer contour is denoted by Zout, while Zin represents the inner contour.

5.2 Adaptive Framework

The workflow we propose is illustrated in Figure 5.4. Initially, as described in Section 5.2.1, we

present the OPC solver selection module, which is responsible for determining the most suitable

OPC solver based on the characteristics of the input patterns. Subsequently, Section 5.3.2 explores

the utilization of supervised contrastive learning to transform patterns into high-dimensional vector

representations, enabling efficient pattern matching within the library. Lastly, Section 5.4 addresses

the practicality of our approach by examining mask reusability and its associated requirements,

demonstrating the property of shift equivariance during the lithography process. Furthermore, we

propose a solution that employs shift calibration to address this aspect.
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Figure 5.4: The overall workflow of AdaOPC is depicted using colored blocks to represent functional
modules. The red dashed lines indicate the flow of library updates within the workflow.

5.2.1 OPC Solver Selection

In order to handle the differing levels of complexity among various patterns, our framework incorpo-

rates a versatile solver pool that selects the most appropriate OPC solutions. We divide the sliced

design patterns into two distinct categories: critical and non-critical patterns. A solver selector

module is employed to determine the most suitable OPC solver for each case. This solver selector

can be considered a 2-class classifier developed using a straightforward deep-learning classification

model. As the foundational network, we utilize ResNet-18 (He et al., 2016) and train it with the

aim of minimizing the cross-entropy loss L:

L = − 1

N

N∑

i

yi log(pi) + (1− yi) log(1− pi), (5.6)

Throughout the training process, each sample i is linked to a binary label yi, denoting its membership

in the critical pattern class (1) or otherwise (0). The classifier model generates a probability pi

for each sample. The primary objective of training is to minimize the discrepancy between the

predicted probabilities pi and their corresponding labels yi. Despite the apparent simplicity of this

approach, the straightforward combination of a basic network architecture and the associated loss

function proves to be remarkably effective in delivering rapid and accurate predictions for pattern

classification without the need for any additional complexities or embellishments.

When it comes to the ML-Solver for handling non-critical patterns, we employ a generative neural

network model that takes inspiration from DAMO-DMG (Chen et al., 2021), which previously held

the title of state-of-the-art (SOTA) OPC solver for the via layer. Specifically, we utilize U-Net++
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with residual connection as the foundational model architecture. Our training strategy for this

generative model closely follows the approach outlined in (Chen et al., 2021). However, there is a

notable difference in our training data. Rather than relying on a DNN simulator as done in (Chen

et al., 2021), we curate our own training dataset by sourcing patterns from a real full-scale design.

Moreover, the masks in our dataset are generated using a robust OPC engine that incorporates a

genuine lithography model. This approach to data preparation more accurately reflects the real-

world OPC scenario, where the lithography model is the only source of ground truth information.

For critical patterns, we opt for a rigorous optimization technique detailed in (Gao et al., 2014),

leveraging GPU acceleration via CUDA and thoroughly optimized memory management. This de-

cision is made despite the remarkable performance demonstrated by deep learning methods in com-

prehensive assessments on specific pattern test sets. Although data-driven black-box deep learning

models exhibit proficiency in replicating and inverting diffraction phenomena, they may face dif-

ficulties when encountering optical interference stemming from intricate neighboring elements. In

these situations, the rigorous numerical solver provides an analytical solution that is impervious

to the geometric intricacy of patterns. Moreover, in a real-world OPC context involving a novel

design and possibly a new lithography engine, patterns and optimized masks produced using robust

techniques can be employed as a dataset for training the machine learning model to adapt to these

fresh circumstances.

It is crucial to recognize that the solver pool is designed with extensibility in mind. This implies

that any OPC solution possessing specific strengths for certain patterns has the potential to be

integrated as a replacement or complementary candidate within the pool. If the pool contains more

than two solvers, the classifier loss can be readily adapted as follows:

L = − 1

N

N∑

i

C∑

c=1

yic log(pic), (5.7)

where C signifies the number of pattern classes, which corresponds to the number of associated

OPC solvers. The label yic indicates whether a pattern belongs to category c (1) or not (0). By

employing this methodology, we can effectively transform the problem into a multi-classification

scenario, enabling the incorporation of multiple OPC solvers within the solver pool.
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5.2.2 Empirical Risk Minimization for Selector

As previously stated, patterns originating from the same design may result in an inadequate training

set for robustly training the selection model, considering that the initial training is entirely supervised

and the label is binary (one-hot encoded for multiple solvers). The simplistic labeling approach may

lead to overfitting on the training patterns, which even exhibit similarities to the evaluation set.

This appears to be unavoidable due to the repetitive nature of these patterns. However, expanding

the dataset with additional designs is not feasible, necessitating the use of augmentation techniques.

For all pattern and corresponding critical label distributions (x, y) ∼ P , our objective is to

minimize the expected empirical risk of the trained model f :

R(f) =
1

n

n∑

1

l(f(xi), yi), (5.8)

It is important to note that the sample (x1, y1), ..., (xn, yn) serves as an approximation to the actual

distribution. Applying Gaussian noise to both the input pattern x and critical label y can help

reduce this risk term.

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj .

