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Recent years have seen an explosion of interest in Design for
Manufacturability (DFM) and Artificial Intelligence (AI). The
interest is directly attributed to the difficulties of manufacturing
integrated circuits in nanometer-scale CMOS technologies with
high functional and parametric yield. Especially the systematic
defects in layout designs. This thesis focuses on AI solutions
for layout defect identification (LDI), including layout hotspot
detection, layout pattern analysis, and root cause identification.

With the development of the semiconductor industry, tran-
sistor feature size shrinks rapidly, which significantly challenges
manufacturing yield. For instance, the low-fidelity pattern on
the wafer (a.k.a. “hotspot”) is one of the emerging issues in man-
ufacturing. To ensure the printability of layout designs, an effi-
cient and accurate hotspot detector is indispensable. Developed
deep learning techniques have recently shown their superiorities
on hotspot detection tasks. Existing hotspot detectors can only
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handle defect detection from one small layout clip each time, this
may be very time-consuming when dealing with a large full-chip
layout. We develop a new end-to-end framework that can de-
tect multiple hotspots in a large region at a time and promise a
better hotspot detection performance. We design a joint auto-
encoder and inception module for efficient feature extraction. A
two-stage classification and regression framework are designed
to detect hotspots with progressive accurate localization, which
provides a promising performance improvement.

A high and stable yield could ensure the profitability and
reliability of products. Specific layout patterns that are hard to
fabricate tend to cause more systematic defects, such as open or
bridge defects in neighboring wires. These layout patterns are
an important source of yield loss. Since layout configurations
of new designs may differ from existing ones, identifying layout
patterns that lead to yield loss through test chips, SRAMs, etc.,
is becoming less effective. Physical failure analysis (PFA) is a
straightforward method to determine whether a layout pattern
is the root cause of systematic defects. Fabrication is often time-
consuming and expensive, and requires both experience and a
thorough understanding of the fabrication process. A unified
framework for layout pattern analysis with deep causal effect
estimation is proposed. A causal relationship between the root
causes and the structural defect is described in our framework.

To further improve the robustness of root cause identifica-
tion and eliminate the noise in diagnosis reports. We develop a
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reinforcement learning agent to detect the root cause efficiently
with high accuracy. A reinforcement learning method based on
actor-critic is proposed to identify the optimal structural causal
graph according to a reward function based on Average Causal
Effects. At the inference stage, the reinforcement learning agent
is forward to predict the causal graph, then the Average Causal
Effect will be calculated to infer the root cause distribution.

Based on experimental results, we demonstrate that the deep
learning methods we propose are efficient and effective at iden-
tifying defects in layouts. As the manufacturing industry de-
mands more quality and quantity, we hope these algorithms
and frameworks can spur the industry forward.
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Chapter 1

Introduction

1.1 Challenges and Motivations

To illustrate how Artificial Intelligence methodologies help academia
and industry address the specific defect issues in manufacturing,
we present the current research status of several layout defect
identification (LDI) applications. Layout defects can be identi-
fied and fixed by uncovering and eliminating the common root
causes.

Hotspot Detection. With the shrinking VLSI technology
node, a large gap exists between the mask pattern feature size
and lithography system wavelength. Light diffraction seriously
decreases the printability of the mask layout, and circuit fail-
ures (open circuits or short circuits) are more likely to occur for
some patterns. Therefore it is necessary to detect and correct
the problematic patterns (i.e. hotspots) before the manufac-
turing process. A variety of resolution enhancement technolo-
gies (RETs) have been developed to provide yielding-friendly
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patterns under sub-wavelength lithography conditions. The ef-
fectiveness of RETs, however, depends on a number of factors,
including pattern compatibility with OPC algorithms and pitch
differences. Adopting them alone does not guarantee that you
will print the ideal shapes, so additional layout refinements are
needed to increase the quality of printed patterns. Methodogies
such as pattern matching-based [92, 97, 113], machine learning
model-based [58, 66, 84, 106] hotspot detection algorithms are
proposed. In comparison with lithographic simulation, pattern
matching is faster. It is effective for detecting already known or
similar patterns, while recognition of unknown patterns is poor.

Recent deep learning techniques [6, 12, 15, 33, 43, 102] have
demonstrated superiority in hotspot detection tasks. In order
to ensure printability of layout designs, a hotspot detector with
high accuracy and low false alarms is essential. cin identifying
hotspots benefitting from the development of Artificial Intelli-
gence. However, these hotspot detectors [102, 108] only work
on small clips extracted from a whole chip layout and can only
detect one hotspot location at a time that occurs at a center
(i.e. core in [91]) of each clip. Conventional hotspot detection
schemes require repeatedly scanning overlapping regions of a full
chip design. It could be a waste of computational resources and
time-consuming when facing with extremely large layouts. It is
thus crucial to find an efficient way to detect hotspots on large
designs while saving resources.

Root Causes Identification. Performing hotspot detec-
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tion on entire layouts may result in overcorrection which can
adversely affect chip area and performance. Most hotspots are
candidates, that may not happen as the actual physical defor-
mation leads to malfunction. Identifying the root cause of sys-
tematic defects takes one step further than detecting hotspots,
which is a more challenging objective. The root cause refers
to a difficult-to-manufacture layout structure that becomes vul-
nerable to failure. Feature sizes on layouts shrink dramatically
to smaller than lithography wavelengths, which makes them in-
creasingly susceptible to failure. Determining what such fea-
tures are is still an open question. During the early stages of
manufacturing a new product, No matter whether a new man-
ufacturing process is introduced for an existing design or a new
design is added to an existing manufacturing process, there is
usually a lower yield for the first batch of manufactured de-
vices. In such cases, it is important to figure out why the yield
is low. The yield engineers must identify defects, understand
their causes, and modify the design or manufacturing process
to improve yield. It is important to achieve an acceptable yield
before volume production begins and to maintain it during vol-
ume production. Statistical techniques [3, 18] are being used to
identify common defects from volume diagnosis reports. Uti-
lizing an Expectation-Maximization algorithm [3], the optimal
root cause distribution is learned by maximizing the likelihood
of observed diagnosis reports. These methods do not consider
root cause layout patterns, which limit their usefulness in real-
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Object 
Detection
(Chapter 3)

