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Abstract

Visual segmentation and data grouping is comprehensively needed in the real-world.

However, a good visual segmentation model should fully utilize all the information

of the input data like image or point cloud, which requires large computational

resources. In this research, we will handling the problem of computational cost in

segmentation tasks and trying to propose an efficient visual segmentation system.

We start our research at constructing efficient attention module in visual segmenta-

tion framework, then we explore the possibility of applying space-filling curve to

visual segmentation. Finally, we successfully integrate the efficient attention module

and space-filling curve to the visual segmentation system, producing an accurate,

fast and memory-saving segmentation model. This thesis divides my research work

into three parts, which will be introduced in the following paragraph.

In the first part of our research, we are focusing on optimizing attention block,

which is the key component to perform high-accuracy segmentation. Attention

block collects global context information of input features, which means it has no

limited receptive field as convolution. However, this module is very costly and

will compress the features in channel when generating spatial attention. Similarly,

spatial features will also be compressed during channel attention generation. To

handle the two problem, we propose a new attention generation scheme that based

on tensor canonical-polyadic reconstruction. Specifically, we directly construct
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3D attention map that has high rank by using a series of low-rank tensors. Our

framework is named as RecoNet, which not only outperforms previous attention

based methods in various dataset but also produces lower computational cost. Our

proposed method is 100× faster than previou works.

In the second part of our research, we focus on the application of space-filling

curves (SFCs) in data grouping. It is a new approach to perform efficient visual

segmentation as we can use SFCs to perform data clustering and compression

first and then input the data into the visual segmentation system to lower its

computational overhead. In this part, we first analyze the properties of different

space-filling curves and then propose our SFC generation scheme. Specifically,

we construct a deep-learning-based SFC generation framework coupled with our

proposed efficient-GCN and Siamese Network learning scheme. The evaluation

results show that the SFC generated by our method has better clustering properties

compared with traditional SFCs.

In the third part, we combine low-rank attention with the space-filling curve,

producing an efficient point cloud segmentation system called HilbertNet. We use

3D voxel data as the input, which has better spatial locality compared with raw

point cloud, but it also occupies more computational resources. Here we introduce

the Hilbert curve to compress 3D voxel data into 2D image data first, which greatly

reduces the computational cost. Then we use our proposed low-rank attention

module called Hilbert attention to extract point cloud features with high efficiency.

We also propose Hilbert interpolation and Hilbert pooling modules to accommodate

the distribution of compressed 2D data. HilbertNet shows top performance on

several mainstream datasets while maintaining low cost and fast inference speed.
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摘要

視覺分割和數據分組在現實世界中有著廣泛的需求。然而，一個好的視覺分割模型

應該充分利用輸入數據如圖像或點雲的所有上下文信息，這通常需要大量的計算資

源。在這項研究中，我們將直面并解決分割任務中的計算成本問題，並嘗試提出一

個高效的視覺分割系統。我們的研究從構建視覺分割框架中的高效注意力模塊開

始，然後我們探索將空間填充曲線應用於視覺分割的可能性。最後，我們成功地將

高效的注意力模塊和空間填充曲線整合到視覺分割系統中，搭建了一個準確、快速

且節省GPU存的分割模型。本文我將我的研究工作分為三部分，并且將在後續段落

中詳細介紹。

在我們研究的第一部分，我們專注於優化注意力模塊，這是執行高精度分割的關

鍵組件。注意力模塊可以收集輸入特徵的全局上下文信息，這意味著它沒有像卷積

那樣有受限的感受野。然而，這個模塊通常非常消耗計算資源。同時，在生成空間

注意力時它會壓縮通道的特徵。同樣，在通道注意力生成過程中，空間特徵也會被

壓縮。為了處理上述兩個問題，我們提出了一種基於張量CP重構的新的注意力生成

方案。具體來說，我們直接使用一系列低秩張量構建具有高秩特徵的3D注意力圖。

我們的視覺分割框架名為RecoNet，它不僅在各種數據集中的表現超越了以前基於

注意力的方法，而且需要的計算成本更低。具體來，我們提出的方法比以前的工作

快100×。
在我們研究的第二部分，我們專注於空間填充曲線（SFCs）在數據分組中的

應用。這是一種新的方法來實現高效的視覺分割，因為我們可以先使用SFCs進
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行數據聚類和壓縮，然後再將數據輸入視覺分割系統以降低其計算開銷。在這

部分，我們首先分析了不同空間填充曲線的屬性，然後提出了我們的SFC生成方

案。具體來說，我們構建了一個基於深度學習的SFC生成框架，並結合了我們提

出的efficient-GCN和連體網絡學習方案。評估結果顯示，我們方法生成的SFC與傳

統SFC相比具有更好的聚類特性。

在第三部分，我們將低秩注意力與空間填充曲線結合起來，創建了一個稱

為HilbertNet的高效點雲分割系統。我們使用3D體素數據作為輸入，它與原始點雲

相比具有更好的空間局部性，但它也佔用了更多的計算資源。在這裡，我們首先引

入希爾伯特曲線來將3D體素數據壓縮成2D圖像數據，這大大降低了後續的計算成

本。然後我們使用我們提出的低秩注意力模塊，稱為Hilbert attention，用以高效率

提取點雲特徵。我們還提出了Hilbert插值和Hilbert池化模塊來適應被壓縮后2D數據

的分佈。HilbertNet在幾個主流數據集上展現出了頂尖性能，同時保持了低計算資

源的占用。
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Chapter 1

Introduction
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Figure 1.1: The pipeline of a semantic segmentation algorithm begins with feeding the image into a
deep neural network that includes a series of Conv-BN-ReLU layers. Then, the output feature X is
processed by an attention block, which generates an attention map A using the linear mappings of
X, marked as ϕ and θ. After that, the attention map is applied to help generate the final pixel-wise
prediction.

In recent years, the field of computer vision has witnessed remarkable advance-

ments, largely due to the integration of deep neural networks. These networks, as

they grow in depth and width, results in a significant increase in computational

demands. Currently, the majority of state-of-the-art computer vision models achieve

high-speed performance primarily with the assistance of GPUs. Nonetheless, numer-

ous application scenarios are constrained by the availability of limited computational

resources, such as those found in embedded systems and cellphone applications.
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Consequently, there is a great need for the development of efficient deep learning

algorithms that are capable of adapting to these resource-constrained platforms.

Among the various tasks in computer vision, segmentation stands out as particu-

larly computational heavy. The process of a segmentation algorithm is detailed in

Figure 1.1. This process requires the classification of every pixel within an image,

which means that the neural network designed for segmentation should be larger

than those employed for other tasks in order to preserve the receptive fields, yet

it simultaneously complicates the task of accelerating segmentation algorithms.

The development of an efficient segmentation algorithm is crucial, as it forms the

backbone of numerous real-world applications, including autonomous driving and

image editing. Moreover, it is also widely used in other areas of computer vision,

such as image generation and detection. In this thesis, we are focusing on how to

accelerate the image/point cloud segmentation algorithm. We will first introduce

how to perform efficient semantic segmentation, then we will propose how to

achieve efficient data grouping using space-filling curves. Finally, we will show how

to use space-filling curves to accelerate the segmentation task.

1.1 Efficient Semantic Segmentation

Semantic segmentation is a challenging task as it involves pixel-level classification

for a given image. It requires the prediction model to recognize the shape, texture,

and category of all pixels in the image. Fully Convolutional Networks (FCN) [68]

were the first to apply deep neural networks to this task, making great progress in

this field of study.

Recently, semantic segmentation has made significant strides by modeling context

information in convolutional networks [89, 2, 59, 8, 131, 9]. The attention mechanism

2
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(b)

Figure 1.2: (a) Vanilla non-local attention. (b) Attention low-rank reconstruction scheme. In
vanilla non-local block, it requires 2D similarity matrix, which will cause the compression of channel
information while in the attention low-rank reconstruction scheme, the attention map is constructed
by 3D tensors which will avoid this problem.

has become the most popular tool for constructing context features [132, 126, 31].

These approaches measure the importance of each element in a contextual

tensor and produce an attention map which can identify the important part of the

contextual tensor. The accurate context representation is then modeled through

the attention map. However, these methods will inevitably compress the channel

information during spatial attention modeling. Specifically, considering an attention

map A ∈ RHW×HW , which is generated by the matrix multiplication of two inputs

that have shapes of HW × C and C × HW. After the multiplication, we can find that

channel information in the C dimension is eliminated. As a result, the attention-

based approaches will have well-represented spatial context features, but the channel

context features will be ignored.

Intuitively, constructing context features directly without using a 2D attention

map can bypass this problem. However, context features inherently have a high-rank

nature [126] as they should possess enough information capacity to describe the
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contextual information in an image. Additionally, the contextual information varies

across different images. Therefore, context features cannot be effectively modeled

by a very limited number of low-rank tensors. Due to this high-rank complexity,

directly modeling context features presents a significant challenge.

In this research, we propose a novel method to model high-rank context features

accurately and efficiently. According to the theory of tensor CP decomposition [46],

we can progressively reconstruct the context features using a series of rank-1 tensors.

Our approach can obtain both spatial and channel context information, which is

different from previous approaches that had to compress either spatial or channel

features. Figure 1.2 illustrates the difference between non-local attention and our

proposed RecoNet attention mechanism.

Specifically, our RecoNet has two components: a tensor generation module

(TGM) that generates rank-1 tensors, and a tensor reconstruction module (TRM)

that reconstructs rank-1 tensors into a fine-grained high-rank tensor. TGM collects

context information along the width, channel, and height directions, formulating

them into a series of rank-1 tensors. Then, TRM reconstructs these low-rank

tensors into a high-rank attention map following the workflow of CP reconstruction.

This process identifies the occurrence of context information in different feature

dimensions, and the high-rank context feature is then obtained with high accuracy

and efficiency.

To measure the performance of our method, we conduct experiments on five

popular datasets: PASCAL-VOC12, PASCAL-Context, ADE20K, COCO-Stuff, and

SIFT-FLOW. Our approach consistently achieves state-of-the-art performance on

these datasets, especially on PASCAL-VOC12 [23], where we ranked as top-1 on

the leaderboard. Additionally, since the attention map in RecoNet is constructed by

low-rank tensors, the computational cost of our method is very small. For example,
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we are 100 × faster than non-local attention.

However, continuous optimization of non-local attention does not always lead

to a corresponding continuous improvement in performance. This optimization

approach can easily reach a bottleneck, as a tensor rank that is too small cannot

express all the information contained in an image. In pursuit of a more cost-effective

way to carry information, we consider data linearization. Specifically, we aim to

compress N-Dimensional matrices (like 2D or 3D) into 1D through linearization,

allowing us to express rich information with a lower rank, thereby breaking through

the performance bottleneck. Therefore, we need to consider how to efficiently

perform data linearization. In this context, we propose the use of a space-filling

curve for data linearization.

1.2 Efficient Data Grouping by SFCs

Space-filling curves (SFCs) can be used to linearize data, which means they can

transform n-D data into a 1D sequence. This property has led to their extensive

use in computer vision, such as data clustering [74], image compression [56], point

cloud compression [103], geographic hashing [3], and data transmission [70]. They

have also appeared in deep learning research, such as knowledge distillation [86]

and point cloud analysis [10]. Traditional SFCs are formulated as fractal functions,

such as the Hilbert curve [33] and the Z-curve [75]. Different SFCs have different

properties, which can be used in different applications. For example, the Hilbert

curve is locality-preserving, which makes it suitable for data compression, while

the Z-curve has jump connections, which is feasible for faster data queries and can

be used in database applications.

However, traditional SFCs usually have a fixed structure, which limits their
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HilbertOriginal Ours

Figure 1.3: The shape of Hilbert curve and a data-adaptive SFC. It can be found that the structure of
Hilbert curve is fixed while in data-adaptive SFC, the curve varies according to the image content.

applications. For example, we should use the Hilbert curve in data compression

tasks instead of the Z-curve since it has jump connections, and the data flattened

by the Z-curve will have a completely different data distribution compared to its

original shape, which is harmful for data compression.

To obtain a versatile SFC, the space-filling curves should be data-adaptive (see Fig-

ure 1.3). In other words, the SFC should be generated according to the distribution

of the given data so that we can use the obtained SFC in different tasks. Previous

data-adaptive SFCs [139, 76, 17] mainly focus on image context. These SFCs are

generated according to edges, image gradients, etc., providing better spatial locality

compared with traditional SFCs. These approaches transform the SFC generation

into a Hamiltonian path-finding problem, as illustrated in Figure 2.1. Recently,

researchers have been trying to harness deep neural networks to generate more
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powerful data-adaptive SFCs [102]. The SFCs in these works are generated by first

constructing many small circuits on the given grid graph G. Secondly, the dual

graph G ′ is constructed based on G, and the edge weights of G ′ are determined by

the prediction of a GNN [43, 101]. After that, a minimum spanning tree searching

algorithm like the Prim algorithm is applied to G ′, generating an MST. Finally, we

can obtain a Hamiltonian circuit based on the given MST, and the Hamiltonian

circuit itself will serve as an SFC. With the help of deep learning, the learning-based

data-adaptive space-filling curves greatly outperform traditional SFCs. However, the

large computational overhead and enormous GPU memory occupation limit their

application. For example, given an image with a size of 64 × 64, its adjacency matrix

will have the size of 4096 × 4096, which is not acceptable for efficient inference.

Additionally, MST generation algorithms like Prim’s [79] perform a greedy search,

which is undifferentiable and cannot be optimized by gradient-based optimizers

like SGD and Adam, which are widely used in neural networks.