(5.9)

where λ is selected from a Beta distribution with a value range of λ ∈ [0, 1]. Overall, such augmen-

tation techniques can enhance the dataset distribution.

This method significantly aids the pattern selector in precisely distinguishing patterns with den-

sities that are near either critical or non-critical ones. This ability enables the selector to make

well-informed decisions based on the specific pattern density. This is a crucial motivation in the

AdaOPC workflow. Our motivation extends beyond time efficiency; robustness is enhanced at this

initial stage. By accurately identifying ambiguous areas, the risk of erroneously classifying critical

patterns is mitigated, further optimizing overall robustness.

5.3 Dynamic Pattern Library

For patterns that are more complex and critical, once the simpler cases have been eliminated, it

becomes imperative to employ a robust solver that can handle these intricacies. In order to further
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optimize the process and boost efficiency, we introduce a dynamic pattern library that stores coupled

patterns: the sliced pattern P ∈ Rh×w alongside its post-OPC mask counterpart MP ∈ Rh×w. By

doing so, we enable the reuse of masks for patterns that appear repeatedly, effectively eliminating

the need to start the time-intensive OPC iterations from the beginning for each occurrence. The

core idea behind this approach is to recognize and identify stored patterns that are recurring before

initiating the OPC process. To ensure the library remains up-to-date, we implement an online

update mechanism that allows for the seamless insertion of newly encountered patterns and their

associated masks.

Drawing inspiration from the work of (Malkov and Yashunin, 2018), we construct the pattern

library using a graph-based structure. In this representation, each node within the graph symbolizes

a stored pattern, while the edges connecting the nodes signify a strong similarity between the

associated patterns. Considering the vast quantity of patterns present in a complete design layout,

the graph can grow to a considerable size. Performing a naive search for the shortest path between

nodes through exhaustive pairwise distance comparisons would be impractical and computationally

prohibitive. To overcome this challenge, we introduce the following optimizations to enhance the

efficiency of pattern matching:

• Sparse neighborhood graph structure: By maintaining sparse connections between nodes that

are far apart, we effectively reduce the total number of edges in the graph, thereby minimizing

computational complexity.

• Graph hierarchy: We organize the graph into hierarchical layers, with each layer imposing

restrictions on the degree of nodes. The lower layers accommodate a higher number of edges,

facilitating a greedy search approach for identifying the nearest neighbors at each layer.

For a visual representation of the hierarchical sparse graph structure, please refer to Figure 5.5.

5.3.1 Pattern Matching And Online Database Update.

The objective of identifying the pattern with the closest geometric shape is a nearest neighbor search

problem (NNS). Following the approach of (Malkov and Yashunin, 2018), we utilize the Hierarchical

Navigate Small World (HNSW) algorithm for efficient matching. As depicted in Figure 5.5, the
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Figure 5.5: The graph-based pattern matching flow is visually represented, illustrating the traversal
of the query design pattern P greedily traversing the hierarchical graph. The nearest node reached
at layer 0 corresponds to a match pattern P′, which has the most similar geometric shape with P.

matching process employs a greedy approach, traversing the graph from higher layers down to the

bottom layer. During this top-down traversal, a list of potential pattern nodes representing the

nearest candidates is maintained. This list gets updated whenever a closer pattern is encountered,

surpassing the distance of one of the existing candidates in the list. This matching strategy is based

on the concept of proximity graph nearest neighbor search. For a detailed understanding of the

pattern-matching search strategy at each hierarchical layer, refer to Algorithm 5. Once we reach

the bottom layer, patterns in the candidate list C that have a distance smaller than the threshold

σ are considered matches. If the smallest distance in C is still larger than σ, we classify it as a new

pattern. This approach maintains its speed and accuracy even as the graph expands with continuous

insertions of new patterns into the library.

The pattern library follows an online update method. When encountering a new pattern that

has no matches, the mask undergoes OPC iterations starting from scratch for optimization. Subse-

quently, the library inserts the pattern and its optimized mask as a new node, updating the edge

hierarchy of the graph to accommodate the new pattern. The detailed steps of the online update

process are outlined in Algorithm 6.

As outlined in Algorithm 6, the insertion of a new pattern into one of the hierarchical layers

is determined by a decaying probability. Within the same layer, edges are established between the
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Algorithm 5 Graph-Based Pattern Matching Greedy Search

Require: Query pattern P, starting nodes qs, number of nearest neighbor to return k,layer number l,
distance measurement d(·).

Ensure: Nearest pattern candidates C.
1: V ← qs; ▷ Visited nodes
2: W ← qs; ▷ Waiting list of nodes to visit
3: C ← qs;
4: while |W | > 0 do
5: q∗ ← nearest pattern from W to P;
6: qf ← furthest pattern from C to P;
7: if d(P, q∗) > d(P, qf ) then
8: break;
9: end if

10: for e ∈ neighbor(q∗) in layer l do
11: if e ̸∈ V then
12: V ← V ∪ {e};
13: qf ← furtherest pattern from C to P;
14: if d(P, e) < d(P, qf ) or |C| < k then
15: W ←W ∪ {e};
16: C ← C ∪ {e};
17: if |C| > k then
18: Remove furthest pattern from C to P;
19: end if
20: end if
21: end if
22: end for
23: end while