Hotspot 
Detection
(Chapter 4)

Layout Pattern 
Analysis
(Chapter 5)

Root Cause 
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(Chapter 6)
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(Chapter 2)

Background

General AI
Applications

LDI AI
Solutions

Figure 1.1 Organization chart of the thesis.

world situations. Also, the quality and diversity of diagnosis
reports may be affected by the defect simulation process, which
is not considered in these works. There is also a class of seminal
works [85, 86] that emphasize the geometric structure of layout
patterns by using clustering algorithms to improve IC-defect
identification. While the resolution of the identification results
of clustering-based methods is limited. Therefore, a methodol-
ogy for identifying root causes with both high resolution and
precision is essential.

1.2 Thesis Structure and Contributions

Throughout this thesis, we will examine a variety of method-
ologies for addressing the issues mentioned previously and ex-
plore the opportunities presented by AI technologies to improve
yields. The overall organization of chapters as well as the de-
pendencies is illustrated in Fig. 1.1.
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The first contribution of the thesis is that a comprehensive
survey and empirical studies on deep learning technology used in
the article are provided. The background and related works of
causal inference and reinforcement learning are introduced. This
thesis proposes a general object recognition framework that rec-
ognizes daily objects and reveals the mechanism for their recog-
nition from a macro perspective. The experimental results on
several challenging datasets show that it has great potential to
be used in defect identification tasks.

The second contribution of the thesis is that we develop a
new end-to-end framework that can detect multiple hotspots
in a large region at a time and promise a better hotspot de-
tection performance. With the technology node of integrated
circuits scaling down to 7nm and beyond, lithographic processes
are supposed to manage the ever-shrinking size of the features.
Unfortunately, the advancement of lithography techniques has
lagged behind, lithographic process variations emerge during the
manufacturing and thus lead to yield loss. Low fidelity patterns
on a wafer represent one of the most pressing issues. In this
thesis, a region-based hotspot detection framework is designed
to speed up the detection efficiency. We design a joint auto-
encoder and inception module for efficient feature extraction.
A two-stage classification and regression framework is designed
to detect hotspots with progressive accurate localization, which
provides a promising performance improvement. Experimental
results show that our framework enables a significant speed im-
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provement over existing methods with higher accuracy and fewer
false alarms.

The third contribution of the thesis is proposing a novel
layout-aware diagnosis-based layout pattern analysis framework
to identify the root cause efficiently. The yield of manufac-
tured integrated circuits (ICs) is defined as the percentage of
good dies among all dies manufactured. To ensure the prof-
itability and reliability of products, a high and stable yield is
crucial. However, as the feature size decreases, the underly-
ing patterns in these layout designs are harder to fabricate and
tend to generate more systematic defects, for example, open or
bridge defects in neighboring wires. A unified layout pattern
analysis framework is proposed to improve the resolution and
accuracy simultaneously. At the first stage of the framework,
an encoder network trained using contrastive learning is used to
extract representations of layout snippets that are invariant to
trivial transformations including shift, rotation, and mirroring,
which are then clustered to form layout patterns. In the second
stage, we model the causal relationship between any potential
root cause layout patterns and the systematic defects by a struc-
tural causal model, which is then used to estimate the Average
Causal Effect (ACE) of candidate layout patterns on the system-
atic defect to identify the true root cause. Experimental results
on real industrial cases demonstrate that our framework out-
performs a commercial tool with higher accuracies and around
×8.4 speedup on average.
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As the fourth contribution, a reinforcement-based root cause
identification system is designed to further improve the perfor-
mance. During the training, an actor-critic-based reinforcement
learning method is proposed to learn to discover the optimal
structural causal graph according to the reward correlated to
the Average Causal Effect. At the inference stage, the converged
reinforcement learning agent is forward to predict the causal
graph, then the Average Causal Effect will be calculated cor-
respondingly. Experimental results on several industrial cases
show that the proposed reinforcement learning-based root cause
identification system can provide accurate root cause distribu-
tions compared to the state-of-the-art frameworks.

The structure of the thesis is organized as follows. Chapter 2
provide related backgrounds and works about AI technologies
used in LDI tasks. An overview of the recognition mechanism
in artificial intelligence is provided in Chapter 3 using a gen-
eral object detection framework. Chapter 4 covers the second
contribution with corresponding technique details. Chapter 5
describes the third contribution about layout pattern analysis.
Chapter 6 includes the fourth contribution which is an exten-
sion of LPA. Chapter 7 summarizes this thesis and delivers the
possible future study directions.

2 End of chapter.



Chapter 2

AI Methodogies in LDI

In this chapter, we will introduce some AI methodologies that
will be used in layout defect identification tasks. Primarily
background knowledge about causal inference and reinforcement
learning is included in this chapter. On causal inference, the
reason why we need causality is introduced first. Following this,
we provide a concise review of the structural causal model. The
core components and mechanism of reinforcement learning are
demonstrated.

2.1 Causal Inference

Causality is a generic relationship between an effect and the
cause that gives rise to it. The definition of causality is hard to
describe since the causes and effects we know about are intuitive
in general. In contrast to statistical associations, establishing
the causation is a crucial step toward human-level intelligence
and can serve as a foundation for artificial intelligence.

8
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Table 2.1 An example to show the Simpson’s paradox.