In this research, we propose an efficient SFC generation method based on

deep learning, which can solve the problem mentioned above. To handle the

GNN scalability problem, we propose the Efficient-GCN (EGCN) module, which is

specially designed for grid graphs. Our solution greatly reduces the computational

cost of GNN, making it scalable to large grid graphs. Then we design a novel

learning scheme based on the Siamese network to handle the network optimization

problem and make the entire framework end-to-end trainable. Our proposed model

works as follows:

Firstly, the input images are encoded by convolutional networks [32] and then

normalized by a feature normalization module. After that, the output feature is

fed into the EGCN module for efficient GCN calculation. The EGCN accelerates

the GCN algorithm by fully utilizing the adjacency matrix structure of the grid
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graph. Specifically, we observe that the grid graph only has 4 connections for each

node, which means only 4 offset-diagonals appear in their adjacency matrices. Since

the multiplication of a matrix A and an offset-diagonal matrix B is the same as

shifting and padding matrix A, we do not need to perform real matrix multiplication

between A and B; instead, we can achieve the same result by shifting A. EGCN

achieves lower computational cost based on this observation.

After the calculation of EGCN, our proposed network optimization scheme is ap-

plied. Note that the generation of SFC is the problem of finding a Hamiltonian path,

which is not differentiable, and the solution to combinatorial optimization should

be applied in this scenario, such as Reinforcement Learning [40, 19, 47]. However,

previous work [102] pointed out that RL is not stable in the curve generation task.

Therefore, we need to design a new optimization scheme. Based on the self-learning

technique [28, 11], we use the output of a Siamese network to supervise the main

network, which indirectly optimizes the entire framework.

Furthermore, we propose multi-stage MST, which combines the minimum span-

ning tree of different convolution layers such that the generated SFC is more stable

and has better performance.

After introducing the applications and functions of space-filling curves, we will

provide an example to demonstrate how to apply them to visual segmentation.

1.3 Applying SFCs in Point Cloud Segmentation

Point clouds are the primary data format in 3D space and they are generated by

3D sensors like LiDAR. In the early stages, researchers conducted point cloud

analysis using point-based methods, which only utilize point cloud data such as

SO-Net [52], PointNet++ [85], and PointNet [82]. These approaches are fast and
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Figure 1.4: Left: “Reshape" function or zigzag curve. Right: Hilbert curve. We can easily find
that the “reshape" function has many “jump connections," while the Hilbert curve does not, which
implies that the Hilbert curve has a better locality-preserving property.

low-cost since they avoid using computationally heavy components such as 3D

voxels and 2D meshes. However, point cloud data lacks spatial locality, which

limits the performance of such methods. Recently, with the rapid development

of convolutional neural networks, researchers are trying to use convolution in

point cloud analysis since convolution is capable of handling spatial locality. A

common pipeline for using convolution in point cloud analysis is to first transfer the

original point cloud into a voxel. After that, 3D convolutions are applied to extract

volumetric features. By using 3D convolution, the spatial locality of the point cloud

will be well preserved. However, 3D convolution will occupy a large amount of

GPU memory and consume a lot of computational resources.

An intuitive way to solve this problem is to find a mapping function from 3D

space to 2D space, like bird-eye view images, flattening, multi-view images, and

range images. Then we can use convolutional networks to process the 2D data.

However, such mapping functions will change the data distribution of the original

input point cloud and weaken its locality. Therefore, we should find a 3D to 2D
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mapping that preserves the 3D locality.

The application of Space-filling curves [73] may meet this need. They are

fractal functions that have been extensively applied in many tasks such as image

compression [56], databases [3], and GIS [92]. The SFCs act as a single line that

links all the elements in an N-dimensional space together without any repetition.

This characteristic proposes a novel approach to reduce the dimension of a high-

dimensional feature. For example, we can reduce the dimension of an image from

2D to a 1D sequence according to the mapping rule of a given SFC. There are various

space-filling curves like the Hilbert curve [33], Z-curve [75], and Gray-Code [24],

each with a different mapping rule. In this research, we will use the Hilbert curve

as shown in Figure 1.4. Since the mapping rule of the Hilbert curve has a good

locality-preserving property, the sequence that is flattened by the Hilbert curve will

preserve the spatial information of its original shape.

Specifically, we first convert the point cloud into voxels, as voxel data has richer

locality information compared to point cloud data. Then, we flatten the voxels

slice-by-slice along the Z-axis as mentioned in Equation (5.3), thereby obtaining

a 2D representation of the 3D voxels. During the flattening process, each slice

is transformed into 1D data via the Hilbert curve. The flattened data retains the

locality of its original shape, as the Hilbert curve is locality-preserving.

It is important to note that the data distribution of a flattened voxel differs from

that of a traditional 2D image. For instance, adjacent pixels in the flattened voxel

may not be neighbors in its original 3D shape. Therefore, we have specifically

designed a pooling module called Hilbert pooling and an attention module named

Hilbert attention to extract features in the flattened voxel. Additionally, we propose

Hilbert interpolation to compress 2D features and merge them with the output

of the 1D branch. We refer to the combination of these operations as HilbertNet.
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To evaluate the performance of HilbertNet, we conducted several experiments,

including point cloud segmentation and point cloud classification. The experimental

results demonstrate that our proposed framework achieves top performance on the

ModelNet40 [112], ShapeNet [7], and S3DIS [1] datasets, while maintaining small

computational costs.
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Chapter 2

Literature Review

2.1 Efficient Semantic Segmentation

Tensor Low-rank Representation. According to the theory of tensor decompo-

sition [46], a high-rank tensor can be decomposed into many low-rank tensors. In

other words, a high-rank tensor can be reconstructed through the linear combination

of several low-rank tensors. This property of tensors is widely applied in various

computer vision tasks. For instance, researchers have decomposed the weight tensor

in convolutions to accelerate inference [50], and it has also been utilized for model

compression [124]. There are two commonly used tensor decomposition methods:

CP decomposition and Tucker decomposition. During Tucker decomposition, the

original tensor is separated into a core tensor and several matrices, whereas CP

decomposition transforms the high-rank tensor into a series of vectors (rank-1 ten-

sors). In this thesis, our focus is on tensor reconstruction rather than decomposition.

Specifically, we employ CP reconstruction to rebuild a high-rank attention map from

multiple rank-1 tensors, thereby enabling efficient computation.

Self-Attention in Computer Vision. Researchers in natural language processing
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(NLP) first proposed the attention mechanism [100, 13, 121, 16], which is a method

for encoding long-range features. This property of attention makes it popular not

only in NLP but also in computer vision tasks, as the receptive field of attention

is not limited, unlike convolution which confines its receptive field within the

convolution kernel. For example, SE-Net [37] introduced channel-wise attention to

boost the performance of ResNet in image classification tasks. CBAM [108] further

improved the ResNet model by integrating both spatial and channel attention into

the original CNN model. To enlarge the receptive field of neural networks, Wang et

al. invented the non-local network [106], which is applicable not only to images but

also to video applications.

Context Aggregation in Semantic Segmentation. The success of semantic seg-

mentation is largely attributed to the collection of contextual information. The richer

the contextual information we gather, the better the segmentation results we achieve.

Contextual information can be collected by enlarging the receptive field of the neural

network. For instance, FCN [68] merges the output features of different layers in

the neural network to enrich the contextual information. Subsequently, feature

pyramid approaches like DeepLab [8, 9] and PSPNet [131] were proposed to gather

contextual information by applying large convolution kernels. However, these

methods cannot differentiate the importance of the contextual features they collect.

To address this issue, attention-based approaches like PSANet [132], APCNet [31],

CFNet [126], and EncNet [125] were introduced. Although attention-based methods

collect contextual information efficiently, they consume a significant amount of com-

putational resources. Consequently, efficient attention methods such as CCNet [38],

EMANet [54], and A2Net [12] were proposed. These methods simplified the at-

tention generation algorithm, making semantic segmentation both accurate and

efficient. However, these methods can only generate attention in either the spatial
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or channel direction, meaning they have to sacrifice either the channel context or

spatial context. Unlike these previous approaches, our proposed method constructs

attention directly from a rank-1 tensor, which means we can obtain both spatial and

channel attention simultaneously.

2.2 Efficient Data Grouping via SFCs

Fractal Space-Filling Curves. Space-filling curves are surjective mappings from 1D

space R to N-D space RN. In other words, they can convert data from N-D space

to 1D. Given a unit function f1(x), we can create a fractal space-filling curve by

repeating it infinitely. The first fractal space-filling curve was proposed by Peano in

1890, which is called the Peano curve [91]. It maps the data in [0, 1] to [0, 1]2 and

has the analytical formulation f (x) = limn→∞ fn(x). The detailed expression of the

Peano curve, which is composed of a parametric equation t → (φ(t), ψ(t)), is given

by Cesàro [91]:

φ(t) =
∞

∑
n=1

f2n−1(t)
3n , ψ(t) =

∞

∑
n=1

f2n(t)
3n ,

where

fm(t) = 1 + ([3mt]− 3[3m−1t]− 1)(−1)[3t]+[32t]+...+[3m−1t].

If we simply change the parametric equation t → (φ(t), ψ(t)) by replacing f (t) with

f (t) = 1 − t, t ∈ [0, 1], we can get a variant of Peano curve, which is called Z-curve

and was proposed in 1904 by Lebesgue [75]:

φ(t) =
∞

∑
n=1

f
(
32n−2t

)
2n , ψ(t) =

∞

∑
n=1

f
(
32n−1t

)
2n ,

Z-curve has many Z-shaped connections, which can connect two points with large

distance and therefore, such space-filling curve is welcomed in the tasks that requires
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low latency query like data indexing [103] and geographic hashing [3]. We can also

generate space filling curves that has no jump connections such as Hilbert curve [74].

To generate Hilbert curve, we should replace f (t) to fh(x) = fh (04̇q1q2q3 . . .), where

fh(x) is expressed as the quaternary Cantor set [91]. Therefore, the analytical

formulation of Hilbert curve is:

fh(x) =
∞

∑
j=1

(
1/2j

)
(−1)e0j sgn

(
qj
)


(
1 − dj

)
qj − 1

1 − djqj

 ,

ekj = number of k’s preceding qj (mod 2)

dj = e0j + e3j(mod2)

Hilbert curve is locality preserving since it has no jump connection. Hence, it

is widely used in the tasks that requires feature invariant such as point cloud

compression [103] and image compression.

Different fractal space-filling curves have different properties and can be used

under certain conditions. Their advantage is that they can be generated with low

cost. However, the shape of fractal space-filling curves is predefined and cannot

adapt to the distribution of data, which limits their application. To make the SFC

more versatile, researchers proposed data-adaptive SFC. The shape of the curve in

data-adaptive SFC varies according to the distribution of given data, and thus they

can be applied to different tasks without changing the curve generation method.

Data-adaptive Space-Filling Curves. Data-adaptive space-filling curves are usually

generated according to the gradient [76], image context [17], and neighborhood

similarity [139], which makes them adaptive to such features and therefore can be

applied to various situations with better performance compared with fractal SFCs.
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Figure 2.1: The process of generating data-adaptive SFCs.

Different from fractal SFCs that iteratively generate curves, in data-adaptive SFC,

the curve generation becomes a Cover-and-Merge process [70, 17, 102].

During the cover process, a grid graph G is first constructed, which is an

undirected graph and the nodes in G are the pixels as shown in Figure 2.1a. Then,

many small circuits are constructed by separating the grid graph G as illustrated

in Figure 2.1b. After that, we construct G ′, a dual graph of G, the process can be

found in Figure 2.1c. In the final step, we assign the edge weights of G ′ based on

the distribution of data. We provide Dafner [17] SFC as an example to show how

to generate a data-adaptive SFC. In this method, we first construct the grid graph
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and dual graph as mentioned before, then we use the image context to determine

G ′. Specifically, in G ′, suppose the edge weight between two nodes Cj and Ci is

W(Ci, Cj), it will be calculated by using the pixel differences:

W(Ci, Cj) = |u|+ |w| − |e| − | f |,

Here f , w, u, e are pixel differences in four directions, for example, |u| = |p2 − p1|
as depicted in Figure 2.1b. Also, we can use deep neural networks to determine

W(Ci, Cj) like NSFC that was proposed by Wang et al. [102]. In NSFC, for an input

image, the edge weights W in G ′ are given by:

W = E(G(Conv(I))),

Where F(·) is the CNN backbone to extract image features and G(·) is a GNN that

determines the W . After obtaining W , they provide an evaluator network E(·) to

identify whether it is a good SFC according to the given metric.

Until now, we have a dual graph G ′ with weights W , then we can go to the merge

step. In the first stage of merge, we will find a minimum-spanning tree τ according

to the W in G ′ as shown in Figure 2.1d. Next, small circuits that are generated

by G are connected if two adjacent small circuits are linked by τ as demonstrated

in Figure 2.1e. Finally, we remove the MST and get a desired SFC in Figure 2.1f.

2.3 Efficent Point Cloud Segmentation

Image-based Point Cloud Analysis. Recently, many researchers are trying to

introduce 2D neural networks designed for images to point cloud analysis, as

several benefits can be obtained from 2D models. Firstly, 2D convolution is more

efficient than 3D convolution when handling voxel data. Secondly, 2D models are
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well-explored, which means there are a lot of methods that can be applied directly

to enhance performance, such as attention, pre-trained models, etc. This benefit

has already been proven by previous works [96, 111, 22, 25]. However, due to the

heterogeneous nature of point cloud data and image data, 2D networks cannot be

applied to point clouds directly. Therefore, the mapping from point cloud to 2D

image is the most important step.

For example, the point-to-image mapping in MVCNN [96] involves collecting

snapshot images from different views of a point cloud and using these images for

classification. However, this method cannot capture the spatial features in the point

cloud and thus cannot perform point cloud segmentation. Another point-to-image

method is to use range images, such as in RangeNet++ [71] and SqueezeSeg [109].

The range image method makes point cloud segmentation in image space possible,

but the spatial information of the original 3D data is inevitably weakened during

2D projection.

Currently, the most popular method for point-to-image mapping is to apply a

bird’s eye view image, as mentioned in PolarNet [129]. It converts LiDAR point

clouds to 2D images using polar coordinates. This mapping approach achieves good

performance in LiDAR point cloud tasks such as segmentation and detection. In

our method, we propose a novel point-to-image mapping approach. Specifically,

the mapping process is conducted by using a Hilbert curve to flatten the original

3D voxel into 2D. Due to the locality-preserving property of the Hilbert curve, the

flattened voxel retains the same spatial information as its original 3D shape.