Algorithm 6 New Pattern Insertion and Graph Update

Require: hierarchical graph G, new pattern P, total layer number L, G’s starting nodes qs, max degree M .
Ensure: updated hierarchical graph G.
1: l← random(0, L); ▷ exponentially decaying probability
2: for lc ← L, ..l do
3: C ← search(P, qs, k, lc); ▷ Algorithm 5
4: qs ← nearest pattern of q in C;
5: end for
6: for lc ← l, ..0 do
7: Insert P to layer lc of G; ▷ add P into graph
8: C ← search(P, qs, k, lc); ▷ Algorithm 5
9: neighbors((P ))← top M nearest patterns in C;

10: for e← neighbors(P) do
11: Add edge (P, e);
12: if Degree of e > M then
13: neighbors(e)← top k nearest patterns to e;
14: Remove all edges connecting e;
15: Create edges e with each one in neighbors(e);
16: end if
17: end for
18: end for
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newly inserted pattern and the top k patterns that exhibit the closest proximity. When the degree

of neighboring nodes surpasses the upper limit k due to the addition of new edges, a process of

edge reconnection is triggered. As a result, the degree of each node in the graph is constrained to

k. It is crucial to acknowledge that the number of edges has a direct impact on the complexity of

the matching process. By leveraging a sparse hierarchical graph structure, efficient searching can be

achieved even as the graph grows in size.

To quantify the similarity between vectors, we have introduced several distance metrics. One

such metric involves calculating the inner product of two vectors to gauge the difference in their

directional orientation:

Inner(VP1,VP2) = VP1 ·VP2 =

k∑

i=0

VP1,iVP2, i, (5.10)

In this equation, VP1 and VP2 denote the embedded vectors corresponding to patterns P1 and

P2, respectively. VP1, i represents the i-th element of vector VP1. The dimension of the embedded

vector is set to k = 256. It is worth noting that the inner product employed in the equation does not

adhere to the positivity property, which stipulates that an element should be closer to itself than to

any other element.

In contrast to the inner product, cosine similarity upholds the positivity property, making it

a suitable measure for assessing the similarity between two vectors within an inner product space:

dCosine(VP1
,VP2

) = 1.0− VP1 ·VP2

∥VP1
∥ ∥VP2

∥ ,

= 1.0−
∑k

i=0 VP1,iVP2,i√∑k
i=0 VP1,i

2
√∑k

i=0 VP2,i
2
,

(5.11)

An alternative approach is to use Euclidean distance, where the embedding metric space is

treated as an Euclidean space. Each vector represents a position in Cartesian coordinates, and

the similarity between two vectors can be determined by calculating the squared -2 norm of the

difference between the coordinates.

dEuclid(VP1
,VP2

) = ∥VP1
−VP2

∥22 =

√√√√
k∑

i=0

(VP1,i − VP2,i)
2. (5.12)
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Any metric that follows the principles of nearest neighbor search (NNS) can be used as a feasible

similarity measurement metric, allowing for the exploration of different metrics based on various

embedding spaces. For our implementation, the embedding space learned with the pattern feature

loss mentioned in Equation (5.7), the optimal pattern matching accuracy is achieved by Euclidean

distance measurement.

In this section, we highlight the distinct motivations behind the selection and library stages,

despite the fact that both stages involve a pattern embedding process. Consequently, it is essential

to employ different metrics for the embedding objectives in these two stages. The Cross-entropy

loss presented in Equation (5.7) facilitates the classification of all patterns into groups based on ex-

plicit pattern density. In contrast, the library stage does not assign any explicit labels to individual

patterns; instead, it necessitates a hidden embedding space where the similarity between all pattern

pairs can be quantified and compared. We have conducted a comparative analysis of several met-

rics for pattern-matching in our implementation and have determined that the Euclidean distance

measurement Equation (5.12) yields the highest matching accuracy.

5.3.2 Embedding Space Construction

To utilize a stored mask from the library, it is essential to find a matching pattern with the identical

geometric shape. However, the task of directly comparing the geometric similarity of two patterns is

intricate. To overcome this challenge, we have devised an embedding metric space that captures the

geometric properties using a high-dimensional vector representation called VP. Instead of storing

the original ⟨P,MP⟩ pair in the library, it is substituted with the ⟨VP,MP⟩ pair. This approach

allows us to determine whether two patterns are the same by employing a similarity metric to

compare the embedded vectors.

The construction of the embedding space is accomplished by transforming it into a feature

extraction procedure utilizing a deep learning model. Subsequently, the metric space is established

through deep metric learning, where the embedded vector serves as the output of an embedding

neural network. The embedding process comprises two modules:

• The first module is the Encoder, represented as Enc(·), which encodes each input pattern P

into a feature map FP ∈ Rh×w×c. The feature map has spatial dimensions of h and w, while
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c denotes the number of channels.

• The second module is the Projector, denoted as Proj(·), responsible for embedding the fea-

ture map FP into a representation vector VP ∈ Rk. During the training stage, the output

Proj(FP ) is normalized to reside on the unit hypersphere in Rk to facilitate loss calculation.