Age
Treatment

Treatment A Treatment B

Young 234/270=87% 81/87=92%
Older 55/80=69% 192/263=73%

Overall 289/350=83% 273/350=78%

Causal inference is necessary - Simpson’s paradox.
According to TABLE 2.1, we can observe an interesting phe-
nomenon called Simpson’s Paradox, brought by the confounder.
It can be observed that Medicine B has a higher recovery rate
than Medicine A in both Young and Older patient groups. But
when combining these two groups, Medicine A is the one with a
higher recovery rate. When comparing the recovery rate in the
whole group, most of the people taking medicine A are young,
and the comparison shown in the table fails to eliminate the ef-
fects of age on the recovery rate. Frequency data is inappropri-
ately interpreted causally. This can be resolved if confounding
variables and causal relations are properly accounted for during
the statistical analysis.

Structural Causal Model. Structural Causal Model (SCM)
is a conceptual model that describes the causal mechanism of
a system. An SCM normally consists of the causal graph and
the structural equations. A causal graph forms a special class
of Bayesian network with edges representing the causal effect.
SCMs have a transformative impact on multiple data-intensive
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disciplines (e.g. epidemiology, economics, etc.). They enable
the codification of the existing knowledge in diagrammatic and
algebraic forms and consequently leverage data to estimate the
answers to interventional and counterfactual questions. To help
readers understand how SCMs work, an example on Yelp rating
is presented in Figs. 2.1 and 2.2, i.e., the restaurant category
x(confounder), Yelp star rating t(treatment) and customer flow
y(outcome).

• Treatment refers to the action that applied to the unit,
which is the atomic research object in the treatment effect
study.

• Outcome is the outcome of that treatment when applied
on that unit is the potential outcome.

• Confounders are the variables that affect both the treat-
ment and the outcome.

The three directed edges represent the three causal effects:

1. Category of restaurants influences its customer flow. The
average customer flow of fast-food restaurants is higher
than that of high-end restaurants.

2. Category of restaurants influences its Yelp rating. For ex-
ample, the average rating of fast-food restaurants is lower
than that of high-end restaurants.

3. A restaurant influences its customer flow due to the Yelp
rating.
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    xx

     tt      yy

(a)

Figure 2.1 A causal graph used for learning causal effects. Nodes represent
random variables and directed edges x→ y indicates that x is a direct cause
of y.

    xx

do(t0)do(t0)      yy

(a)

Figure 2.2 A causal graph with intervention. Under intervention do(t′), the
intervened variable t is fixed to the intervened value t′ and all its incoming
edges are removed.

Average Treatment Effect. The average treatment effect
(ATE) is a measure used to compare treatments (or interven-
tions) in randomized experiments, evaluation of policy interven-
tions, and medical trials. The ATE measures the difference in
mean outcomes between units assigned to the treatment and
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units assigned to the control. A sample of randomized trials
(i.e., an experimental study) can be used to estimate the average
treatment effect by comparing the mean outcomes for treated
and untreated units. ATEs are typically defined as a parametric
measure (i.e., an estimate of the population) that a researcher
seeks to know, without reference to the study design or estima-
tion process. It is possible to estimate an ATE in a variety of
ways with observational and experimental study designs with
random assignment.

Causal Inference in Artificial Intelligence. The causal
inference has a close relationship with machine learning. The
magnificent progress of deep learning enhances the development
of the causal inference area. It proposed an attribution method
for neural networks by viewing them as a Structural Causal
Model. They also presented that neural attribution can be ap-
plied to recurrent neural networks. Experimental results on
simulated and real datasets show that the proposed method is
promising. A neural structural causal model causalVAE was
proposed in [103] to learn the disentanglement features. A
Causal Layer is designed to transform independent exogenous
factors into causal endogenous factors that represent the causal
concepts in data.

Causal search methods are statistical estimation of parame-
ters describing a graphical causal structure. Traditionally, there
have been a number of different approaches to causal discovery.
The gold standard of causal discovery has typically been to per-
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form planned or randomized experiments. Recently, [96, 119]
utilized reinforcement learning to help to discover causal struc-
ture.

2.2 Reinforcement Learning

Reinforcement learning(RL) is about an agent interacting with
the environment. By trial and error, the most important as-
pect of the real problem facing a learning agent interacting
with its environment to achieve a goal. The optimal policy
is learned for sequential decision-making problems in different
fields such as natural, social sciences, and engineering. Benefit-
ing from big data, powerful computation, i.e.Graphics Process-
ing Unit(GPU), and advanced software and hardware co-design,
we have been witnessing the renaissance of reinforcement learn-
ing.

Reinforcement Learning & Supervised Learning. In
contrast with reinforcement learning, supervised learning relies
on training sets of labeled examples provided by a knowledge-
able supervisor. Each example is a description of a situation
together with a specification: the label of the correct action the
system should take in that situation, which is often to iden-
tify a category to which the situation belongs. A system that
learns this way needs to generalize its responses in order to act
correctly in situations outside of the training set. This kind of
learning is not adequate for learning from interaction.
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Reinforcement Learning & Unupervised Learning. Re-
inforcement learning is also different from what machine learning
researchers call unsupervised learning, which is typically about
finding structure hidden in collections of unlabeled data. The
fact that reinforcement learning does not rely on examples of
correct behavior might lead one to think that it is unsupervised
learning. Rather than looking for a hidden structure, reinforce-
ment learning tries to maximize a reward signal.