Point Cloud with Space Filling Curve. Space-filling curves [73] can fill all the 2D

or 3D spaces within a single line. This property makes them good data linearization

methods. Common space-filling curves like the Hilbert curve [33], Z-order curve [75],
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and sweep curve are widely used in GIS or database applications. SFCs can also be

used in point cloud analysis, and previous works usually use them together with

tree structures. Prior work [103] partitions the original point cloud using OCTree

and then applies the Hilbert curve to compress the data, while C-Flow [81] uses the

Hilbert curve to reorder the point cloud for better feature clustering. O-CNN [104]

combines the Z-curve with OCTree for faster data query and accelerates point cloud

analysis. In our research, we use SFCs in a different way. We do not use SFCs

to compress input data, and hence we do not use tree structures when applying

SFCs. Instead, we linearize the 3D voxel data via a space-filling curve directly

for convolution acceleration. During our research, we will use the Hilbert curve

because the sequence that is flattened by the Hilbert curve preserves the locality of

its original shape.

Multi-View Fusion for Point Cloud Analysis. Point clouds can be represented

by 1D point data, 2D vertex data, and 3D voxel data. Based on these different

formats, several approaches have been proposed [35, 15, 141, 133] for better point

cloud recognition. However, each type of representation has its own limitations.

By integrating these different formats together, we can not only benefit from the

strengths of each, but also mitigate their weaknesses. For example, Cylinder3D [138,

142] and PVCNN [66] combine the 3D voxel feature with the 1D point feature.

This operation lowers the computational cost produced by 3D voxel and makes 1D

point prediction more accurate. In addition to these 1D-3D fusion models, 2D-3D

models are also proposed for better point cloud analysis, such as MCVNN [83],

Image2Point [117]. These approaches successfully utilize the pre-training model in

2D convolutional networks for 3D point cloud scenarios. Different from previous

methods, our proposed method provides a novel 1D-2D fusion pipeline, which

further reduces the computational overhead compared to the 1D-3D model. Also,
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we can use knowledge suitable for 2D networks to improve our model, similar to

2D-3D fusion methods.

20



Chapter 3

Efficient Image Segmentation

3.1 Methodology

3.1.1 Overview

Context information is an important element if we want to predict semantic infor-

mation from a featuremap. However, if modeling context information into a tensor,

considering the complexity of context information, it must be a high-rank tensor.

The modeling process will be very expensive.

Tensor decomposition is one of the solution to the context modeling, which can

reconstruct high-rank tensor from a series of low-rank tensor. Since low-rank tensor

is much cheaper to modeling, it would be an ideal solution to context modeling

problem. Among the tensor decomposition methods, we are more interested in CP

decomposition, which break the high-rank tensor into multiple rank-1 tensor. In

our application, we do not predict context information directly. Instead, we predict

multiple rank-1 fragments of original context feature and reconstruct them into

the original tensor. This modeling scheme not only preserve the original channel-
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Figure 3.1: The framework of RecoNet includes two key components: the Tensor Generation Module,
which implements the generation of rank-1 tensors, and the Tensor Reconstruction Module, which
implements tensor CP reconstruction.

wise and spatial-wise feature, but also addresses the challenge posed by high-rank

complexity.

The pipeline of our model is shown in Figure 3.1, which is composed by a

low-rank tensor generation module (TGM) and a high-rank tensor reconstruction

module (TRM). Additionally, we introduced a global pooling module (GPM) for

global information collection. Similar to the FCN pipeline, we upsample the final

output before prediction.

Formulation: A typical rank r CP reconstruction is formulated as below.

A =
r

∑
i=1

λi(vci ⊗ vhi ⊗ vwi), (3.1)

Where vci ∈ RC×1×1, vhi ∈ R1×H×1 and vwi ∈ R1×1×W . λi is introduced to adjust

the weight of each element.

3.1.2 Tensor Generation Module

In this section, we will introduce the key parts of TGM. To make the illustration

clearer, we will first define what is context fragements, then we will illustrate how

to use them to implement TGM.
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Feature Generator. Featrue generator is a series of 1×1 convolution along height,

width and channel direction. Each feature is calculated by a global pooling and a

randomly initialized convolution. The weights of convolutions are not shared, which

ensure that every generated feature learns different part of context information.

Context Fragments. We define the output tensor of the feature generator as

the context fragment. Obviously, each fragment contains a small part of context

information. Every context fragment is a 1-dimensional tensor in C/H/W direction

and they are formulated as vci, vhi, and vwi, i ∈ r, as previously defined. The

feature generator works r times and we will obtain 3r context fragments. The

detailed information can be found in Figure 3.2.

Non-linearity in TGM. We introduce non-linearity into the Tensor Generation

Module (TGM) by applying the Sigmoid function to the context fragments, a process

akin to the unary attention scheme. This operation serves a dual purpose. Firstly, it

regularizes the values in the context fragments to fall within the range [0, 1], thereby

enhancing the stability of the output. Secondly, it boosts the representation capacity

of our network, allowing it to capture more complex patterns and relationships in
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the data. This addition of non-linearity is a crucial aspect of our model, contributing

significantly to its performance and robustness.

3.1.3 Tensor Reconstruction Module

In this section, we will introduce how to reconstruct the context fragments into a

high-rank tensor. The working flow of tensor reconstruction module can be found

in Equation (3.1). In the following context, we will introduce TRM in detail and

introduce why using this reconstruction shceme.

Context Aggregation. After getting 3 context fragments, we reconstruct them into

an attention map A = {a1, a2, . . . , aCHW} using Equation (3.1). Suppose we have a

featruemap X = {x1, x2, . . . , xCHW}, the context featuremap Y = {y1, y2, . . . , yCHW}
is formulated as:

Y = A · X ⇐⇒ yi = ai · xi, i ∈ CHW. (3.2)

This formulation reveals a new way to generate attention map, different from

previous spatial attention [132] or channel attention [125] mechanism, our new

attention mechanism can obtain both spatial and channel context feature.

Low-rank Reconstruction. The tensor low-rank-to-high-rank reconstruction

process can be found in Figure 3.3. Firstly, we use context fragements vci ∈
RC×1×1, vhi ∈ R1×H×1 and vwi ∈ R1×1×W to cinstruct a sub-attention map Ai

via Equation (3.2). Then we sum up all the sub-attention map using Equation (3.3)

to a high rank attention map A.

A =
r

∑
i=1

λi Ai. (3.3)

Where a learnable factorλi ∈ (0, 1) is introduced to normalize the attetion map.
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Figure 3.3: The details of Tensor Reconstruction Module. In this module, we first generate a series
of sub-attention map A1, A2, . . . , Ar using width / channel / height context fragments that come
from TGM and the process is marked with ↓. After that, we sum them up to implement context CP
reconstruction.

3.1.4 Global Pooling Module

Similar to previous works [126, 131, 8], we also adopt global average pooling to

boost the network performance. It is a combination of Pool-Conv1 × 1 and we name

this module as Global Pooling Module (GPM).

3.1.5 Network Details

We apply dilated ResNet as our backbone, which is the same as [125] and the output

feature of backbone will then go through TGM and TRM for context information

collection. Auxiliary loss that applied to the Res-4 output is proved to be useful

in prior works [125, 131] and hence we add this design into our framework. The

objective of our model is then show as:

L = Lmain + αLaux. (3.4)

Here we adjust the auxiliary loss weight α to 0.2.
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3.2 Experiments

In this part, we reported the experimental results of RecoNet on five popular dataset:

SIFT-FLOW, ADE20K, COCO-Stuff, PASCAL-Context and PASCAL-VOC12.

3.2.1 Implementation Details

The batch size for all experiments is set to 16 in the RecoNet implementation,

and we randomly flip and rescale the input image from 0.5 to 2, then crop a

512 × 512 patch from the scaled image as the input, which is the same as in

[131, 125]. This setting requires a multi-GPU infrastructure since a single GPU

does not have enough memory to load all images from a batch. To solve this

problem, we use syncBN [26, 125], which was applied in previous designs. It allows

batch normalization to be implemented across GPUs. During the PASCAL-VOC12,

PASCAL-Context, and COCO-Stuff experiments, we initialized the learning rate

with the value 0.001, while the initial learning rates for the ADE20K and SIFT-FLOW

datasets are 0.01 and 0.0025, respectively. The learning rate will decay following the

equation lr = base_lr × (1 −
iter

total_iters
)power, where the power is 0.9. The training

process will last 120 and 180 epochs for the ADE20K and COCO-Stuff datasets,

while the number of training epochs we set for other datasets is 80. RecoNet uses

the Pytorch [77] framework, and the optimizer we use is SGD with a weight decay

of 1e-4 and momentum of 0.9.

In the inference stage, we apply a multi-scale strategy, which resizes the input

image to 0.75, 1, 1.25, 1.5, 1.75, 2.0] of the original scale, and the output feature of

each scale is summed up for the final prediction. The main metric for all experiments

is the mean intersection-over-union (mIoU).
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Table 3.1: Performance of different segmentation models on PASCAL-VOC12 dataset without
COCO-pretraining.

PSPNet[131] FCN[68] APCNet[31] DMNet[30] CFNet[126] EncNet[125] RecoNet

cat 95.9 77.6 96.0 96.4 95.9 94.2 96.5

bike 71.9 34.2 75.8 77.3 71.9 69.2 66.3

plant 72.8 45.2 75.8 76.6 74.9 68.7 78.1

bus 95.2 75.3 96.9 97.1 94.8 96.3 94.5

bottle 75.8 60.3 80.6 78.1 82.8 86.2 87.4

horse 94.5 63.9 95.0 95.8 94.6 92.5 95.9

car 89.9 74.7 90.0 92.7 90.0 90.7 92.6

aero 91.8 76.8 95.8 96.1 95.7 94.1 93.7

chair 39.3 21.4 42.0 39.8 37.1 38.8 48.4

cow 90.7 62.5 93.7 91.4 92.6 90.7 94.5

dog 90.5 71.8 91.6 92.7 93.4 90.0 94.4

table 71.7 46.8 75.4 75.5 73.0 73.3 76.6

bird 94.7 68.9 84.5 94.1 95.0 96.3 95.6

boat 71.2 49.4 76.0 72.8 76.3 76.7 72.8

mbike 88.8 76.5 90.5 91.0 89.6 88.8 93.8

person 89.6 73.9 89.3 90.3 88.4 87.9 90.4

sheep 89.6 72.4 92.8 94.1 95.2 92.6 93.6

sofa 64 37.4 61.9 62.1 63.2 59.0 63.4

train 85.1 70.9 88.9 85.5 89.7 86.4 88.6

tv 76.3 55.1 79.6 77.6 78.2 73.4 83.1

mIoU 82.6 62.2 84.2 84.4 84.2 82.9 85.6

3.2.2 Results on Different Datasets

PASCAL-VOC12. The PASCAL-VOC12 dataset [23] has 21 categories, 10,582

images for training (including the PASCAL augmentation dataset), 1,449 images for

validation, and 1,456 images for testing. The comparison between RecoNet and other

methods can be found in Table Table 3.1, which shows that our proposed RecoNet

achieves an mIoU of 85.6%, outperforming the latest state-of-the-art DMNet [30] by

a large margin.

Next, we perform COCO-pretraining for the PASCAL-VOC12 challenge. Specif-
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Table 3.2: Performance of different segmenta-
tion models on PASCAL-VOC12 dataset with
COCO-pretraining.

Method Backbone mIoU
CRF-RNN [135] 74.7
DPN [67] 77.5
Piecewise [60] 78.0
ResNet38 [114] 84.9
PSPNet [131] ResNet-101 85.4
DeepLabv3 [8] ResNet-101 85.7
EncNet [125] ResNet-101 85.9
DFN [123] ResNet-101 86.2
CFNet [126] ResNet-101 87.2
EMANet [54] ResNet-101 87.7
DeeplabV3+ [9] Xception 87.8
DeeplabV3+ [9] Xception+JFT 89.0
RecoNet ResNet-101 88.5
RecoNet ResNet-152 89.0

Table 3.3: Performance of different segmenta-
tion models on PASCAL-Context dataset (back-
ground is included).

Method Backbone mIoU
FCN-8s [68] 37.8
ParseNet [65] 40.4
Piecewise [60] 43.3
VeryDeep [113] 44.5
DeepLab-v2 [SEGM-TPAMI2018-Deeplab] ResNet-101 45.7
RefineNet [59] ResNet-152 47.3
PSPNet [131] ResNet-101 47.8
MSCI [58] ResNet-152 50.3
Ding et al. [21] ResNet-101 51.6
EncNet [125] ResNet-101 51.7
DANet [26] ResNet-101 52.6
SVCNet [20] ResNet-101 53.2
CFNet [126] ResNet-101 54.0
DMNet [30] ResNet-101 54.4
RecoNet ResNet-101 54.8

Table 3.4: Performance of different segmenta-
tion models on COCO-Stuff dataset.

Method Backbone mIoU
FCN-8s [68] 22.7
DeepLab-v2 [SEGM-TPAMI2018-Deeplab] ResNet-101 26.9
RefineNet [59] ResNet-101 33.6
Ding et al. [21] ResNet-101 35.7
SVCNet [20] ResNet-101 39.6
DANet [26] ResNet-101 39.7
EMANet [54] ResNet-101 39.9
RecoNet ResNet-101 41.5

Table 3.5: Performance of different segmenta-
tion models on SIFT-Flow dataset.

Method pixel acc. mIoU
Sharma et al. [93] 79.6 -
Yang et al. [120] 79.8 -
FCN-8s [68] 85.9 41.2
DAG-RNN+CRF [94] 87.8 44.8
Piecewise [60] 88.1 44.9
SVCNet [20] 89.1 46.3
RecoNet 89.6 46.8

Table 3.6: Performance of different segmenta-
tion models on ADE20K validation dataset.