Consequently, the formulation of the embedding process is as follows:

VP = Proj(Enc(P)) ∈ Rk. (5.13)

In prior deep learning-based OPC methods (Yang et al., 2019; Ye et al., 2019; Chen et al., 2021),

the backbone structure commonly employed was UNet or its variant UNet++. Nevertheless, the

OPC problem entails a stringent condition that necessitates the output mask to maintain the precise

resolution of the input design. This constraint considerably limits the available choices for network

backbone structures.

By incorporating an embedding process that eliminates these constraints, we gain the flexibility to

choose from a range of network structure candidates. In our approach, we intentionally select ResNet-

18 (He et al., 2016) as the encoder, which is widely recognized and extensively used. The input

pattern P corresponds to a 2D image with dimensions of 2048×2048. To address the computational

burden and minimize time delays, we employ a greedy downsampling strategy, reducing the pattern

size to 256x256 before feeding it into the neural network. This downsampling technique has negligible

impact on performance and does not noticeably degrade the results.

In addition to the original ResNet-18 structure, we introduce a depthwise convolution layer to

decrease the feature channel size from 512 to 256. Towards the end of the neural network, a linear

layer is applied to convert the resulting 3D feature into the final 1D embedded vector, denoted as VP.

The size of VP represents a trade-off, where a larger size indicates improved matching accuracy but

slower computation and matching speed. Based on extensive experimentation, we have determined

that a size of 256 strikes a balance between excellent performance and minimal matching time.

The embedding space S is specially designed with certain objectives:

• Patterns with the same shape exhibit similar embedded vectors with the shortest distance

between them.
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• Patterns with different shapes are sparsely clustered in the embedding space and located far

apart.

In order to train the embedding space effectively, it is necessary to have an ample amount of data

that encompasses various patterns and instances of the same pattern. During the training process,

data belonging to the same pattern is considered positive samples, and the embedded vectors are

encouraged to be closely aligned, indicating a higher degree of similarity. Conversely, embedded

vectors representing different patterns are treated as negative samples and are pushed apart as

much as possible. To construct the training dataset, we extract numerous patches of patterns from

an actual full-scale design. This dataset offers a wide range of pattern samples that enable effective

training of the embedding space.

Data Preparation. The cropping process involves two distinct steps aimed at generating the

requisite positive and negative samples for training purposes. In the initial step, anchor points along

the design layer are randomly chosen. These anchor points serve as reference points for subsequent

operations. In the subsequent step, random shifts are applied around each anchor point, resulting

in a set number of patches. These patches exhibit the same pattern within a square region but

possess varying relative positions. By labeling the patterns according to their respective anchor

points, we ensure that each batch of training data adheres to the criteria of containing both positive

and negative samples.

Supervised Contrastive Loss. To generate the necessary positive and negative samples for

training, the cropping process incorporates two distinct steps. When training the neural network

to acquire the ability to embed patterns into representative vectors, traditional cross-entropy loss

might not adequately capture inter-class distances or effectively handle noisy labels. In the domain of

self-supervised learning, a family of losses based on metric distance learning exists, as demonstrated

by previous works such as (Hadsell et al., 2006; Wu et al., 2018b; Pei et al., 2023a; Hjelm et al.,

2018). Among these, Contrastive loss (Chen et al., 2020) has proven to be particularly potent in

learning representative embeddings. Motivated by the work of (Khosla et al., 2020), we extend the

contrastive loss to a supervised contrastive loss. This extension involves genuinely generating and

labeling all positive and negative samples during the data preparation stage, ensuring that the labels
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accurately reflect the inherent nature of the samples.

z = normalize(Proj(Enc(P))) ∈ Rk, (5.14)

Then the loss function is formulated as:

LsupCon = −
∑

i∈I

1

|J(i)|
∑

j∈J(i)

log
exp(zi · zj/τ)∑

a∈A(i) exp(zi · za/τ)
, (5.15)

Within the context of the training batch, we denote i as the anchor index and j as the anchor

index of positive samples. The set A(i) = I\i encompasses all anchor indices in this batch, excluding

i. Consequently, A(i)\J(i) represents the anchor indices corresponding to negative samples. Here,

τ denotes a scalar temperature parameter. The term exp(zi · zj/τ) in the numerator signifies the

similarity between the positive sample pairs zi and zj. Conversely, the term exp(zi · za/τ) in

the denominator represents the similarity between all sample pairs, including the negative ones.

Through the minimization of the loss, the training process aims to enhance the similarity among

positive samples while diminishing the similarity among negative samples.

5.4 Mask Reuse With Shift Calibration

5.4.1 Mask Reusability

We proceed under the assumption that if the query design pattern P matches a stored design pattern

P′ in the library, both exhibiting the same shape, it is possible for repeating patterns to efficiently

share masks, leading to enhanced efficiency. However, as demonstrated in Figure 5.2, when the entire

design is partitioned into smaller patterns, encountering pattern location shifts (∆x,∆y) between P

and P′ becomes inevitable. In real lithography and OPC flow scenarios, where no external factors

influence the lithography process, the printed wafer image patch should not undergo any geometric

distortion. Instead, it will only exhibit an identical shift in comparison to the design pattern, as

depicted in Figure Figure 5.6. Thus, to facilitate mask reuse, the primary requirement is to ensure

that the location shift during lithography does not result in any geometric distortions.