The Markov Property. The formulation in the simplest
possible forms without trivializing is intended to include these
three aspects-sensation, action, and goal. At time step t, the
agent receives a state st in a state space S. An action at is
selected from an action space A with a policy π(at|st). Normally,
π(at|st) is the agent’s behavior, i.e., a mapping from state st to
actions at according to the reward function R(s, a). The agent
receives a scalar reward rt, and transitions to the next state
st+1 with the state transition probability P (st+1|st, at). In an
episodic scenario, the agent will continue until reach a terminal
state then restarts. Consider a general environment respond at
time t + 1 to the action taken at time t. In the most general,
causal case this response may depend on everything that has
happened earlier. In this case the dynamics can be defined only
by specifying the complete probability distribution:

Pr{Rt+1 = r, St+1 = s′|S0, A0, R1, ..., St−1, At−1, Rt, St, At},
(2.1)
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for all r, s′ and all possible values of past events. If the state
signal follows the markov property, the environment’s response
at t + 1 depends only on the state and action representation
at time t. In this case, the dynamics can be defined only by
specifying only:

p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′|St, At}, (2.2)

for all r, s′, St and At. A state signal has the markov property,
and is a markov state, if and only if Equation (2.2) is equal to
Equation (2.1) for all s′, r and histories, S0, A0, R1, ..., St−1, At−1, Rt, St, At.
If an environment has the Markov property, then its one-step
dynamics Equation (2.2) enable us to predict the next state and
expected next reward given the current state and action. One
can show that, by iterating this equation, taking only the cur-
rent state and a complete history up to the current time, one can
predict all future states and expected rewards. It also follows
that Markov states provide the best possible basis for choosing
actions. This means that the best policy for picking actions as
a function of a Markov state is no better than the best policy
for choosing actions as a function of complete histories.

Reinforcement Learning in Artificial Intelligence. Deep
reinforcement learning gets attention in recent years owing to
the blooming of deep learning. The components of reinforce-
ment learning such as value function, v̂(s; θ) or q̂(s, a; θ), pol-
icy π(a|s; θ), and state transition function and reward function.
Here, the parameters θ are the weights of the deep learning
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model. The difference between deep RL and conventional RL is
that stochastic gradient descent is used as a function approxima-
tor to update weight parameters in deep RL. Recent outstanding
works like Deep Q-Network and AlphaGo got state-of-the-art re-
sults with stabilized training schedules.

2 End of chapter.



Chapter 3

General Object Detection

3.1 General Object Detection

3.1.1 Introduction

Object detection is an important task in computer vision, which
requires predicting a bounding box of an object with a category
label for each instance in an image. State-of-the-art techniques
can be divided into either anchor-based methods [4, 28, 34, 35,
37,57,69,70,72] and anchor-free methods [24,44,68,88,104,117].
Recently, the anchor-free methods have increasing popularity
over the anchor-based methods in many applications and bench-
marks [19, 25, 30, 55]. Despite the success of anchor-free meth-
ods, one should note that these methods still have limitations on
their accuracy, which are bounded by the way that the bound-
ing boxes are learned in an atomic fashion. Here, we discuss
two concerns of existing anchor-free methods which lead to the
inaccurate detection.

17
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First, the definition of center key-points [24] is inconsistent
with their semantics. As we all know that center key-point is
essential for anchor-free detectors. It is a common strategy to
embed positive center key-points inside an object bounding box
into a Uniform or Gaussian distribution in the training stage
of the anchor-free detectors such as FCOS [88] and CornerNet
[50]. However, it is inevitable to falsely consider noisy pixels
from background as positives, as illustrated in Fig. 3.1. Namely,
exploiting a trivial strategy to define positive targets would lead
to a significant semantic inconsistency, degrading the regression
accuracy of detectors.

Second, local wise regression is limited. Concretely, a center
key-point usually provides box predictions in a regional/local-
wise manner, which potentially defects the detection accuracy.
The local-wise prediction results from the limitation of the re-
ceptive fields of convolution kernels, and the design of treating
each box prediction from each center key-point as an atomic
operation. As shown in Fig. 3.2, the dotted predicted box and
corresponding center key-point are presented in the same color.
Although each predicted box is surrounding the object, it is
imperfect because four boundaries are not well aligned to the
ground truth simultaneously. As a result, choosing a box of high
score at inference stage as the final detection result is sometimes
inferior.

To tackle the inaccurate detection problem, we present a
novel bounding box reorganization method, which dives deeper
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Figure 3.1 An illustration of the inconsistency between the semantics
of center key-points inside a bounding box and their annotations.
Pixels of backgrounds in the red central area are considered as positive center
key-points, which is incorrect.

Figure 3.2 An illustration of the boundary drifts in box predictions
of general anchor-free detectors. Limited by regional receptive fields
and the design of treating each box prediction as an atomic operation in
general detectors, each predicted box with dotted line is imperfect where four
boundaries are not well aligned to the ground truth simultaneously. After
box decomposition and combination, the reorganized box with red color gets
better localization.

into box regressions of center key-points and takes care of se-
mantic consistencies of center key-points. This reorganization
method contains two modules, denoted as box decomposition
and recombination (D&R) module and semantic consistency
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module. Specifically, box predictions of center key-points in-
side an instance form an initial coarse distribution of the in-
stance localization. This distribution is not well aligned to the
ideal instance localization, and boundary drifts usually occur.
The D&R module is proposed to firstly decompose these box
predictions into four sets of boundaries to model an instance lo-
calization at a lower refined level, where the confidence of each
boundary is evaluated according to the deviation with ground-
truth. Next, these boundaries are sorted and recombined to
form a sort of more accurate box predictions for each instance,
as described in Fig. 3.2. Then, these refined box predictions
contribute to the final evaluation of box regressions.

Meanwhile, the semantic consistency module is proposed to
rule out noisy center key-points coming from the background,
which allows our method to focus on key-points that are strongly
related to the target instance semantically. Thus, box predic-
tions from these semantic consistent key-points can form a more
tight and robust distribution of the instance localization, which
further boosts the performance of the D&R module. Our se-
mantic consistency module is an adaptive strategy without ex-
tra hyper-parameters for predefined spatial constraints, which
is superior to existing predefined strategies in [88, 95, 118].