Method Backbone mIoU
RefineNet [59] ResNet-152 40.70
PSPNet [131] ResNet-101 43.29
DSSPN [57] ResNet-101 43.68
SAC [90] ResNet-101 44.30
EncNet [125] ResNet-101 44.65
CFNet [126] ResNet-50 42.87
CFNet [126] ResNet-101 44.89
CCNet [38] ResNet-101 45.22
RecoNet ResNet-50 43.40
RecoNet ResNet-101 45.54

ically, we follow the training process mentioned in previous works [125, 31, 126,

30, 26], pretraining RecoNet using the COCO [62] dataset with a learning rate

of 0.004 and a total of 30 training epochs. Then, we follow the implementation

details as mentioned before, training the PASCAL-VOC12 dataset including the

PASCAL augmentation data with a learning rate of 0.001 and 80 epochs. Finally,

we fine-tune all the training and validation data with an additional 50 epochs and

use the model for testing. The results are evaluated by the PASCAL-VOC12 server

and the performance is shown in Table 3.2. Our model gets 89.0% mIoU, which is
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the highest score on the leaderboard.1. The result demonstrates that our low-rank

reconstruction strategy is powerful enough to capture context information.

PASCAL-Context. The PASCAL-Context dataset [120] is more challenging than

the PASCAL-VOC12 dataset as it contains 4,998 training images and 5,105 testing

images, with a total of 60 categories including foreground objects and background

stuff. Table 3.3 reports the performance of RecoNet on this dataset. For a fair

comparison, we set the evaluation method to be identical to previous studies [126,

125, 31], which take unlabeled data into account. Our RecoNet achieves an mIoU

of 54.8%, which significantly surpasses previous works given the difficulty of the

dataset. Notably, our method has the best performance among the attention-based

methods like CFNet, DMNet, and DANet.

COCO-Stuff. The COCO-Stuff dataset [6] is derived from the MS-COCO dataset,

which has a total of 10K images (9K for training, 1K for testing). It is labeled with

171 things and stuff, and the performance of different methods on this dataset can

be found in Table 3.4. RecoNet achieves an mIoU of 41.5%, which outperforms all

previous works that utilize context information for prediction.

SIFT-Flow. The SIFT-Flow dataset [64] is a relatively small and older dataset that

mainly focuses on urban scenarios. It only contains 2,488 training images and 500

testing images, all of which are 256×256 in size. The dataset is heavily labeled with

33 classes. We tested RecoNet on this dataset to verify its scalability. The results in

Table 3.5 demonstrate that RecoNet is suitable for a diverse range of datasets.

1http://host.robots.ox.ac.uk:8080/anonymous/PXWAVA.html
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ADE20K. The ADE20K dataset [137] is an increasingly popular scene parsing

benchmark since it contains more than 25K annotated images, making it one

of the largest semantic segmentation datasets. All the images are categorized

into 150 classes, including indoor, outdoor, and urban scenes, etc. The results of

different models on this dataset can be found in Table 3.6. Our RecoNet consistently

performs better than other attention-based methods like CCNet, CFNet, and EncNet,

regardless of the backbone used. This further substantiates our claim that RecoNet

can model context information better than previous attention methods.

3.2.3 Ablation Study

In this section, we aim to assess the contribution of each part of RecoNet to the final

performance. Additionally, we will study the influence of the tensor reconstruction

rank r. The PASCAL-VOC12 training and validation datasets are used during the

ablation study, and all reported results are on the VOC12 validation dataset.

Component Evaluation. Here, we create multiple segmentation models with

different components of RecoNet, including TGM, TRM, the global pooling module

(GPM), and auxiliary loss, to measure the importance of each component to the

final prediction accuracy. The other settings, including tensor rank (r = 64) and

implementation details, are identical to those mentioned in previous sections. The

ablation study of each part can be found in Table 3.7. It shows that TGM+TRM

contributes a 9.9% mIoU with the ResNet-50 backbone, which is the most important

part, while the GPM contributes another 0.6% mIoU improvement. This result

demonstrates that the TGM+TRM design is the most significant component and that

the GPM is not trivial. It also implies that the context modeling method proposed by

our RecoNet is powerful. Additionally, the auxiliary loss further boosts the model

by 0.6% with the ResNet-50 backbone. The final result we obtained has an mIoU
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Table 3.7: Ablation experiments of RecoNet. The model is tested on the PASCAL-VOC12 val set.
FT is the short of PASCAL-VOC12 fine-tuning.

Method FT Aux-loss GPM TGM+TRM MS/Flip mIoU %
ResNet-50 68.7
ResNet-50

√
78.6

ResNet-50
√ √

79.2
ResNet-50

√ √ √
79.8

ResNet-101
√ √

81.4
ResNet-101

√ √ √ √
82.1

ResNet-101
√ √ √ √ √

82.9

of 82.9%, which is the combination of each block coupled with some tricks like

multi-scale, flip test, and fine-tuning.

Tensor Rank. The tensor rank r determines the capacity of information that we

can reconstruct from context fragments, which is essential to the final performance.

Intuitively, a larger r leads to a larger capacity and results in better performance.

However, a larger r also increases the risk of overfitting and may harm prediction

accuracy. Therefore, we manually set the rank r from 16 to 128 to find the best

parameter. The results of different r values can be found in Table 3.8, which indicates

that r = 64 is the optimal parameter. The reason is that the input tensor of TGM X

has the shape of 512 × 64 × 64, which implies the tensor rank is 64. Hence, when r

is smaller than 64, the mIoU increases simultaneously, but the accuracy goes down

when r is larger than 64.

Contrasting with Earlier Methods. To show the effectiveness of RecoNet, we re-

implemented multiple state-of-the-art researches and compare them with our model

in terms of GFLOPs and mIoU. The baseline ResNet-101 is the backbone we used

during our research, which substitute the first convolution module with kernel size

7 to 3 convolutions with kernel 3 like previous works [131, 125, 126, 38, 54]. Also, the

dilated convolution is applied to the backbone for larger receptive field. Since the

performance of our backbone already outperforms some models according to their
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Table 3.8: Ablation experiments of tensor
rank. We use ResNet101 as the backbone
during experiments and the results are ob-
tained after multi-scale test.

Method Tensor Rank mIoU %
RecoNet 16 81.2
RecoNet 32 81.8
RecoNet 48 81.4
RecoNet 64 82.1
RecoNet 80 81.6
RecoNet 96 81.0
RecoNet 128 80.7

Table 3.9: Comparison of different segmentation models
on PASCAL-VOC12 validation dataset. Our proposed
RecoNet has the best mIoU score with relatively low com-
putational cost.

Method SS MS/Flip FLOPs

ResNet-101 - - 190.6G
DeepLabV3+ [9] 79.45 80.59 +84.1G
PSPNet [131] 79.20 80.36 +77.5G
DANet [26] 79.64 80.78 +117.3G
PSANet [132] 78.71 79.92 +56.3G
CCNet [38] 79.51 80.77 +65.3G
EMANet [54] 80.09 81.38 +43.1G
RecoNet 81.40 82.13 +41.9G

original paper. To make a fair comparison, we use our backbone and implementation

settings for all methods. The comparison can be found in Table 3.9 and we can

find that since RecoNet harvests global context information, the performance is

better than PSPNet [131] and DeepLabV3+ [9], which use large kernel to expand

receptive field. Additionally, we RecoNet has lower computational cost than DANet

[26] and PSANet [132] since the attention in RecoNet is constructed by low rank

tensor while DANet [26] and PSANet [132] use vanilla attention, which is costly.

Also, our method shows better mIoU compared with the efficient attention methods

like CCNet [38] and EMANet [54]. This is because RecoNet collects both spatial

and channel attention simultaniously while other methods can only collect context

information in spatial or channel only.

3.2.4 Further Discussion

In this section, we measure the computational cost of RecoNet to illustrate the effec-

tiveness of our design. Next, we visualized some sub-attention maps to demonstrate

that each sub-attention map will learn a part of context feature.

Analysis of Computational Complexity. The attention map of our model is

generated by the context low-rank reconstruction, which has smaller computational
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Table 3.10: The floating point operations and GPU memory occupations of different attention module.
Here we set r = 64 for this experiment.

Method Channel GPU Memory FLOPs
A2Net [12] 512 25.00MB 4.30G
Non-Local [106] 512 88.00MB 19.33G
EMAUnit [54] 512 24.12MB 2.42G
LatentGNN [128] 512 44.69MB 2.58G
APCNet [31] 512 193.10MB 8.98G
RCCA [38] 512 41.33MB 5.37G
AFNB [143] 512 25.93MB 2.62G
TGM+TRM 512 8.31MB 0.0215G

cost compared with other approaches. The FLOPs of our model is O(C2 + H2 +

W2 + CHW) ≈ O(CHW), where the O(CHW) comes from tensor low-rank-to-

high-rank reconstruction and O(C2 + H2 + W2) is caused by context fragment

generation. Recalling that the FLOPs of generating and vanilla attention map is

O(CH2W2). Hence, the cost of TGM+TRM is significantly small. For example, on

the table Table 5.3, we can find that our design is 900 times faster than non-local

attention. Also, our method is over 100 times faster than other efficient attention

mechanism like EMAUnit [54].

Visualization. To find out the performance and the function of each sub-attention

map, we conduct a visualization experiment. Here we visualized some attention-

activated featuremap X, which has the formulation of Ai · X. The results can be

found in Figure 3.4.

Limitation. Our method, although significantly improved in terms of accuracy

and inference speed, still has drawbacks. It requires a large amount of storage

space, typically 3-4 times that of other methods. This is because during the TGM

process, we produce r rank-1 tensors, and each rank-1 tensor requires the generation

of a fully connected layer to learn its features. Therefore, our method results in

substantial memory consumption.
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Figure 3.4: Visualization of Ai · X, i ∈ 64. Here Ai represents the sub-attention map. We provide
the original images and their labels for reference. We can observe that each sub-attention map extracts
a part of context information.

3.3 Conclusion

In this part, we introduced how to implement image segmentation with high quality

and low cost. For high quality segmentation, attention mechanism is strongly

needed, but it will bring more computational cost. If we want to perform efficient

segmentation, we should apply attention simplification technique. In this topic, our

research proposed to use tensor low-rank reconstruction for attention acceleration.

This approach not only reduces the computational cost of attention by a large

margin, but also preserve the 3D context information of original featuremap, which

brings high quality segmentation.

Future Work. We will subsequently explore efficient segmentation with Large Lan-

guage Models (LLMs), especially interactive segmentation. Interactive segmentation
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Figure 3.5: The framework of our SAM 3D model. In this model, we will use the pre-trained 2D
SAM model and upscale the weights to adapt 3D voxels. After the voxel encoder, the obtained voxel
embedding will merge with several visual or text prompts to achieve segmentation in different parts.
For example, we can use text prompt like “head", “wings" or “tail" to find different parts on the
airplane voxel.

refers to the process where humans interact with machines to achieve high-precision

segmentation. Initially, a person provides a visual prompt, which is usually a mouse

click or a text description. Then, the segmentation model outputs a corresponding

segmentation mask based on the given prompt. Afterward, the person further

modifies the prompt based on whether the generated mask meets the requirements,

ultimately achieving high-precision segmentation. Large Language Models are

currently a hot topic among researchers and their emergence has taken interactive

segmentation to a new level. Previously, mouse clicks were often the only effective

prompts but now with the help of LLMs, text prompts have also become effective.

A representative interactive segmentation framework is SAM [44], which integrate

LLMs to realize interactive 2D image segmentation.

In the future work, we will dedicate to produce 3D segment anything model,

which can be used for meidial imaging and point cloud analysis. The working

pipeline of our proposed model is shwon as follow: Here we simply use the open-

source pre-trained weight from SAM and upscaling the weight to 3D scenario. For

example, a convolution kernel with size 3 × 3 will be interpolated to 3 × 3 × 3 and
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then we fine-tuning the weight to adapt 3D data. Therefore, the voxel encoder

and mask decoder are transformer encoder and decoder structure that comes from

SAM model directly while the CLIP [87] model is used as our prompt encoder.

However, the fine-tuning of 3D SAM model would be a challenging problem. Due

to computational resource limitations, training a 3D SAM model directly is a very

time-consuming approach. To address this issue, we use large model low-rank

adaptation (LoRA) [36], which is formulated as:

W = W0 + A × B (3.5)

Where the W0 is the original weight parameters in LLMs. During the LoRA fine-

tuning process, the original model is fixed and we only update the newly introduced

parameters in matrix A ∈ RH×r and B ∈ Rr×W and the rank r is manually adjusted.

We will use LoRA technique to finetune the 2D SAM model and making it capable

to represent 3D scenarios.

The work mentioned above is what I plan to continue researching after complet-

ing this thesis. Some of these studies will continue along my current research path

such as space-filling curve applications, while others will explore new fields such as

efficient LLM with segmentation. However, overall, they are all very challenging

tasks. Currently, there is great potential for research in the acceleration of segmen-

tation. In the future, I will focus most of my attention on research related to the

acceleration of segmentation in 3D scenes.
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Chapter 4

Space Filling Curve for Efficient Data

Clustering

4.1 Methodology

In the previous section, we introduced how to accelerate segmentation from the

perspective of attention slimming. However, the speedup that we can achieve is

limited since the backbone network consumes most of the computational overhead.

Therefore, we aim to find a method that is applicable for backbone acceleration.

Here, we propose a novel technique, which involves using space-filling curves (SFCs)

for acceleration. Since SFCs can be used to flatten the feature, we can then substitute

the original Conv2D with Conv1D in the backbone network, which will greatly

reduce the cost. To begin with, we will introduce how to apply a space-filling curve

to a deep neural network.

37



4.1.1 Problem Definition

Generating a space-filling curve is not difficult, and it simply follows the process

below. We first transform an image to grayscale with dimension I∈1×H×W . Then

we separate the pixels in I into multiple 2 × 2 circuits as depicted in 2.1 (b). Then a

dual graph [5] G ′ is obtained as shown in 2.1 (c), where each edge has its own weight.

Based on the value of each edge, a minimum spanning tree can be generated as

shown in 2.1 (d). Finally, we use an algorithm called the Cover-and-Merge algorithm

[70] to link all small circuits, and the SFC is obtained as shown in 2.1 (f).