To demonstrate the feasibility of the mask shift calibration approach, we provide mathematical
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proof that the location shift remains unchanged before and after the lithography process. We

represent the Hopkins diffraction model during lithography, as shown in Section 5.1.1, as Litho(·).

We denote the location shift as δ∆x,∆y(·). Through our mathematical analysis, we establish the

following result:

Theorem 1 (Shift Equivariance). Given pattern P and mask MP where

P = Litho(MP). (5.16)

The following statement always holds:

δ∆x,∆y(P) = Litho(δ∆x,∆y(MP)). (5.17)

Proof. For any position (x,y) on pattern P:

δ∆x,∆y(P(x, y)) = P(x+∆x, y +∆y),

=

N2∑
k=1

wk |hk(x+∆x, y +∆y)⊗MP(x+∆x, y +∆y)|2 ,

=

N2∑
k=1

wk|
N∑
i=1

N∑
j=1

hk(i, j)MP(x+∆x+ i− N

2
, y +∆y + j − N

2
)|2,

=

N2∑
k=1

wk|
N∑
i=1

N∑
j=1

hk(i, j)MP(x+ i− N

2
+ ∆x, y + j − N

2
+ ∆y)|2,

=

N2∑
k=1

wk|
N∑
i=1

N∑
j=1

hk(i, j)δ∆x,∆y(MP(x+ i− N

2
, y + j − N

2
))|2,

=
N2∑
k=1

wk |hk(x, y)⊗ δ∆x,∆y(MP(x, y))|2 ,

= Litho(δ∆x,∆y(MP(x, y))).

(5.18)

Therefore Equation (5.17) is proved.

Considering that mask shift during lithography solely results in a printing shift, it becomes

feasible for repeating patterns within a design to share OPC-optimized masks by applying a simple

shift correction. To accomplish this, we choose the corresponding mask MP′ from the pattern

library and apply a correction of (−∆x,−∆y) to derive the initial mask MP for pattern P.
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Shape unchanged

Figure 5.6: The printed wafer image must exhibit an identical location shift to the design pattern
without any geometric shape distortion.

5.4.2 Pattern Shift Calibration

To determine the shift between patterns P and P′, we employ pixel-level similarity analysis. Specif-

ically, we calculate the pixel-wise cross-correlation between P and P′. This measurement of

cross-correlation serves as an indicator of the similarity between individual pixels, with the high-

est response value on the correlation map representing the shift in the position of the center point

(xctr, yctr). However, it is essential to acknowledge that conducting cross-correlation computation

on two large 2D patterns can be time-consuming. The computational process for cross-correlation

is analogous to convolving P with the 180◦ rotation of P′, denoted as Rotate(·):

CrossCorr(P,P′) = Conv(P, Rotate(P′)), (5.19)

To expedite the computation process, we employ Convolution and leverage the efficiency of Fast

Fourier Transform (FFT) (Vasilache et al., 2014). This approach allows us to calculate the pattern

shift using the following formula:

x∗, y∗ = argmax
x,y

Conv FFT (P, Rotate(P′)),

∆x = x∗ − xctr, ∆y = y∗ − yctr,

(5.20)

And the initial mask is corrected with:

MP = δ−∆x,−∆y(MP′). (5.21)
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In practical scenarios, we validate the calibrated mask by inputting it into the lithography model. If

needed, we may further iterate once or twice using the Inverse Lithography Technology (ILT) solver

to accommodate any potential noise introduced during the shift calibration process. To maintain

consistency, we adopt the pattern size described in (Yang et al., 2019), which is 2048× 2048. With

our implementation, the calculation time for determining the shift is less than 0.25 seconds when

executed on a CPU.

5.5 Post-Calibration Enhancement

Once the pre-collected mask has been matched and reused, the initial workflow of AdaOPC (Zhao

et al., 2022) proceeds by directly feeding the calibrated mask into the ILT flow for additional op-

timization, as illustrated in Figure 5.4. This approach ensures the quality of the output mask and

serves as a reliable methodology. Additionally, it is worth noting that the final result, measured in

terms of EPE/PVBand, remains upper-bounded by the original ILT approach. However, we have

delved into the patterns following the initial AdaOPC process and proposed a post-stage for mask

correction, aiming to further enhance the quality of the mask.

AdaOPC (Zhao et al., 2022) initially focuses on via layers, which exhibit relatively simple geomet-

ric shapes but complex distributions. Through the analysis of printed aerial images and evaluation

metrics at each iteration, we observe that the printed aerial images commonly exhibit a “circle”

shape with smooth boundaries. In many instances, the size of the printed circle for each target

is strongly influenced by neighboring components following the lithography stage. Conventional

approaches in ILT, employing either pixel-based methods or level-set-based methods, primarily con-

centrate on addressing boundary healing to overcome disconnection or boundary merging issues, as

illustrated in Figure 5.7. In the case of metal layers, irregular object patterns and geometric shapes

may occasionally encounter such problems during lithography. However, it is crucial to address

and resolve this sizing problem. Our evaluation of various test cases demonstrates that this is the

primary cause of most EPE numbers.