The main contribution of this work lies in the following as-
pects.

• We propose a novel box reorganization method in a uni-
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fied anchor free detection framework. Especially, a D&R
module is proposed to take the boundary prediction as an
atomic operation, and then reorganize well-aligned bound-
aries into boxes in a bottom-up fashion with negligible com-
putation overhead. To the best of our knowledge, the idea
of breaking boxes into boundaries for training has never
been investigated in this task.

• We evaluate the semantic inconsistency between center key-
points inside an instance and the annotated labels, which
helps boost the convergence of a detection network.

• The proposed method DDBNet obtains a state-of-the-art
result of 45.5% in AP. The stable experimental results in all
metrics ensure that this method can be effectively extended
to typical anchor free detectors.

3.1.2 Related Work

Anchor based Object Detectors. In anchor-based detectors,
the anchor boxes can be viewed as pre-defined sliding windows
or proposals, which are classified as positive or negative samples,
with an extra offsets regression to refine the prediction of bound-
ing boxes. The design of anchor boxes is popularized by two-
stage approaches such as Faster R-CNN in its RPNs [72], and
single-stage approaches such as SSD [57], RetinaNet [54], and
YOLO9000 [69], which has become the convention in a modern
detector. Anchor boxes make the best use of the feature maps of
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Figure 3.3 An illustration of our network architecture. Two novel com-
ponents: the D&R module and the consistency module are incorporated into
a general detection network. The D&R module carries out box decomposi-
tion and recombination in the training stage regularized by the IoU loss and
predicts boundary confidences supervised by the boundary deviation. The
consistency module selects meaningful pixels whose semantics is consistent
with the instance to improve network convergence in the training stage.

CNNs and avoid repeated feature computation, speeding up the
detection process dramatically. However, anchor boxes result in
excessively too many hyper-parameters that are used to describe
anchor shapes or to label each anchor box as a positive, ignored
or negative sample. These hyper-parameters have shown a great
impact on the final accuracy, and require heuristic tuning.
Anchor Free Object Detectors. Anchor-free detectors di-
rectly learn the object existing possibility and the bounding box
coordinates without anchor reference. DenseBox [41] is a pioneer
work of anchor-free based detectors. While due to the difficulty
of handling overlapping situations, it is not suitable for generic
object detection.
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One successful family of anchor free works [48, 88, 95, 118]
adopts the Feature Pyramid network [52] (FPN) as the back-
bone network and applies direct regression and classification on
multi-scale features. These methods treat the bounding box
prediction as an atomic task without any further investigations,
which bounds the detection accuracy due to the two concerns we
discussed in the introduction. To avoid the drawback of anchors
and refine the box presentations, points based box representa-
tion becomes popular recently [24, 50, 104, 117]. For example,
CornerNet [50] predicts the heatmap of corners and apply an
embedding method to group a pair of corners that belong to the
same object. [117] presents a bottom-up detection framework
inspired by the keypoint estimations. Compared to these points
based methods, our proposed method has following innovations:
1) Our method focuses on the mid-level boundary representa-
tions to achieve a balance between accuracy and robustness of
feature modeling; 2) Our method does not need to learn an em-
bedding explicitly while obtaining a reliable boundary grouping
to produce the final bounding box predictions.

Furthermore, it is observed that anchor-free methods may
produce a number of low-quality predicted bounding boxes at
locations that are far from the center of a target object. In
order to suppress these low-quality detections, a novel “center-
ness” branch to predict the deviation of a pixel to the center of
its corresponding bounding box is exploited in FCOS [88]. This
score is then used to down-weight low-quality detected bounding
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boxes and merge the detection results in NMS. FoveaBox [48]
focuses on the object’s center motivated by the fovea of human
eyes. It is reasonable to degrade the importance of pixels close
to boundaries, but the predefined center field may not cover all
cases in the real world, as shown in Fig. 3.1. Thus, we propose
an adaptive consistency module to solve the inconsistency is-
sue mentioned above between the semantics of pixels inside an
instance and the predefined labels or scores.

3.1.3 Proposed Method

In this work, we build DDBNet based on FCOS as a demon-
stration, which is an advanced anchor-free method. As shown
in Fig. 3.3, our innovations lie in the box decomposition and re-
combination (D&R) module and the semantic consistency mod-
ule.

To be specific, the D&R module reorganizes the predicted
boxes by breaking them into boundaries for training which is
concatenated behind the regression branch. In the training
stage, once bounding box predictions are regressed at each pixel,
the D&R module decomposes each bounding box into four di-
rectional boundaries. Then, boundaries of the same kind are
ranked by their actual boundary deviations from the ground-
truth. Consequently, by recombining ranked boundaries, more
accurate box predictions are expected, which are then optimized
by the IoU loss [111].
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As for the semantic consistency module, a new branch of
estimating semantic consistency instead of centerness is incor-
porated into the framework, which is optimized under the super-
vision of the semantic consistency module. This module exploits
an adaptive filtering strategy based on the outputs of the clas-
sification and the regression branches. More details about the
two modules are provided in the following subsections.

Box Decomposition and Recombination

Given an instance I, every pixel i inside of I regresses a box
pi = {li, ti, ri, bi}. The set of predicted boxes is denoted as
BI = {p0, p1, . . . , pn}, where l, t, r, b denote the left, the top, the
right, and the bottom boundaries respectively.