Overview. Our SFC generation framework is shown in Figure 5.3, which is consists

of two part, graph weight WG ′ generation and SFC generation. In the first part, the

process can be described as:

WG ′ = EGCN(L(Conv(I))). (4.1)

Where a convolutional neural network is used as backbone to extract features from

image and denoted as Conv(·). Then the features are followed by feature normal-

ization layer L(·) and Efficient-GCN EGCN(·) layer for graph weight generation.

For the second stage, the entire progress is shown as follow:

SFC = Cover_and_Merge(T (WG ′)). (4.2)

where the Prim MST [79] is firstly constructed on WG ′ and denoted as T (·). Next,

we apply the Cover-and-Merge algorithm to generate the output SFC. Notably, the

framework cannot be optimized by gradient back propagation directly since the

MST and Cover-and-Merge algorithm are not differentiable. Therefore, we propose

a Siamese Network-based optimization algorithm to update the network parameters,

which will be introduced in the following text.
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Figure 4.1: The workflow of our proposed model. The Cover-and-Merge algorithm is marked as
Cover&Merge, and L(·) denotes our proposed feature normalization layer. We add Gaussian noise
N (0, 1) to the Siamese network input to increase input diversity.

4.1.2 Graph Weight Generation

Convolutional Network. Our model accepts grayscale image input with size

I∈1×H×W , and the image will be encoded by a residual network [32]. After that, we

will interpolate the output feature of ResNet to its original size. Finally, we obtain

the desired feature map W IC× H
2 ×W

2 by using a 2 × 2 convolution with stride 2. The

entire process is simply described as:

X = F(I). (4.3)

Feature Normalization. After getting W I , we apply feature normalization, a useful

technique that firstly proposed by GAT [101] to it for WGI generation. Specifically,

we first reshape W I into W̃ I ∈ RN2×C, where N = H
2 = W

2 . Then we apply softmax

across dimension C and dimension N2 respectively, obtaining featuremap (S1(·))
and (S2(·)). The concatenation of them along C axies brings intermediate graph

weights WGI to us as the description of the following formulation:

WGI = L(W̃ I) = Concat(S1(W̃ I), S2(W̃ I)). (4.4)

39



=

<latexit sha1_base64="NULZghUWQqgwnPkqe2W3Rk9z3bU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKRC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2auUL+uVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP49ljMk=</latexit>

+

<latexit sha1_base64="3DnS3vImeIO9jz1IyYjxDR65oEU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXInoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5XyVb1Sqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3QdjLc=</latexit>

+

<latexit sha1_base64="3DnS3vImeIO9jz1IyYjxDR65oEU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXInoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5XyVb1Sqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3QdjLc=</latexit>

+

<latexit sha1_base64="3DnS3vImeIO9jz1IyYjxDR65oEU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXInoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5XyVb1Sqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3QdjLc=</latexit>

A

<latexit sha1_base64="6AOj/EbOSWtIab4OAOG9lOXoLxc=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIRZdVNy4r2Ae0Y8lk0jY0kwxJRilD/8ONC0Xc+i/u/Bsz7Sy09UDI4Zx7yckJYs60cd1vp7Cyura+UdwsbW3v7O6V9w9aWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4JvPbj1RpJsW9mcTUj/BQsAEj2FjpoRdIHupJZK/0atovV9yqOwNaJl5OKpCj0S9/9UJJkogKQzjWuuu5sfFTrAwjnE5LvUTTGJMxHtKupQJHVPvpLPUUnVglRAOp7BEGzdTfGymOdBbNTkbYjPSil4n/ed3EDC79lIk4MVSQ+UODhCMjUVYBCpmixPCJJZgoZrMiMsIKE2OLKtkSvMUvL5PWWdWrVc/vapX6dV5HEY7gGE7Bgwuowy00oAkEFDzDK7w5T86L8+58zEcLTr5zCH/gfP4AAlGS2g==</latexit>

I left

<latexit sha1_base64="EgJByy6YZZT8mT1ig2Ei3Rwrys0=">AAAB/nicbVDNS8MwHE3n15xfVfHkJTgET6OViR6HXvQ2wX3AVkqapltYmpQkFUYp+K948aCIV/8Ob/43plsPuvkg5PHe70deXpAwqrTjfFuVldW19Y3qZm1re2d3z94/6CqRSkw6WDAh+wFShFFOOppqRvqJJCgOGOkFk5vC7z0SqajgD3qaEC9GI04jipE2km8fDQPBQjWNzZXd5X7GSKRz3647DWcGuEzcktRBibZvfw1DgdOYcI0ZUmrgOon2MiQ1xYzktWGqSILwBI3IwFCOYqK8bBY/h6dGCWEkpDlcw5n6eyNDsSoSmskY6bFa9ArxP2+Q6ujKyyhPUk04nj8UpQxqAYsuYEglwZpNDUFYUpMV4jGSCGvTWM2U4C5+eZl0zxtus3Fx36y3rss6quAYnIAz4IJL0AK3oA06AIMMPINX8GY9WS/Wu/UxH61Y5c4h+APr8wdK8pZb</latexit>

Iright

<latexit sha1_base64="ngiulVevuCsuSHUu1TP9Gphu/Ys=">AAAB/3icbVDNS8MwHE39nPOrKnjxEhyCp9HKRI9DL3qb4D5gKyVN0y0sTUqSCqP24L/ixYMiXv03vPnfmG496OaDkMd7vx95eUHCqNKO820tLa+srq1XNqqbW9s7u/befkeJVGLSxoIJ2QuQIoxy0tZUM9JLJEFxwEg3GF8XfveBSEUFv9eThHgxGnIaUYy0kXz7cBAIFqpJbK7sNvczSYcjnft2zak7U8BF4pakBkq0fPtrEAqcxoRrzJBSfddJtJchqSlmJK8OUkUShMdoSPqGchQT5WXT/Dk8MUoIIyHN4RpO1d8bGYpVEdFMxkiP1LxXiP95/VRHl15GeZJqwvHsoShlUAtYlAFDKgnWbGIIwpKarBCPkERYm8qqpgR3/suLpHNWdxv187tGrXlV1lEBR+AYnAIXXIAmuAEt0AYYPIJn8ArerCfrxXq3PmajS1a5cwD+wPr8ASdeltg=</latexit>

Iup

<latexit sha1_base64="MP5y27QvxHnl6jD/I2MDMLufKu8=">AAAB/HicbVDNS8MwHE3n15xf1R29BIfgabQy0ePQi94muA/YSknTbAtLk5KkQin1X/HiQRGv/iHe/G9Mtx5080HI473fj7y8IGZUacf5tipr6xubW9Xt2s7u3v6BfXjUUyKRmHSxYEIOAqQIo5x0NdWMDGJJUBQw0g9mN4XffyRSUcEfdBoTL0ITTscUI20k366PAsFClUbmyu5yP0vi3LcbTtOZA64StyQNUKLj21+jUOAkIlxjhpQauk6svQxJTTEjeW2UKBIjPEMTMjSUo4goL5uHz+GpUUI4FtIcruFc/b2RoUgV+cxkhPRULXuF+J83TPT4yssojxNNOF48NE4Y1AIWTcCQSoI1Sw1BWFKTFeIpkghr01fNlOAuf3mV9M6bbqt5cd9qtK/LOqrgGJyAM+CCS9AGt6ADugCDFDyDV/BmPVkv1rv1sRitWOVOHfyB9fkDxEuVgQ==</latexit>

Idown

<latexit sha1_base64="KnYB4cYOSzOIleGjQqtlCoecRy8=">AAAB/nicbVDNS8MwHE39nPOrKp68BIfgabQy0ePQi94muA/YSknTdAtLk5KkyigF/xUvHhTx6t/hzf/GdOtBNx+EPN77/cjLCxJGlXacb2tpeWV1bb2yUd3c2t7Ztff2O0qkEpM2FkzIXoAUYZSTtqaakV4iCYoDRrrB+Lrwuw9EKir4vZ4kxIvRkNOIYqSN5NuHg0CwUE1ic2W3uZ+F4pHnvl1z6s4UcJG4JamBEi3f/hqEAqcx4RozpFTfdRLtZUhqihnJq4NUkQThMRqSvqEcxUR52TR+Dk+MEsJISHO4hlP190aGYlUkNJMx0iM17xXif14/1dGll1GepJpwPHsoShnUAhZdwJBKgjWbGIKwpCYrxCMkEdamsaopwZ3/8iLpnNXdRv38rlFrXpV1VMAROAanwAUXoAluQAu0AQYZeAav4M16sl6sd+tjNrpklTsH4A+szx9ewJZo</latexit>

offset N (3) offset 1 offset -1 offset -N (-3)

(a)

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

=

<latexit sha1_base64="NULZghUWQqgwnPkqe2W3Rk9z3bU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKRC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2auUL+uVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP49ljMk=</latexit>

(b)

⇥

<latexit sha1_base64="DFN4sfNhBNG+B7awRb3y/Saos6c=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9FxE2/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxW1S/xsfu2UnFllQMJY21JI5urviYxGxkyiwHZGFEdm2ZuJ/3ndFMNrPxMqSZErtlgUppJgTGavk4HQnKGcWEKZFvZWwkZUU4Y2oJINwVt+eZW0LqperXp5X6vUb/I4inACp3AOHlxBHe6gAU1g8AjP8ApvTuy8OO/Ox6K14OQzx/AHzucPuMOPPA==</latexit>

=

<latexit sha1_base64="NULZghUWQqgwnPkqe2W3Rk9z3bU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKRC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2auUL+uVUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP49ljMk=</latexit>

(c)

Figure 4.2: Demonstration of offset-diagonal matrix multiplication. (a) The graph of a 3×3 image,
which is a grid graph that consists of 4 offset diagonal matrices. (b) Multiplication with Iright is
identical to moving all elements upward and replacing the grey rows to 0. (c) Multiplication with
Idown is identical to moving all elements upward and padding the bottom rows. The white-colored
elements represent 0, while others like gray, purple, blue, pink, and yellow indicate non-zero elements.

WGI will be used as the input of EGCN, which is an efficient graph neural network

algrithm that will be introduced in the following paragraph.

Efficient-GCN. EGCN is an GCN acceleration algorithm that specially designed for

grid graph and it has the identical formulation to GCN like Equation (4.5). In our

research, we will use the EGCN to gather global context information of a featuremap

and predict edge weight WG ′.

WGI
r+1 = σ

(
D̂−1/2ÂD̂−1/2WGI

rWkr
)

,

WG ′ = WGI
R+1, r = 1, 2, . . . , R,

(4.5)

For the rth layer, we input the feature WGI
r and multiply it with an adjacency

matrix Â = I + A, A, and a degree matrix D̂. The feature map is learned by the

parameter update on Wkr. Finally, the activation function σ(·) is used at the end of

the rth layer. In traditional GCN, this process is actually time-consuming since the

adjacency matrix has the size A ∈ RHW×HW . However, in our EGCN, the scale of

the adjacency matrix is not a problem anymore because the EGCN accelerates the
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vanilla GCN based on the distribution of A in the grid graph.

In grid graph, all nodes are connected by its left,right up and down node and

then we can separate the adjacency matrix A of a grid graph into four parts as:

A = Iup + Idown + I le f t + Iright

= Idown + Iright + I⊤down + I⊤right,

The vector I le f t ∈ RN2×N2
and Iup ∈ RN2×N2

represent the leftward and upward

edges that connect each node respectively. The transpose of I le f t ∈ RN2×N2
and

Iup ∈ RN2×N2
are marked as Iright ∈ RN2×N2

and Idown ∈ RN2×N2
. The relationship

between each part can be found in Figure 4.2a. According to this separation, we can

simplify the process AW r
GI

from matrix multiplication to matrix addition as follow:

AW r
GI

= IdownW r
GI
+ IrightW r

GI

+ I⊤downW r
GI
+ I⊤rightW r

GI

= W r
GI N

+ W r
GI 1

+ W r
GI−N

+ W r
GI−1

,

(4.6)

The detailed process of equation IdownW r
GI

= W r
GI N

can be found in Figure 4.2c,

which is simply shifting and padding the original matrix W r
GI

upward by N rows.

Similar to W r
GI N

, W r
GI−N

represents shifting and padding the original matrix W r
GI

downward by N rows. For W r
GI 1

and W r
GI−1

, we shift the original matrix at first,

then we remove a part of rows in the shifted matrix since the matrices Idown and Iup

have 0 element in their diagonal value. The detailed demonstration can be found in

Figure 4.2b.

demonstrate that we do not need to perform matrix multiplication to get the

result of AW r
GI

. Instead, we can simply shift and add the elements in W r
GI

to achieve

the same goal. Since the matrix multiplication is replaced by the matrix addition,

the computational cost will be very small. According to , we build the EGCN as
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follow:
W r+1

GI
= EGCN(W r

GI
, A) = σ

(
(I + A)W r

GI
W r

k

)
= σ((W r

GI
+ W r

GI N
+ W r

GI 1
+ W r

GI−N

+ W r
GI−1

)W r
k), r = 1, 2, . . . , R − 1.

(4.7)

The EGCN adopts spectral-based graph convolution, and W r
k represents the

learnable parameters in GCN. The output of EGCN, W R+1
GI

∈ RN2
, is the importance

of each node in G ′, and the edge weight between nodes, WG ′, is calculated by using

the mean of the adjacent node weights.

After that, we move to the next step, which is generating the MST according

to the edge weight WG ′. However, we find that a single MST is not stable, which

means that using different random seeds during training can result in very distinct

MST formulations, leading to different performance and sometimes the network

cannot converge. Therefore, we propose a multi-stage MST algorithm to stabilize

the training result.

4.1.3 Multi-Stage Minimum Spanning Tree

In the convolutional network [136, 48, 97, 32], different layers capture different

levels of image features. For the shallow layer, context details such as image texture

and image edges will be obtained, while in the deeper layer, the features are full

of semantic information. Combining the features at different levels can greatly

improve the network performance and make the prediction more stable [61, 69, 85,

72]. Therefore, we design an algorithm called multi-stage MST to collect MSTs from

different convolution layers, and the predicted WG ′ will be stable.

We first mark the output of ResNet in 2nd, 3rd and 4th stage as Xm ∈
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Figure 4.3: Multi-stage MST demonstration. We first find MSTs on different ResNet outputs. Then
we perform tree-intersection to produce the final MST.