As an additional stage after calibration, we introduce a “Halo-weighting” process following the

matching of a pre-collected mask obtained from the pure ILT stage. In this stage, our objective is
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Lithography

Lithography

Via Layer Design On-Wafer Image
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Figure 5.7: Visualization of the sizing problem in Via layer mask optimization problem, in compar-
ison with conventional metal layer. Some printed components are too small or too big, which may
cause problem during manufacturing.

to promote balanced object sizes and restore their proximity to the original via employing a filtering

step on the loss matrix during the update. When the matched mask is passed to the rigorous solver,

we incorporate a weighting filter H ∈ Rh×w. This weighting filter aligns with the original design

shape and assigns the highest weight to the boundary, gradually decreasing as the distance from the

boundary increases. The resulting heatmap resembles a “Halo” that gradually fades away from the

boundary of the via in the original design pattern, as shown in Figure 5.8.

Such weight filter is derived with two consecutive steps: the first step is boundary derivation. We

apply a morphological operation on the binary design image, calculating the Morphological Gradient

to retrieve the boundary B ∈ Rh×w matrix of each pattern P:

B = P⊕ b−P⊖ b, (5.22)

where the P⊕b and P⊖b denote the “dilation” and “erosion” operations. b is a grayscale structuring
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P B H

Via Boundary

Figure 5.8: Visualized derivation of “halo” weight filter H. The square on the left is a patch B from
original design. The square in the middle is the derived boundary B with morphological gradient
from Equation (5.22). The heapmap square on the right is the “halo” weight filter with higher value
on the brighter area and lower value on the greener area (0 ∼ 1).

element used in computer graphics (here, the pattern is regarded as a 1-channel picture):

b(x) =





0, if ∥x∥ ≤ 1,

−∞, otherwise.

(5.23)

The second step is to blur the derived boundary B for a gradually decreasing weight. One off-the-

shelf algorithm is distance transformation. The weight along the “halo” is determined by its distance

from the boundary of each component derived from Equation (5.22), where the value at (x, y) is the

distance to the boundary:

H(x, y) = 1−Norm(distance(x, y,B)), (5.24)

It is guaranteed that the weight filter shows a gradual decrease as the position moves farther from

the boundary. We normalize the distance to control the value range into [0, 1]. We subtract 1 with

this value such that the highest value on the boundary and the value range of H is still [0,1]. The

distance is calculated using simple Euclidean distance for faster calculation not only to attain a

faster calculation but also to bring a smoother yet effective weight distribution:

distance(x, y,B) = max
(xb,yb)∈B

(∥x− xb∥, ∥y − yb∥). (5.25)

In our implementation, we maintain the dilation and erosion size at 1, resulting in a boundary

length of 3 (+1/−1). The distribution of weights is depicted in Figure 5.8, illustrating a smooth
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weight distribution along the “halo” region within and outside the boundary of the via component.

By incorporating this filter into the loss matrix during ILT after calibration, the following effects are

observed:The restoration of the boundary restricts the area in proximity to the boundary. Conversely,

the accumulated loss further away from the boundary is given less weight, considering that this is

a post-matched mask. The significant errors have already been addressed prior to their inclusion in

the library and are no longer present at this stage.

5.6 Experimental Results.

Our framework is primarily developed using Python, with the machine learning components imple-

mented using the PyTorch library. On the other hand, the lithography and Inverse Lithography

Technology (ILT) modules are constructed using C/C++ and leverage the CUDA 11.3 toolkit for

optimized performance. Our framework is mainly developed using Python. The machine learning

components of our framework are implemented using the PyTorch library. On the other hand, the

lithography and Inverse Lithography Technology (ILT) modules are built using C/C++ and utilize

the CUDA 11.3 toolkit for optimized performance. To evaluate the performance and speed of our

framework, we conducted experiments on a CentOS-7 system equipped with an Intel i7-5930K CPU

running at 3.50GHz, along with an Nvidia GTX Titan X GPU. For our experiments, we employed

the publicly available lithography engine from the ICCAD 2013 CAD Contest (Banerjee et al.,

2013), which includes a set of 24 optical kernels. The photoresist intensity threshold was set to

0.055. We adopted a lithography wavelength of 193nm, with a defocus range spanning ±25nm and

a dose range of ±2%. To identify Edge Placement Error (EPE) violations, we set the EPE violation

threshold (thEPE) to 15nm. Despite the original implementation of AdaOPC utilizing GPU and

CUDA acceleration for the lithography process at each iteration, our analysis in Figure 5.9b reveals

that this bottleneck still hampers the efficiency of the optimization. To address this limitation and

enhance the ILT process compared to the original AdaOPC, we have re-implemented it to alleviate

the memory constraint during inference and gradient back-propagation. Primarily, we store all inter-

mediate tensors/matrices and kernel weights in the High Bandwidth Memory (HBM), which is the

GPU memory. Within each update iteration, the matrix calculations are performed directly on the
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GPU, while the utilized weights and updated matrices remain stationary in the GPU memory. This

approach eliminates unnecessary CPU-GPU data transfers and synchronization. Furthermore, we

have optimized our CUDA kernel at the thread level to minimize cache misses, resulting in improved

efficiency. In summary, our optimizations yield a speed-up of up to 2.2× for the same amount of

ILT calculations.

5.6.1 Data Preparation.

To ensure the validity of our OPC experiments, we utilized real design data extracted from a GDS

file generated by the open-source layout generation tool OpenROAD (Ajayi and Blaauw, 2019).