Normally, an IoU regression loss is expressed as

LIoU = − 1

Npos

∑
I

N∑
i

log(IoU(pi, p
∗
I)), (3.1)

where Npos is the number of positive pixels of all instances, p∗I
is the regression target. Simply, the proposed box decomposi-
tion and recombination (D&R) module is designed to reproduce
more accurate pi with the optimization of IoU loss. As shown
in Fig. 3.4, the D&R module consists of four steps before reg-
ularizing the final box predictions based on the IoU regression.
More details are described as follows.
Decomposition: A predicted box pi is splited into boundaries
li, ti, ri, bi and the IoU si between pi and p∗I is assigned as the
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(d)

Figure 3.4 An illustration of the work flow of the D&R module.
For a clear visualization, only three predictions in color are provided for
the same ground-truth shown in black. (a) Decomposition: Break up
boxes and assign IoU scores S0, S1, S2 of boxes to boundaries as confidence.
(b) Ranking: The rule how we recombine boundaries to new boxes. (c)
Recombination: Regroup boundaries as new boxes and assign new IoU
scores S ′

0, S
′
1, S

′
2 to boundaries as confidence. (d) Assignment: Choose the

winner confidence as final result. The recombined box is shown on the right.

confidences of four boundaries, as shown in Fig. 3.4(a). For
instance I, the confidences of boundaries is denoted as a N × 4

matrix SI . Then we group four kinds of boundaries into four
sets, which are leftI = {l0, l1, ..., ln}, rightI = {r0, r1, ..., rn},
bottomI = {b0, b1, ..., bn}, topI = {t0, t1, ..., tn}.
Ranking: Considering the constraint of the IoU loss [111],
where the larger intersection area of prediction boxes with smaller
union area is favored, the optimal box prediction is expected to
have the lowest IoU loss. Thus, traversing all the boundaries
of the instance I to obtain the optimal box rearrangement B′I

is an intuitive choice. However, in this way, the computation
complexity is quite expensive, which is O(n4). To avoid the
heavy computation brought by such brute force method, we ap-
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ply a simple and efficient ranking strategy. For each boundary
set of instance I, the deviations δl

I , δr

I , δb

I , δt

I to the targets
boundary p∗I = {lI , rI , bI , tI} are calculated. Then, boundaries
in each set are sorted by the corresponding deviations, as shown
in Fig. 3.4(b). The boundary closer to the ground-truth has the
higher rank than the boundary farther. We find that this rank-
ing strategy works well and the ranking noise does not affect the
stability of the network training.
Recombination: As shown in Fig. 3.4(c), boundaries of four
sets with the same rank are recombined as a new box B′I =

{p′0, p′1, . . . , p′n}. Then the IoU s′i between p′i and p∗I is assigned
as the recombination confidence of four boundaries. The con-
fidences of recombination boundaries is expressed as matrix S ′I

with shape N × 4.
Assignment: Now we get two sets of boundaries scores SI and
S ′I . As described as Fig. 3.4(d), the final confidence of each
boundary is assigned using the higher score within SI and S ′I

instead of totally using S ′I . This assignment strategy results
from the following case, e.g. the recombined low-rank box con-
tains boundaries far away from the ground-truth. Then, the
confidences s′i of four boundaries after recombination are much
lower than their original one si. The severely drifted confidence
scores lead to unstable gradient back-propagation in the training
stage.

Thus, for reliable network training, each boundary is opti-
mized under the supervision of the IoU loss estimated based
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on the ground-truth and the optimal box with its correspond-
ing better boundary score. Especially, our final regression loss
consists of two parts:

LD&R
IoU =

1

Npos

∑
I

(⊮{S′
I>SI}LIoU(B

′
I , TI)

+ ⊮{SI⩾S′
I}LIoU(BI , TI)),

(3.2)

where ⊮{SI⩾S′
I} is an indicator function, being 1 if the original

score is greater than the recombined one, vice versa for ⊮{S′
I>SI}.

The gradient of each boundary is selected to update network
according to the higher IoU score between the original box and
the recombined box. Compared to the original IoU loss Equa-
tion (3.1) where gradients are back-propagated in local receptive
fields, Equation (3.2) updates the network in context without
extra parameterized computations. As box in B′I is composed
by boundaries from different boxes, features are updated in an
instance-wise fashion. Note that there are no further parameters
added in D&R module. In short, we only change the way how
gradient be updated.

Semantic Consistency Module

Since the performance of our D&R module to some extent de-
pends on the box predictions of dense pixels inside an instance,
an adaptive filtering method is required to help the network
learning focus on positive pixels while rule out negative pixels.
Namely, the labeling space of pixels inside an instance is ex-
pected to be consistent with their semantics. Different from
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previous works [48, 88, 95] which pre-define pixels around the
center of the bounding box of an instance as the positive, our
network evolves to learn the accurate labeling space without
extra spatial assumptions in the training stage.

The formula of semantic consistency is expressed as:
CI↓

∩
RI↓ ← negative,

CI↑
∪

RI↑ ← positive,

ci =
gmax

j=0
(cj) ∈ CI ,

(3.3)

where RI is the set of IoU scores between the ground-truth and
the predicted boxes of pixels inside the instance I, RI is the mean
IoU score of the set RI , RI↓ denotes pixels which have lower IoU
confidence than the mean IoU RI . Inversely, RI↑ denotes pixels
which have higher IoU confidence than RI . The element ci ∈ CI

is the maximal classification score among all categories of the
i-th pixel, and g denotes the number of categories. Similarly,
CI↓ denotes pixels which have lower classification scores than
the mean score of CI . Labels of categories are agnostic in this
approach so that the predictions of incorrect categories will not
be rejected during training. Finally, as shown in Fig. 3.5, the
intersection pixels in RI↓ and CI↓ are assigned negative, while
the union pixels in RI↑ and CI↑ are assigned positive. Mean-
while, if pixels are covered by multiple instances, they prefer to
represent the smallest instance.