RCm×Hm×Wm and m ∈ {2, 3, 4}, they are generated by F(I):

[X 2,X 3,X 4] = F(I),

The the MST in 2nd, 3rd and 4th stage are generated and marked as τ2, τ3 and τ4.

τm = T (EGCN(L(Xm))), m ∈ {2, 3, 4}. (4.8)

Then, tree-intersection is proposed to merge the different MST τ1 and τ2 · · · τn.

Specifically, we first obtain the adjacency matrix of each τn and apply element-wise

multiplication to them as:

τ1 ∩ τ2 · · · τn = Aτ1 · Aτ2 · · · Aτn ,

In our implementation, given τ2, τ3, and τ4 that generated in Equation (4.8), the
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multi-stage MST is performed as:

AM
WG′

= [1 + (η − 1)τ2 ∩ τ3 ∩ τ4] · AWG′ ,

Here we use a small number η = 1e − 3 to control the edge weight in AM
WG′

. For an

input adjacency matrix AWG′ that generated by WG ′, the output of multi-stage MST

will be AM
WG′

. The details of multi-stage MST can be found in Figure 4.3.

4.2 Weight Optimization

Since the SFC is obtained after the Prim algorithm [79] and the Cover-and-Merge

algorithm, which are not differentiable, gradient optimizers like SGD or Adam

cannot be used to optimize the model. Therefore, we propose a novel learning

scheme based on the Siamese network, which will be introduced later.

4.2.1 Objectives

Since SFCs are used for data linearization, we introduce two objectives to measure

the quality of the linearized feature: autocorrelation and LZW code length.

Autocorrelation. Autocorrelation is a common metric used in data transmission [70,

99] and spectral analysis [39]. It measures the correlation between the flattened

feature and the k-delayed flattened feature. For example, given a sequence Y ∈ RHW

obtained by image flattening, we delay it by k and get Yt + k]. Autocorrelation is

then calculated as:

Φa =
∑HW−k

i=1 Y [t]Y [t + k]

∑HW
i=1 Y [t]2

, (4.9)

A higher autocorrelation indicates better performance of data flattening, which

implies a better SFC.
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LZW Code Length. LZW Coding [144] is a lossless data compression algorithm.

We measure the quality of SFC by examining the coding length after LZW coding,

which is performed as:

Φl = Length(LZW Coding(Y)). (4.10)

Where Y is the flattened image. A shorter code length indicates better clustering

ability that an SFC has, which implies a better SFC.

4.2.2 Learning Scheme

Inspired by knowledge distillation schemes [34, 88], self-learning methods [11,

28], and generative models [27, 80], we plan to use a Siamese network structure

for weight optimization. Specifically, as shown in Figure 5.3, our framework has

two identical branches. In the main network, the input is the original image I ,

but for the Siamese network input, we add random noise to the original image

(I +N (0, 1)) to increase input diversity. This design will make the input image of

the two networks different in context while keeping other important features intact,

like edges. Both networks will produce a score calculated by the objectives that we

mentioned above, and the scores of the main network and Siamese network are

marked as Φm and Φs respectively. We iteratively optimize both networks following

the criteria:

LKD =


KL (es∥em) , If Φm is better,

KL (em∥es) , If Φs is better,
(4.11)

If Φs performs better, we fix the parameters in the Siamese network and make

it the teacher network, then we update the parameters in the main network by

minimizing the KL-divergence between the main network (student) and the Siamese
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network (teacher). Similarly, when Φm is better, we fix the parameters in the main

network and optimize the Siamese network to make its predictions closer to the

main network. This process is repeated every iteration during training. In the

inference stage, we only use the output of the main network.

4.3 Experiments

Datasets. We test the performance of our model on the Fashion-MNIST [116], which

has 60k training images and 10k testing images. Additionally, we conduct exper-

iments on the MNIST [51] dataset. The MNIST dataset contains 70K images (60k

for training and 10k for testing) composed of handwritten numbers. The original

image is resized to 32×32, which is consistent with NSFC [102]. We also conduct

experiments on the Tiny-ImageNet [49] dataset, which is more complex than MNIST.

It is composed of 500 training, 50 validation, and 50 test images that are selected

from the ImageNet dataset [18]. The original images in Tiny-ImageNet [49] have a

size of 64×64, and we resize them to 32×32 during experiments. To demonstrate

the scalability of our model, we conduct a Tiny-ImageNet experiment with an input

size of 64×64.

Experimental Setting. The backbone of our model is the Pytorch [78] implemented

ResNet-18, and we convert all images into grayscale images to accommodate the

input of our model. We do not apply the pre-trained weight for the backbone, and

we use R = 3 layers of EGCN during experiments. (R is mentioned in Equation (4.7)).

We test our model after 80 epochs of training with a batch size of 128, and the

learning rate is reduced by half every 20 epochs. The initial learning rate is set to

lr = 0.001, and the Adam [41] optimizer is used to optimize the entire framework.
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Dataset Method
Autocorrelation LZW Code Length

↑ (bytes)↓

MNIST [51]

Zigzag 0.207 175.4

Hilbert [33] 0.475 182.7 (+7.3)

Dafner [17] 0.401 -

NSFC [102] 0.558 171.1 (-4.3)

Ours 0.625 158.3 (-17.1)

Fashion-MNIST [116]

Zigzag 0.552 425.8

Hilbert [33] 0.723 427.3(+1.5)

Dafner [17] 0.704 -

NSFC [102] 0.786 412.4 (-13.4)

Ours 0.834 400.7 (-25.1)

Tiny-imagenet
(32×32) [49]

Zigzag 0.811 925.1

Hilbert [33] 0.874 927.6 (+2.5)

Dafner [17] 0.896 909.0 (-16.1)

NSFC [102] 0.913 904.9 (-20.2)

Ours 0.936 888.7 (-36.4)

Tiny-imagenet
(64×64) [49]

Zigzag 0.719 -

Hilbert [33] 0.773 -

Dafner [17] 0.779 -

NSFC [102] - -

Ours 0.826 -

Table 4.1: Comparison between our approach and previous methods. Here, “zigzag" represents the
reshape function in PyTorch. We conduct both 32×32 and 64×64 experiments on the Tiny-ImageNet
dataset to test the scalability of our model.

4.3.1 Quantitative Comparison

Different Objectives. We present the performance of various SFCs in Table 4.1, they

are evaluated on different datasets with different objectives like LZW code length
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Method GPU Params Inference time

GCN [43] 104M 1.6M 11ms

GAT [101] 120M 1.8M 12ms

SGC [110] 88M 0.8M 9ms

FastGCN [fastGCN] 96M 0.5M 8ms

EGCN 32M 0.3M 4ms

Table 4.2: Inference speed and GPU occupation comparison between our model and previous works.
We randomly generate a batch of 64 × 64 grid graphs as the input and the batch size is set to 512.

Stage2 Stage3 Stage4 Autocorrelation

× × × 0.577 (±0.04)

✓ × ✓ 0.601 (±0.02)

✓ ✓ × 0.589 (±0.03)

✓ ✓ ✓ 0.625 (±0.01)

Table 4.3: Ablation experiment that conducted to test the multi-stage MST.
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Table 4.4: Average inference time of different components in our model.
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and autocorrelation.

We first run our model and NSFC, which are learning-based methods, and

we supervise the models with a delay factor k = 6 for autocorrelation. Then we

generate Hilbert curve, Zigzag curve, and Dafner [17] curve for comparison. The

autocorrelation performance is obtained by using the mean autocorrelation of all

images. After that, we measure the quality of the generated SFCs using the LZW

code length metric. The experimental results are reported in Table 4.1, where we

can see that our model shows the best performance in both autocorrelation and

LZW code length metrics. For example, in the MNIST experiments, our model

reaches 158.3 bytes in LZW code length, which is much smaller than other methods,

indicating that our generated SFC has better clustering ability. Additionally, to better

demonstrate the clustering ability of our SFC, we visualize some Tiny-Imagenet

results in Figure 4.4.

Computational Cost. We then conduct a computational cost measurement, as

our EGCN is designed as a power-saving solution for GCN. We evaluate the cost

from two perspectives: the inference time of different GCN methods and their

corresponding GPU memory usage. During experiments, we use a randomly

generated 64 × 64 grid graph as the input, and we set the number of layers to 3 for

all tested GCN methods. The quantitative comparison can be found in Table 4.2,

where our EGCN outperforms traditional methods like GCN [101] and GAT [101]

by a large margin. Also, our method is more power-saving than previous GCN-

acceleration approaches like SGC [110] and FastGCN [fastGCN].

Since our model is a combination of different components, it is important to know

the inference time of each component. Therefore, we conduct MNIST experiments to

measure the running time of each part in our model, including the Cover-and-Merge

algorithm, CNN backbone, graph embedding module that contains EGCN and
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Original Ours Hilbert Ours flatten Hilbert flatten

Figure 4.4: The visualized comparison between our approach and the Hilbert curve is generated as
follows: Firstly, the image is flattened to a 1D sequence using a given space-filling curve. Then, we
upsample the flattened 1D sequence to a 2D image for better visualization. Compared to the Hilbert
curve, our proposed method obviously has better clustering properties.

Learning Scheme Params Training Time/epoch AC

NSFC [102] 22.9M 1867s 0.593

Ours 22.3M 72s 0.625

Table 4.5: Learning scheme comparison. Params means number of parameters in the training
framework.

feature normalization, and MST generation. 4.4 records our evaluation results, in

which we can see that graph embedding only consumes 2ms, further proving that

our proposed EGCN is very efficient.
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GCN(·) L(·) EGCN(·) AC

✓ × × 0.594

× × ✓ 0.598

✓ ✓ × 0.614

× ✓ ✓ 0.625

Table 4.6: Ablation experiments about
the performance of feature normalization
layer and EGCN module.
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Figure 4.5: Visualized results on MNIST and Fashion-
MNIST dataset when selecting different delay factor k.

4.3.2 Ablation Study

In this part, we will test the contribution of each module in our proposed model.

We use MNIST dataset with autocorrelation objective (k = 6) during the following

ablation experiments.

Multi-Stage Minimum Spanning Tree. Multi-stage MST is designed for stable

MST prediction. To evaluate the performance of this model, we first run our model

without using multi-stage MST, and the result can be found in row 1 of Table 4.3.

The autocorrelation is 0.577 (±0.04). When we add multi-stage MST on stage2 and

stage3, the autocorrelation increases to 0.589 (±0.03). We can see that the prediction

becomes more stable (from ±0.04 to ±0.03) and the autocorrelation becomes higher.

If we apply the multi-stage MST on stage2, stage3, and stage4 of ResNet, the

result will be even better. The variation of prediction becomes negligible and the

autocorrelation reaches 0.625, which outperforms the model without multi-stage

MST by a large margin.

Different Learning Schemes. Previous work NSFC [102] generates SFCs by first

generating a proposal SFC, then using a curve evaluator to determine whether we

should keep this result or not. In our research, we conduct a Siamese network-based
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learning scheme and we will measure the performance of both training schemes

in terms of autocorrelation and training time per epoch. To make the comparison

fair, we keep all other settings (EGCN, multi-stage MST, etc.) the same except for

the training scheme. 4.5 shows the result of different training schemes. It can be

found that the parameters of both methods are not distinct since both methods

use an additional branch to determine the quality of the generated SFC. However,

our proposed method has a faster training speed since the NSFC scheme needs

to apply the Dafner [17] algorithm, which is time-consuming. Additionally, our

scheme shows better autocorrelation performance than the NSFC scheme, which

demonstrates that our method is more suitable for SFC generation.

EGCN and Feature Normalization. In this part, we test the performance of our

proposed EGCN. We simply replace all the EGCN to GCN at first, and the results can

be found in 4.6. It shows that GCN performance is close to EGCN without feature

normalization. This is because EGCN is just a GCN acceleration method, which

will not affect the final performance. Next, we apply feature normalization to GCN

and EGCN and we can find that the autocorrelation performance becomes better. It

illustrates that feature normalization technique is essential to our framework.

Scalability. Scalability is a significant problem for previous works like NSFC because

vanilla GCN cannot handle a large grid graph. For example, if GCN is processing a

grid graph with size 256× 256, the adjacency matrix of that graph will have a size of

65536 × 65536, which requires an unacceptable cost. Moreover, finding an MST on a

large graph is still a challenging problem. However, in our model, the scalability

problem is solved because EGCN is very efficient. We conducted a Tiny-Imagenet

experiment to test the scalability of our model. In this dataset, all images have a

size of 64×64, which is much larger than others. The autocorrelation performance

in Table 4.1 shows that our model is suitable for handling large images. Note that
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we do not report the performance of NSFC because the training time is too long.

More Visualization. During experiments, we use a fixed autocorrelation factor k. To

better showcase the performance of different SFCs, we provide the autocorrelation

results with different k values. As shown in Figure 4.5, our model consistently

performs better than other space-filling curves like the Hilbert curve.

Limitations and Future Works. Searching for an optimal SFC is a challenging

problem, especially in large graphs where the complexity increases significantly.

Hence, we cannot ensure that our method provides the global optimal solution.

As one of the future directions, we will search for more powerful and efficient

optimization strategies to approximate global solutions. Another direction is that

we can explore the possibility of applying the proposed SFC to other tasks, such as

point cloud compression [10], data clustering [74] and etc.
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Chapter 5

Point Cloud Analysis Using Space

Filling Curve

5.1 Methodologies

As illustrated in previous parts, Space-Filling Curves (SFCs) are useful data cluster-

ing tools that can be used for data linearization. The linearized feature has a lower

dimension and can be processed faster compared to its original shape. Therefore, we

can apply SFCs to a segmentation framework for acceleration. In this part, we will

use the Hilbert curve as an example to demonstrate how to use a space-filling curve

to implement efficient segmentation in a point cloud segmentation framework.

5.1.1 Hilbert Curve Preliminaries

In the previous section, we demonstrated the analytical formulation of the Hilbert

curve, which is a fractal function [91]. In this section, we will detail its characteristics.