Specifically, we sliced patterns of size 2048 × 2048, following the established approach in previous

research works (Yang et al., 2019; Yu et al., 2021; Chen et al., 2021). This size aligns with the

supported clip size of our Lithography engine, eliminating the need for additional resize operations

that may not contribute to pixel-based OPC tasks. The patterns were derived from a comprehensive

via layer containing over 1.9×106 vias, with each pixel representing an area of 1nm2. It is important

to note that our proposed workflow is not limited to via layer patterns. The repetition property

also applies to metal layer patterns, although they have a continuity requirement. For instance, the

mask of a metal component on the stitching area should exhibit continuity and smoothness. If these

corner cases are addressed, the adaptive OPC flow can be extended to metal layer OPC.

For the training dataset of our ML-Solver, we randomly extracted 4000 patterns from the design

layer. These patterns were accompanied by masks optimized using the ILT Solver. The same set of

patterns was used to train the pattern classifier. To assign critical/non-critical labels, we directly

applied lithography to these patterns and assigned labels based on the Edge Placement Error (EPE)

values. This labeling approach is intuitive as it reflects the level of mask optimization difficulty.

Regarding the training data for Metric Space embedding, we followed the steps outlined in Section

5.3.2. We selected 400 random anchor points and generated shifts around each anchor point within

a range of ±10% of the pattern width. We ensured that the number of positive samples for each

anchor point was equal to or greater than the number of anchors, ensuring a positive-to-negative

ratio in each training batch. During the slicing stage, we applied padding to the mask, considering

the boundary area (10% width) of the pattern as the padding area. This allowed the boundary to
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Figure 5.9: (a) EPE convergence comparison (b) Runtime breakdown of AdaOPC on critical pat-
terns.

Library Size 128-D 256-D 512-D

100 0.9ms 1.3ms 1.5ms
500 3.4ms 5.7ms 8.8ms
1000 9.0ms 13.3ms 22.2ms
2000 20.4ms 31.2ms 52.2ms
5000 59.8ms 93.0ms 156.6ms
10000 130.1ms 206.5ms 413.6ms

Table 5.1: Pattern-matching speed Analysis on different embedding dimension.

go through the lithography engine, but only the inner area of the mask clip was updated. This

approach helps mitigate proximity effect issues at the edges. During the stitching stage, we needed

to overlap the mask clip onto the padding area.

5.6.2 Peformance Analysis

To validate the effectiveness of mask reuse, we initially observed the descending trend of EPE. In this

regard, we conducted a demonstration experiment on a specific pattern, where we recorded the EPE

descending trend during the iterations of Inverse Lithography Technology (ILT) with a calibrated

optimized mask serving as the initial state. We also recorded the trend when starting the ILT

process from scratch without an initial mask for comparison purposes. As depicted in Figure 5.9a,

when an initial mask is utilized, the EPE number starts at an almost optimal value of 23, and the
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Figure 5.10: Convergence speed of mask optimization with and without Pattern Matching. In order
to clearly demonstrate the acceleration ratio, we normalized the time of mask optimization without
pattern matching to 1. During optimization without pattern matching, the initial state of the mask
was not calibrated. In the case of optimization with pattern matching, we utilized the calibrated
mask as the initial state.

Case DAMO-DGS ILT-GPU AdaOPC AdaOPC+Faiss Ours

ID #EPE PVB (nm2) RT (s) #EPE PVB (nm2) RT (s) #EPE PVB (nm2) RT (s) #EPE PVB (nm2) RT (s) #EPE PVB (nm2) RT (s)

1 22 23323 5.20 23 23329 41.15 22 23232 5.50 22 23232 5.35 21 23492 2.42

2 26 26729 5.26 25 26762 48.5 24 26580 5.41 24 26580 5.26 22 26670 2.52

3 27 26938 5.22 24 26720 55.92 24 26718 5.37 24 26718 5.22 24 26720 2.61

4 36 27975 5.18 29 28127 70.57 25 27934 5.40 25 27934 5.25 25 27982 2.51

5 35 28805 5.32 30 28925 66.89 30 28927 5.44 30 28927 5.29 27 29128 2.67

6 30 26960 5.31 25 26762 55.81 24 26775 5.38 24 26775 5.23 24 26615 2.75

7 33 26382 5.23 28 26453 59.47 28 26281 5.43 28 26281 5.28 26 26327 2.56

8 32 30646 5.38 25 29450 54.88 27 29341 5.42 27 29341 5.27 27 29108 2.66

9 25 24054 5.25 24 24053 70.62 23 24022 5.43 23 24022 5.28 22 24111 2.63

10 24 21939 5.29 23 21701 37.59 22 21644 5.53 22 21644 5.38 21 21679 2.75

Avg. 29.0 26375 5.26 25.6 26228 56.14 24.9 26145 5.43 24.9 26145 5.28 23.9 26183 2.61

Ratio 1.165 1.009 0.997 1.028 1.003 10.637 1.000 1.000 1.028 1.000 1.000 1.000 0.959 1.001 0.495

Table 5.2: Comparisons of baseline approaches.

descending trend converges after the first iteration. In contrast, when ILT is initiated from scratch

without an initial mask, the EPE number begins at 37 and requires six iterations to reach the initial

EPE number achieved through mask reuse. Overall, it takes 12 iterations for the ILT process to

converge to an EPE of 22.