More to the point, the filtering method determined by Equa-
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Figure 3.5 Visualized example of semantic consistency module. The
intersection regions of positive regression and positive classification sets are
regarded as consistent targets.

tion (3.3) is able to adaptively control the ratio of positive and
negative pixels of instances with different sizes during the train-
ing stage, which have a significantly effect on the detection ca-
pability of the network. In the experiments, we investigate the
performance of different fixed ratio, and then find that the adap-
tive selection by mean threshold performs best.

After the labels of pixels are determined autonomously ac-
cording to the semantic consistency, the inner significance of
each positive pixel is considered in the learning process of our
network, similarly to the centerness score in FCOS [88]. Thus,
our network is able to emphasize on more important part of
an instance and is learnt more effectively. Especially, the in-
ner significance of each pixel is defined as the IoU between the
predicted box and the ground-truth. Then, an extra branch of
estimating the semantic consistency of each pixel is added to the
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network supervised by the inner significance. The loss for se-
mantic consistency is expressed as in Equation (3.4), where ri is
the output of semantic consistency branch. IoU(pi, p

∗
I) denotes

the inner significance of each pixel.

Lcon =
1

Npos

∑
I

∑
i∈CI↑

∪
RI↑

CE(ri, IoU(pi, p
∗
I)). (3.4)

Generally, the overall training loss is defined as:

L = Lcls + LD&R
reg + Lcon, (3.5)

where Lcls is the focal loss as in [54].

3.2 Experiments

3.2.1 Experimental Setting

Dataset. Our method is comprehensively evaluated on a chal-
lenging COCO detection benchmark [55]. Following the com-
mon practice of previous works [50, 54, 88], the COCO train-
val35k split (115K images) and the minival split (5K images)
are used for training and validation respectively in our ablation
studies. The overall performance of our detector is reported on
the test-dev split and is evaluated by the server.
Network Architecture. As shown in Fig. 3.3, Feature Pyra-
mid Network (FPN) [52] is exploited as the fundamental detec-
tion network in our approach. The pyramid is constructed with
the levels Pl, l = 3, 4, ..., 7 in this work. Note that each pyramid
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level has the same number of channels (C), where C = 256. At
the level Pl, the resolution of features is down-sampled by 2l

compared to the input size. Please refer to [52] for more details.
Note that four heads are attached to each layer of FPN. Apart
from the regression and classification heads, a head for semantic
consistency estimation is provided, consisting of a normal con-
volutional layer. The regression targets of different layers are
assigned in the same way as in [88].
Training Details. Unless specified, all ablation studies take
ResNet-50 as the backbone network. To be specific, the stochas-
tic gradient descent (SGD) optimizer is applied and our network
is trained for 12 epochs over 4 GPUs with a minibatch of 16 im-
ages (4 images per GPU). Weight decay and momentum are set
as 0.0001 and 0.9 respectively. The learning rate starts at 0.01
and reduces by the factor of 10 at the epoch of 8 and 11 respec-
tively. Note that the ImageNet pre-trained model is applied for
the network initialization. For newly added layers, we follow
the same initialization method as in RetinaNet [54]. The input
images are resized to the scale of 1333 × 800 as the common
convention. For comparison with state-of-the-art detectors, we
follow the setting in [88] that the shorter side of images in the
range from 640 to 800 are randomly scaled and the training
epochs are doubled to 24 with the same reduction at epoch 16
and 22.
Inference Details. At post-processing stage, the input size of
images are the same as the one in training. The predictions with
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Table 3.1 Comparison with state-of-the-art two stage and one stage
Detectors (single-model and single-scale results). DDBNet outperforms the
anchor-based detector [54] by 2.9% AP with the same backbone. Compared
with anchor-free models, DDBNet is in on-par with these state-of-the-art
detectors. † means the NMS threshold is 0.6 and others are 0.5.

Method Backbone AP AP50 AP75 APS APM APL

Two-stage methods:
Faster R-CNN w/ FPN [52] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN w/ TDM [79] Inception-ResNet-v2-TDM [82] 36.8 57.7 39.2 16.2 39.8 52.1
Faster R-CNN by G-RMI [40] Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0
RPDet [104] ResNet-101-DCN 42.8 65.0 46.3 24.9 46.2 54.7
Cascade R-CNN [4] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2

One-stage methods:
YOLOv2 [69] DarkNet-19 [69] 21.6 44.0 19.2 5.0 22.4 35.5
SSD [57] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8
DSSD [28] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1
FSAF [118] ResNet-101 40.9 61.5 44.0 24.0 44.2 51.3
RetinaNet [54] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 53.9
CornerNet [50] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9
ExtremeNet [117] Hourglass-104 40.1 55.3 43.2 20.3 43.2 53.1
FCOS† [88] ResNet-101-FPN 41.5 60.7 45.0 24.4 44.8 51.6
FCOS† [88] ResNeXt-64x4d-101-FPN 43.2 62.8 46.6 26.5 46.2 53.3
FCOS† w/improvements [88] ResNeXt-64x4d-101-FPN 44.7 64.1 48.4 27.6 47.5 55.6

DDBNet (Ours) ResNet-101-FPN 42.0 61.0 45.1 24.2 45.0 53.3
DDBNet (Ours) ResNeXt-64x4d-101-FPN 43.9 63.1 46.7 26.3 46.5 55.1
DDBNet (Ours)§ ResNeXt-64x4d-101-FPN 45.5 64.5 48.5 27.8 47.7 57.1

§ GIoU [73] and Normalization methods of ‘improvements’ proposed in FCOS [88] are applied,
ctr.sampling in ‘improvements’ [88] are not compatible with our setting and we do not use.

classification scores s > 0.05 are selected for evaluation. With
the same backbone settings, the inference speed of DDBNet is
same as the detector in FCOS [88].