The shape of the Hilbert curve can be found in Figure 5.1.
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Figure 5.1: The process of generating Hilbert curve.
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Figure 5.2: Number of Still segments and Jump segments in Hilbert curve and reshape function.
We fix the dimension D = 3 and increase the grid size N.

5.1.2 Advantages of Hilbert Curve

Previously, linearization was implemented via a zigzag curve (shown in Figure 1.4),

also known as the “reshape" function. Here, we provide a strong alternative

solution: the Hilbert curve. Unlike the zigzag curve, the Hilbert curve has no "jump

connections", implying a better locality-preserving property. Also, the distribution

of the flattened feature closely resembles the original feature. To solidify our claim,

we will mathematically illustrate the two advantages of the Hilbert curve in the

following section.

Advantage 1: Locality Preserving.
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The number of segments in the SFC [73] determines its locality-preserving ability,

which is strongly correlated with its clustering ability. The better the clustering

ability, the more centralized the distribution of the flattened data will be, which is

more beneficial for feature extraction.

Definition 1. Segments] A segment is defined as the “line" that links two consecutive

elements. Specifically, given a grid graph with size N and dimension D, it has ND − 1

segments that connect ND points.

Definition 2 (Jump Segments). Jump segment is defined as the segment that links two

consecutive elements where the distance between them is larger than 1. For example, given

two consecutive elements Pi+1 and Pi, if abs(Pi − Pi+1) > 1, the segment between the two

points is the Jump segment.

Definition 3 (Still Segments). Still segment is defined as the segment that links two

consecutive elements where the distance between them is equal to 0 at kth dimension. For

example, given two consecutive elements Pi+1 and Pi, if abs(Pi − Pi+1) = 0 at dimension k,

the segment between the two points is the Still segment.

The Hilbert curve is known for its good locality-preserving property, which is

feasible for data clustering. An intuitive comparison between the reshape function

and the Hilbert curve can be found in Figure 1.4, which demonstrates that the

Hilbert curve is more suitable for our task. We will then illustrate why using the

Hilbert curve theoretically.

As we defined above, it is obvious that the locality-preserving property of an

SFC is determined by the number of Still and Jump segments within it. The

fewer jump segments, the smaller the number of jump connections, which leads to

better clustering properties. Also, the more Still segments, the higher the spatial

consistency the SFC provides, which is also good for data clustering. For a grid
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graph with size N and dimension D, we can calculate the percentage of Still

segments SR, Jump segments JR in the reshape function, and Still segments SH,

Jump segments JH in the Hilbert curve using the following function:

JR = (
ND − 1
N − 1

− D) · 1
D(ND − 1)

,

SR = (DND − N
ND − 1
N − 1

) · 1
D(ND − 1)

,

JH = 0, SH = (D − 1)(ND − 1) · 1
D(ND − 1)

,

(5.1)

The results can be found in Figure 5.2. From the figure we can find out that the

Hilbert curve always has larger number of Still segments comapred with reshape

function. Additionally, Hilbert cuvre has no Jump segments. Therefore, Hilbert

curve is much more locality preserving than reshape function.

Advantage 2: Lower Space to Linear Ratio

Another advantage of the Hilbert curve is that the feature flattened by the Hilbert

curve has a similar data distribution to its original shape. Specifically, if we apply

data flattening, we will inevitably change the distribution of the original data, and

some continuous points may no longer be neighbors of each other after flattening.

Therefore, we should consider the similarity between the original and the flattened

shape when choosing an SFC. We can check the space to linear ratio (SLR) of a SFC

for the similarity measurement.

Definition 4 (Space to Linear Ratio). Suppose in a 2D system [0,1]×[0,1], we have two

points p(τ) and p(t). If mapping these two points to τ and t that in a 1D system [0,1] via

a SFC p, p:[0,1]→[0,1]×[0,1], the space to linear ratio of the two points is defined as:

|p(t)− p(τ)|2
|t − τ| (5.2)

The space to linear ratio of the SFC p is then defined as the maximum of
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Equation (5.2). Clearly, a smaller SLR represents higher spatial locality as the

distribution of the flattened data is closer to its original shape.

Theorem 1. The square-to-linear ratio of the Hilbert curve is equal to 6.

The proof is given in [4]. For the reshape function, under a certain curve order n,

some consecutive elements will have an SLR of 4n − 2n+1 + 2, which is much larger

than 6 as illustrated in [134]. Therefore, compared with the reshape function, the

Hilbert curve is better for data flattening.

5.1.3 Pre-processing

To integrate the Hilbert curve into the segmentation model, we first introduce the

Voxelization and Hilbert Flattening Module (VHFM). For all input point clouds,

VHFM first voxelizes them into a 4D voxel tensor of size (C, R, R, R), consistent with

previous works [83, 138, 72]. Following this, it applies slice-level data flattening

as shown in Equation (5.3). In this process, each slice Vs1,Vs2...VsR∈ (C, R, R, 1)

represents the corresponding feature along the Z axis.

V∈R×R×R →



V s1

V s2

...

V sR


Hn(s)−→



s1

s2

...

sR


= I . (5.3)

Next, we apply the Hilbert curve Hn(sk) = Vsk, k = 1, 2...R to obtain the

flattened feature s1, s2...sR∈ (C, R2). We reconstruct the sequences along the Z-axis

and the resultant feature will be I∈(C,R2,R). We will use I as the input feature of

58



H
A H
P

H
A H
P

H
A H
P

H
A

H
A

H
A

HI HIHIHIHI HI

Shared M
LP

Shared M
LP

Shared M
LP

Shared M
LP

Shared M
LP

Shared M
LP

1 x 1
Conv-
ReLU

1 x 1
Conv-

Sigmod

Shared M
LP

Shared M
LP

Repeat N

Shared M
LP

C
lassification

Loss

Segm
entation

Loss
GAP Max Pool

MLP

VHFM

HI

HA Hilbert Attention HP Hilbert Pooling HI Hilbert Interpolation Concatenate Add

2D Branch

1D Branch

Figure 5.3: Pipeline of our proposed HilbertNet. The input point cloud will be processed by
Voxelization and Hilbert flattening module (VHFM). After that, we extract 1D point features,
2D slice features and we merge them with Hilbert Interpolation operation (HI). Channel-wise
attention [37, 108] and global average pooling are also applied in our framework. Our model is
designed for classification and segmentation tasks.

the neural network. It can be observed that this is a 2D image, which uses Conv2D

for feature extraction, which is much smaller than Conv3D for voxel.

We also adopt data augmentation techniques as implemented in previous works,

such as point cloud rotation, point cloud flip, and random point jitting. All the data

augmentations are applied directly to the point cloud, which is before VHFM.

5.1.4 HilbertNet

HilbertNet is a multiple feature fusion framework [66, 138] that combines 3D voxel

features with 1D point features for accurate point cloud segmentation. However,

HilbertNet is more efficient than previous works because we do not use 3D voxels

directly. Instead, we initially flatten the 3D branch into a 2D image, which reduces 3D

convolution to 2D and saves significant computational cost, as shown in Figure 5.3.

However, this difference also implies that we cannot use previous modules and

must design our own operators. Hence, we will introduce our designed operators:
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Hilbert interpolation, Hilbert pooling, and Hilbert attention in details

Feature Gathering. Since the final prediction is a point cloud instead of a voxel,

we need to use a “devoxelization" process that is applied to the 2D flattened voxel,

transforming it into a 1D point feature. This module should have a function similar

to linear interpolation [66] or attention-based interpolation [122]. However, it is

not advisable to apply linear interpolation to the flattened feature since the feature

obtained by first interpolating and then applying Hilbert flattening differs from

the feature obtained by first applying Hilbert flattening and then interpolating.

Therefore, we propose using Hilbert interpolation to replace linear interpolation.

Linear Interpolation. Recalling that the process of linear interpolation for a voxel

feature V∈(C,R,R,R) is:

O = Reshape(V)F linear, (5.4)

It transforms the 4D voxel tensor into a point cloud tensor O∈(M,C) through the

interpolation kernel F linear and the output has M points. The linear interpolation is

not locality preserving as it uses Reshape(·) function and the voxel to be interpolated

is usually sparse, which will lower the intensity of border girds. Therefore, we

propose our Hilbert interpolation.

Hilbert Interpolation. For a given 2D flattened voxel I∈(C,R2,R), Hilbert interpola-

tion L(·) works as:

O = L(I), with

H⌈M⌉(O) =


(I ·W h)F linear, if M ≤ R3;

IF linear, if M > R3.

(5.5)

In the upsampling case (M > R3), we directly use linear interpolation and the
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Hilbert curve H⌈M⌉(·) to transform I into the point cloud feature O. ⌈M⌉ repre-

sents the nearest curve order where the corresponding Hilbert curve encompasses

at least M points. However, in the downsampling case (M ≤ R3), the process

becomes more complicated. We first introduce Wh, an interpolation weight used

to compensate for the border area of I . Wh is the number of empty grids in an

interpolation kernel. The more empty grids there are, the larger the number in Wh,

resulting in greater compensation. Next, the tensor WB is obtained after applying a

sum filter to IB:

WB = IBFsum. (5.6)

Obviously, F linear, which is marked as KF, determines the size of Fsum and WB

depends on the interpolation scale. It is easy to find that the number of non-empty

grids that included in the interpolation kernel is represented by WB. Finally, we

use a nearest interpolation N (·) to WB and obtain W∈(C,R2,R)
h as follow:

W h = KF −N (WB) + 1. (5.7)

The Hilbert interpolation L(·) transforms 2D features into 1D using Hilbert

flattening and our proposed border-adaptive interpolation. In our real L(·) imple-

mentation, Bilinear kernel is selected. We will get the point feature O from 2D

branch after the operation L(·). Also, the 1D branch will produce another point

feature X. These two point features are fused through addition to get the final

output:

Y = α(X) + O, (5.8)

Where α(·) is a shared MLP.

Hilbert Pooling. Now let us consider the pooling module. Originally, 2D pooling

compresses the spatial information of a feature map from the neighborhood of
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Hilbert Pooling

Regular Pooling

…

…

Figure 5.4: Demonstration of Hilbert pooling and original max pooling.

the pooling window. However, this paradigm is not applicable to the 2D feature

I that flattened by the Hilbert curve, as the neighboring elements in the pooling

window may not be neighbors in the original 3D shape and an example can be

found in Figure 5.4. In order to handle this problem and making the pooling module

performs closer to the original 3D pooling, we propose Hilbert pooling. Given a

tensor I , Hilbert pooling P(·) is performed as:

MaxPool3D(Hn−1(I)) Hn−1(s)−→ = I ′ = P(I), (5.9)

It combines original 3D pooling with inverse Hilbert curve operation Hn−1(I),

which is defined as the reverse of Equation (5.3), turning the 2D flattened feature

into 3D. The resultant feature after Hilbert pooling will be I ′∈(C, R2
4 , R

2 ), which is

similar to Equation (5.3) since Hn(s) ≈ Hn − 1(s).

Hilbert Attention. Similar to 2D tasks, a 2D flattened feature map has rich long-

range context information, and utilizing this can greatly enhance feature extraction.

The attention module [106, 128, 12] is the top priority for harvesting long-range con-

text, and hence, we build a Hilbert attention module to collect context information

within the slice (intra-slice correlation) and between slices (inter-slice correlation).
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Query Key Value

Softmax

Output

Input

Figure 5.5: Details of Hilbert attention. It is constructed by matrix multiplications and 2D
sparse convolutions. Specifically, we generate Key and Query feature via 1×4 and 4×1 sparse 2D
convolution respectively. Another 4×4 convolution is applied to get the value feature.

Additionally, we calculate the mixed correlation between inter-slice and intra-slice

correlations. The framework of Hilbert attention can be found in Figure 5.5.

Intra-Slice Correlation. For the intra-slice correlation measurement, we focus on

the sequences sk, k ∈ 1, R], which are transformed by Equation (5.3). Specifically, we

follow the paradigm in [130], using a weighted linear projection on the sequences

where the weight is denoted as wkey. (noted as Key in Figure 5.5)

σ(I) = ∑
ek∈sk

wkeyek (5.10)

After that, we get the long-range dependencies of input featuremap along each slice.

Inter-Slice Correlation. Similarly, the inter-slice correlation can be obtained by

using the transpose operation of intra-slice correlation, denoted as ϕ(·). (noted as

Query in Figure 5.5)

ϕ(I) = σ(I⊤), (5.11)

It collects context information across each slice.

Mixed Correlation. Next, we introduce mixed correlation γ(I) to measure the
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importance between inter-slice and intra-slice correlations. In the code implementa-

tion, it is a 4 × 4 convolution. The kernel is set to 4 because the 3D Hilbert curve

is a repetition of the smallest unit, a 2 × 2 × 2 cell, which includes 8 elements.

Therefore, a 4 × 4 convolution is sufficient to cover all the elements. The formula-

tion of Hilbert attention HA is the combination of the three kinds of correlations.

HA = Softmax(ϕ(I)σ(I))γ(I),

5.2 Experiments

5.2.1 Implementation Details

Experimental Setting. HilbertNet adopts the Adam optimizer [42] with a learning

rate of lr = 0.001, consistent with previous work. In the part-segmentation and

classification tasks, we set the order of the Hilbert curve to n = 6, which fits the

voxel grid of size 64 × 64 × 64. In both tasks, the batch size is 16, the learning rate

decays by 50% every 50 epochs, and the training epochs are set to 200.

Since the S3DIS dataset provides larger point cloud, we enlarge the curve order

to n = 7, which fits the grid size of 128 × 128 × 128. Also, due to the GPU memory

limitation, we reduce the batch size to 8 and the total training epoch is set to 80. We

decay the learning rate by 50% every 20 epochs.

Classification Dataset. We evaluate the performance of our model by using the

ModelNet40 [112] dataset. The dataset is comprised of 9843 objects categorized for

training, and an additional 2468 objects allocated for testing. In accordance with

the settings of former research [52], we consistently sample 1024 points for each

experiment.
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Part-Segmentation Dataset. During part-segmentation experiments, we use the

ShapeNetPart dataset [7]. This dataset includes 16881 objects in total, each objects

has 2 to 6 parts. These objects were divided into 16 categories. Following previous

works [66], we sample 2048 point clouds during experiments.