In order to evaluate the effectiveness of our framework, a series of runtime analysis experiments

were conducted. Our framework utilizes highly efficient machine learning-based methods to handle

non-critical patterns, while giving primary attention to critical patterns. For a visual breakdown of

the time taken by each step in the critical pattern OPC process within AdaOPC, refer to Figure

5.9b. It is evident from the breakdown that lithography and ILT OPC iterations account for 91.7%
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Selector Training Error Rate

w.o augmen. 1.9%
w. augmen. 0.2%

Table 5.3: Ablative study on ERM augmentation.

of the total runtime. On the other hand, pattern matching and shift calibration together contribute

only 8.3% to the overall process time. This indicates that the impact of these steps on the entire

process is minimal. Moreover, it showcases the adaptability of our framework, allowing seamless

integration of new and powerful OPC tools or litho-models to further enhance speed.

Furthermore, we investigated the scenario of an expanding pattern library. Although generating

a large number of “ground-truth” masks is constrained by time and computational resources, we

tested the speed of pattern matching using a substantial number of synthesized pattern vectors. As

shown in Table 5.1, even when the pattern library is expanded to accommodate 10,000 patterns with

a dimension of 512, the query and matching process can still be completed within 0.4 seconds. The

time overhead incurred is negligible in the overall process.

To assess the convergence speed of mask updates with and without pattern matching, we con-

ducted 10 cases after adding 800 patterns to the pattern library. The results presented in Experiment

5.10 demonstrate a significant reduction of 93.6% in the average number of iterations required for

mask convergence when pattern matching is utilized.

The performance gain from the post-calibration stage is listed in the last three columns on the

right in Table 5.2. We set our SOTA baseline as AdaOPC (Zhao et al., 2022) with matching algorithm

updated to the latest 2024 version of Faiss (Douze et al., 2024). By employing ”halo” weight filtering

on the loss during the final restoration process, we were able to observe an average EPE error of 23.9.

This represents a further 4% reduction compared to the results presented in the conference, where

the SOTA baseline was used. An ablative study on the accuracy of solver selection was conducted,

with and without data augmentation using the ERM objective. The study, depicted in Table 5.3,

revealed an improvement in accuracy from 98.1% to 99.8%. Furthermore, the error rate experienced

an 89% reduction. These findings highlight the effectiveness of our approach. With the integration

of our newly implemented GPU-efficient lithography system and ILT process, we achieved a 52%
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reduction in the overall runtime compared to the conference version. This enhancement significantly

enhances the efficiency of the system.
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Chapter 6

Conclusion

In this thesis, we have discuss the potential acceleration aspects of AI technology from algorithm, to

hardware-level optimization, all the way to AI for hardware design automation. We illustrates the

possibility of AI acceleration on Design-For-Manufactory and specific Mask Optimization. On the

contrary, we also discuss the Hardware-aware AI acceleration and domain specific AI acceleration.

• In Chapter 3, we design a domain-specific high-performance acceleration framework for super-

resolution deployment with a model originating from LAPAR. In our framework design, we

propose a dictionary slimming strategy to extract the most informative dictionary items for

efficient inference. We also designed a hardware-aware acceleration engine to fully utilize the

limited hardware resources for inference optimization. Moreover, we make trials on low-bit

inference with an adaptive 8-bit quantization strategy to further accelerate the process. Based

on various evaluation results, our system outperforms the state-of-the-art tool TensorRT, and

PyTorch on edge embedded GPU NVIDIA Jetson NX and 2080 Ti significantly, without quality

degradation.

• In Chapter 4, we discuss the several challenges of the current quantization methodology in a

real deployment scenario. Decoupling quantization and deployment may cause some search

space unexplored. In addition, we also stress the inevitability of on-device evaluation because

of the factor of backend configuration. To mitigate the problems, we propose a backend-
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adaptive DNN deployment framework to realize synchronous algorithm-level and backend-level

optimization as a thorough solution for quantization deployment. We unify the model-level

and backend-level search space and design a multi-objective search strategy to efficiently find

the optimal set of bit-width settings and backend configurations. Experiments not only verify

our proposition but also demonstrate the efficiency and effectiveness of our framework.

• In Chapter 5, we present a customized self-adaptive framework for Optical Proximity Cor-

rection (OPC) that focuses on mask optimization in real designs. Our framework utilizes a

comprehensive analysis of the design’s characteristics to enhance the optimization process.

To intelligently select an appropriate OPC solver based on pattern complexity, we introduce

an extensible OPC solver selector. Moreover, we introduce a dynamic pattern library that

enables the reuse of optimized masks for repeating patterns with identical geometric shapes.

To improve pattern matching efficiency, we employ supervised contrastive learning to embed

patterns into vectors. Additionally, we devise a graph-based search strategy to accelerate the

pattern matching process. We validate the reusability of masks by demonstrating the pattern

shift equivariance property. To address any potential shifts, we introduce a practical shift

calibration tool. Through extensive experiments, we demonstrate that our framework achieves

a co-optimization of OPC speed and robustness for real design patterns.
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