Large Scale Segmentation Dataset. We used the S3DIS dataset [1] to assess the

performance of HilbertNet in large-scale scene parsing tasks. Data from 271 rooms

across 3 different buildings was collected by S3DIS. Each point in the dataset is

classified into one of 13 categories. Following the previous works[122, 130], we

perform experiments on Area 5.

5.2.2 Experimental Results

ModelNet40. Since ModelNet40 is a classification dataset, we append three FC

layers after the main framework for point cloud classification. The results in Table 5.1

show that our model achieves top-tier performance compared to previous works.

Here, we use 1024 sampling points as input, which is consistent with previous

works [82, 53, 115], ensuring a fair comparison. Note that since our model collects

features from both voxels and point clouds, its performance surpasses voxel-only

frameworks like VoxelNet [140] and point-only frameworks like PointNet [82].

ShapeNetPart. For the segmentation task, we use a shared MLP at the end of

HilbertNet to generate the output feature. The performance of the part-segmentation

task can be found on the right side of Table 5.1. With the help of the 2D branch,

HilbertNet shows better mIoU performance than point-only designs like SO-Net [52]

and PointNet [82]. Also, the point feature is a good complement to the grid voxel

feature. By using this, our model surpasses algorithms that only apply 3D or 2D
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Table 5.1: Comparison of different methods on
ModelNet40 and ShapeNetPart datasets.

ModelNet40 ShapeNetPart

Method Acc Method mIoU

VoxNet [140] 85.9 Kd-Net [45] 82.3

Subvolume [84] 89.2 PointNet [82] 83.7

PointNet [82] 89.2 SO-Net [52] 84.9

DGCNN [107] 92.9 3D-GCN [63] 85.1

PointASNL [119] 92.9 DGCNN [107] 85.2

Grid-GCN [118] 93.1 PointCNN [55] 86.1

PCT [29] 93.2 PVCNN [66] 86.2

SO-Net [52] 93.4 KPConv [98] 86.4

CurveNet [115] 93.8 CurveNet [115] 86.6

Ours 94.1 Ours 87.1

Table 5.2: Inference time and mIoU compari-
son between HilbertNet and other approaches.

Method Inference time voxel size mIoU

3D-UNet[72] 347ms 643 84.2

PVCNN[66] 62.5ms 323 86.0

HilbertNet-L 42.1ms 643 85.8

HilbertNet-M 59.2ms 643 86.4

HilbertNet 91.6ms 643 87.1

Table 5.3: Comparison between Hilbert Atten-
tion and other convolution modules. We use
a randomly generated 323 voxel as the input.
FLOPs is the short of floating point operations.

Method FLOPs GPU Memory

3D Convolution 18.86G 162M

2D Convolution 4.45G 148.7M

Sparse 2D Convolution 1.47G 49.6M

NonLocal 0.34G 4G

Hilbert Attention 0.32G 47.8M

features, like 3D-GCN [63].

S3DIS. Since HilbertNet uses a voxel grid, a frequently asked question is whether it

can handle large point clouds. To answer this question, we conducted an experiment

using the S3DIS [1] dataset. We used the Area 5 set, and the experimental results

in Table 5.4 demonstrate that HilbertNet is capable of handling large-scale point

clouds. The Hilbert curve significantly reduces the computational cost for 3D feature

extraction, and with the aid of Hilbert attention, our model surpasses most state-

of-the-art frameworks like pointTransformer [130], which is a transformer-based

model. Additionally, we have visualized some results generated by HilbertNet in

Figure 5.6a and some results generated by other methods in Figure 5.6b, providing

a straightforward way to appreciate the effectiveness of HilbertNet.

Inference Speed. Inference speed is a crucial aspect of this study, as the goal
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(a) Left to right: Point Cloud, GT, HilbertNet.

PointNet KPConv HilbertNetGround Truth
(b) Left to right: Point Cloud, GT, PointNet[82], KPConv[98], HilbertNet.

Figure 5.6: (a) Visualized performance of HilbertNet on S3DIS Area 5; (b) Comparison between
HilbertNet and other methods.

Table 5.4: Performance of different approaches on S3DIS Area 5 dataset.

PointTransformer MinkowskiNet PointCNN KPConv PCCN PointNet
HilbertNet

[130] [14] [55] [98] [105] [82]

column 38 34.1 17.6 23.9 6 3.9 37.6

window 63.4 48.9 22.8 58 69.5 46.3 64.1

chair 82.4 89.8 80.6 91 65.6 52.6 85.4

clutter 59.3 58.6 56.7 58.9 46.2 33.2 60.1

wall 86.3 86.2 79.4 82.4 75.9 69.8 88.9

door 74.3 62.4 62.1 69 63.5 10.8 73.8

table 89.1 81.6 74.4 81.5 66.9 59 88.4

sofa 74.3 47.2 31.7 75.4 47.3 5.9 73.5

bookcase 80.2 74.9 66.7 75.3 68.9 40.3 82.7

board 76 74.4 62.1 66.7 59.1 26.4 74.7

beam 0 0 0.3 0 0 0.1 0

floor 98.5 98.7 98.2 97.3 96.2 97.3 97.8

ceiling 94 91.8 92.3 92.8 92.3 88.8 94.6

mIoU 70.4 65.4 57.3 67.1 58.3 41.1 70.9

of applying the Hilbert curve to the segmentation framework is to accelerate it.

Therefore, we should compare the computational overhead of our methods with

models that have a similar pipeline, like PVCNN [66]. In addition to the original

HilbertNet, we propose two variations named HilbertNet-M and HilbertNet-L for
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different application scenarios. HilbertNet-M reduces the channel number of the

original HilbertNet by half while keeping other settings intact. HilbertNet-L only

has 0.25× channels and is designed for low-latency applications. We tested all the

models, including HilbertNet, PVCNN, and 3D-UNet [72] (a baseline model), on the

ShapeNet dataset with a GTX TITANX GPU. All the tested models were reproduced

according to their original papers. The comparison of different models can be

found in Table 5.2. It can be observed that HilbertNet-L has the highest inference

speed with a comparably high mIoU, while the original HilbertNet delivers the best

performance with an acceptable inference speed.

Next, we delve into the details of HilbertNet, examining the inference speed

of different convolution modules. Table 5.3 shows the FLOPs and GPU usage of

different convolution methods, including vanilla 2D and 3D convolution, vanilla

Non-local attention, sparse 2D convolution, and Hilbert Attention. The results show

that Hilbert Attention outperforms all the listed modules in terms of FLOPs and GPU

memory usage. This outcome explains why HilbertNet is efficient and demonstrates

the power of the Hilbert curve in accelerating the segmentation framework.

5.2.3 Ablation Study

In this section, we will use the ModelNet40 dataset to conduct an ablation study and

determine the contribution of each part. We evaluated different feature flattening

strategies, interpolation algorithms, and pooling and convolution methods.

Hilbert Curve vs. Reshape Function. Here, we simply replace all instances of

the Hilbert curve in HilbertNet with the reshape function, and the performance

can be found in Figure 5.7. The results show that when we substitute the Hilbert

curve with the reshape function, the accuracy drops from 94.1% to 91.2%. This is
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Figure 5.7: Ablation experiments of different modules in HilbertNet, including Convolution
Method, Pooling Method, Flattening Method, Gathering Method.

consistent with the fact that the Hilbert curve has a much better locality-preserving

ability. Also, the figure suggests that the Hilbert curve contributes significantly to

the improvement in accuracy.

Hilbert Interpolation vs. Linear Interpolation. Next, we examine the 2nd, 3rd,

and 6th columns in Figure 5.7, where the results are generated using different

interpolation methods including Bilinear, Trilinear (see Equation (5.4)), and Hilbert

interpolation. Hilbert interpolation results in the highest accuracy, and Trilinear

achieves the second-highest performance. This implies that Hilbert interpolation

not only outperforms Bilinear interpolation but is also superior to Trilinear in-

terpolation. This result further substantiates our claim that the Hilbert curve is

locality-preserving.

Hilbert Pooling vs. 2D Max Pooling. Now let us examine the pooling module.

Since we use a 2D flattened voxel, we should compare our Hilbert pooling module

with traditional 2D max pooling, which is widely used in 2D tasks [32, 95, 97]. The

results in the 4th and 6th columns of Figure 5.7 suggest that when processing 2D

Hilbert-flattened voxels, Hilbert pooling is the optimal choice.

Hilbert Attention vs. 2D Convolution. Here, we use a 2D sparse convolution
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Figure 5.8: Left: Reshape function. Middle:Hilbert curve Right:Gilbert curve. Gilbert curve is the
generalized formulation of Hilbert curve, which can fit arbitrary size of input. However, the jump
connections are introduced in Gilbert curve, which may reduce its clustering property.

with a kernel size of 4 × 4 to replace Hilbert attention. The performance of this

design can be found in the 5th column of Figure 5.7. The significant reduction in

prediction accuracy indicates that without Hilbert attention, the network is incapable

of harvesting context information from the 2D flattened voxel.

Limitation and Future Works. Although the Hilbert curve is an ideal solution for

data clustering, its application is limited by its shape as it can only be used for voxels

with a side length of 2n, such as 16, 32, 64, and we should scale the given voxels to

163, 323, and 643 before using the Hilbert curve. In point cloud analysis, this setting

may cause inconvenience. Firstly, the real-world voxel data is usually very large,

and interpolating it is a time-consuming operation. Also, the scale function will

change the structure of the original data, which will lead to incorrect segmentation.

To address this limitation of the Hilbert curve, we further explore the Gilbert curve,

i.e., the generalized Hilbert curve, which adapts to any side length of point clouds

by adding a small part of jump connections. The comparison between the Hilbert

curve and the Gilbert curve can be found in Figure 5.8. These added connections
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preserve spatial locality and geometry in a more flexible manner.

Therefore, in future work, in addition to HilbertNet, we will also propose Gilbert-

Net, which uses the Gilbert curve [127] to flatten voxels. GilbertNet sacrifices a

portion of locality preservation (by introducing some jump connections) to accom-

modate arbitrary-shaped voxel inputs, whereas HilbertNet can only accept input

voxels with side lengths of 2n, such as 16, 32, and 64. GilbertNet offers broader

applicability, and HilbertNet can be considered a special case of GilbertNet.

After that, we will explore the possibility of using data-adaptive space-filling

curves in segmentation models. However, data-adaptive SFC generation is usually

computationally heavy because minimum spanning tree searching, which is a

key part of data-adaptive SFC generation, and hence an efficient MST searching

algorithm should be proposed first.
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Chapter 6

Conclusion

Our research aims to speed up deep-learning-based visual segmentation while

maintaining the high performance of the segmentation model. To achieve this

goal, we are focusing on optimizing the attention block, which is a key component

in segmentation networks and requires a lot of computational resources. After

obtaining efficient attention via tensor low-rank reconstruction, we found that the

attention slimming strategy has its own limitations. In other words, we cannot

infinitely reduce the size of the attention block to speed up neural networks while

keeping its performance good. Therefore, we have to look for a new way to further

accelerate the segmentation process and we found that space-filling curves are

useful to our research since they can linearize data from higher dimensions to

lower dimensions, which is similar to lossless data compression. Specifically, we

can utilize the data that is compressed by space-filling curves to achieve lower

cost. But before that, we have to know what kind of SFC we need and what the

properties of different SFCs are. Therefore, we conduct research focusing on SFC

generation and find out that the Hilbert curve is suitable for us to achieve low-

cost segmentation. Finally, we combine the Hilbert curve with low-rank attention
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in the point cloud segmentation task and achieve SOTA performance with very

low computational overhead. The thesis is organized into 3 sections, each section

reports one of our explorations including efficient attention via tensor low-rank

reconstruction, study in space-filling curve generation, and applying the Hilbert

curve to visual segmentation.

In the section 3, we reported how to use tensor CP reconstruction to model the

attention block with a bunch of rank-1 tensors. Different from previous works that

generate attention from a 2D similarity matrix, our attention is built in 3D directly.

We propose a tensor generation module (TGM) to collect fragments of context

information in the feature map and then use our designed tensor reconstruction

module (TRM) to merge all the context fragments that come from TGM. Our

attention contains spatial and channel context information simultaneously, which is

different from previous works that only contain context information in spatial or

channel. Additionally, our attention is 100× faster than previous works.

In the section 4, we conducted an in-depth study of the properties of different

space-filling curves. Specifically, we explored the properties and applications of

space-filling curves and found out that the Hilbert curve can be used for data

linearization and can further accelerate the segmentation process. In order to have a

deeper understanding of SFC, we propose a deep-learning-based SFC and compare

our results with the Hilbert curve. During our SFC generation research, we find

that SFC generation is a Hamiltonian path finding process, which requires a graph

neural network (GNN). However, the vanilla GNN is not applicable to image grid

graphs and therefore, we propose our efficient-GCN (EGCN), which does not need

to perform matrix multiplication and is hence much faster than GNN. Additionally,

we proposed a Siamese network learning scheme to optimize our SFC generation

framework efficiently.
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In the section 5, based on the findings in the previous two sections, we perform

efficient segmentation using the Hilbert curve and low-rank attention. Specifically,

we use point cloud segmentation as an example and the segmentation framework

is named as HilbertNet. In the pre-processing stage of HilbertNet, we propose a

Voxelization and Hilbert Flattening Module (VHFM), which first converts point

cloud data into 3D voxels and then uses the Hilbert curve to flatten them into 2D.

Since 2D convolution is much more power-saving than 3D convolution, the goal

of efficient segmentation is achieved. Additionally, since the data distribution of

flattened voxels is different from traditional 2D images, we designed several blocks

like Hilbert interpolation, Hilbert pooling, and Hilbert attention to accommodate

these differences. Our proposed Hilbert attention is a low-rank attention and has a

lower computational cost compared to the vanilla attention block. With the help of

these blocks and the Hilbert curve, our HilbertNet achieves top-1 performance in

various datasets with relatively low cost.
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