3.2.2 Overall Performance

We compare our model denoted as DDBNet with other state-of-
the-art object detectors on the test-dev split of COCO bench-
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mark, as listed in TABLE 3.1. Compared to the anchor-based
detectors, our DDBNet shows its competitive detection capa-
bilities. Especially, it outperforms RetinaNet [54] by 2.9% AP.
When it comes to the anchor-free detectors, especially detectors
such as FCOS [88] and CornerNet [50] benefiting from the point-
based representations, our DDBNet achieves performances gains
of 0.5% AP and 1.5% AP respectively. Based on the ResNeXt-
64x4d-101-FPN backbone [98], DDBNet works better than [88]
with a 0.7% AP gain. Especially for large objects, our DDBNet
gets 55.1% AP, better than 53.3 % reported in FCOS [88]. We
also apply part of ’improvement’ methods proposed in FCOS to
DDBNet and gets 0.8% better than the FCOS with all ‘improve-
ments’ applied. To sum up, compared to detectors exploiting
point-based representations, our DDBNet can similarly bene-
fit from the mid-level boundary representations without heavy
computation burdens. Furthermore, DDBNet is compared to
several two stage models. It overpasses [52] by a large margin.

3.2.3 Ablation Study

In this section, we explore the effectiveness of our method, in-
cluding two main modules of box D&R module and semantic
consistency module. Additionally, we conduct in-depth analysis
of the performance metrics of our method.

Comparison with Baseline Detector
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It should be noted that FCOS detector [88] without the cen-
terness branch in both training and inference stages is taken as
our baseline. Here we conduct in-depth analysis of the perfor-
mance metrics of our method.
Box D&R module. As shown in TABLE 3.2, by incorporat-
ing the D&R module into the baseline detector, a 1.2% AP gain
is obtained, which proves that our D&R module can boost the
overall performance of the detector. Especially for the AP75,
a 1.4% improvement is achieved, which means that D&R per-
forms better on localization even in a strict IOU threshold. Fur-
thermore, D&R module achieves a better performance on large
instances according to the large gain on APL. With explicit
boundary analysis, large instances are often surrounded by num-
bers of predicted boxes. As a result, it gets easier to find the
well-aligned boundaries, then the boxes re-organization can be
more effective. Compared to the baseline results in metrics in-
cluding AP50, APS and APM , D&R obtains stable performance
gains respectively, which shows the stability of our proposed
module. By breaking the atomic boxes into boundaries, D&R
module makes each boundary find the better optimization direc-
tion. The optimization of boundary is not limited by the box its
in, instead of depending on a sorted of related boxes. Generally,
by adjusting the boundary optimization, the detection network
is learnt better.
Semantic Consistency module. The semantic consistent
module described in Section 3.1.3 presents an adaptive filter-
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Table 3.2 Ablative experiments for DDBNet on the COCO minival
split. We evaluate the improvements brought by the Box Decomposition
and Recombination(D&R) module and the semantic consistency module.

Modules AP AP50 AP75 APS APM APL

Baseline D&R Consistency

✓ 33.6 53.1 35.0 18.9 38.2 43.7
✓ ✓ 34.8 54.0 36.4 19.7 39.0 44.9
✓ ✓ 37.2 55.4 39.5 21.0 41.7 48.6
✓ ✓ ✓ 38.0 56.5 40.8 21.6 42.4 50.4

ing method. It forces our detection network into autonomously
focusing on positive pixels whose semantics are consistent with
the target instance. As shown in TABLE 3.2, the semantic con-
sistency module contributes to a significant performance gain
of 3.6% AP compared to the baseline detector. This variant
surpasses the baseline by large margins in all metrics. Due to
that the coarse bounding boxes would contain backgrounds and
distractors inevitably, the network is learnt with less confusion
about the targets when equips our adaptive filtering module.
More ablation analysis on semantic consistency module is pro-
vided in Section 3.2.3.
Cooperation makes better. In our final model denoted as
DDBNet, the semantic consistency module first filters out a la-
beling space of pixels inside each instance that is strongly rel-
ative to the geometric and semantic characteristics of the in-
stance. The box predictions of the filtered positive pixels are
further optimized by the D&R module, leading to more accu-
rate detection results. Consequently, DDBNet achieves 38% AP,
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better than all the variants in TABLE 3.2. Our method boosts
detection performance over the baseline by 2.7%, 4.2%, and 6.7%
respectively on APS, APM , APL.

Analysis on D&R Module.

Statistical comparison with conventional IoU Loss. As
we mentioned in Section 3.1.3, IoU loss with D&R updates the
gradient according to the optimal boundary scores. To confirm
the stability of D&R module, we plot the average IoU scores and
variances of boxes before and after D&R respectively. We can
see that with D&R module, the average values of IoU scores are
higher than the means of origin IoU scores by a large margin
around 10% in the whole training schedule, as in Fig. 3.6. At
the start of training, the mean of optimal boxes gets 0.47 which
is better than 0.34 of origin boxes. As training goes on, both
average scores of origin and optimal boxes increase and remain
at 0.77 and 0.86 at the end. Variances of IoU scores with D&R
are much lower than the origin IoU scores, which indicates D&R
module improves the overall quality of boxes and provides better
guidance for training.
Visualization on D&R module. We provide some qualita-
tive results of box predictions before and after incorporating the
D&R module into the baseline detector, as shown in Fig. 3.7.
For clear visualization, we plot origin boxes and boxes after re-
combination individually. Predictions are presented in green
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Figure 3.6 Average IoU scores for all predicted boxes during the
training. The red points denote the IoU scores with D&R module while the
blue points are the IoU scores without optimization. Vertical lines indicate
the variance of IoU scores.

Figure 3.7 Illustration of improved box predictions provided by our
DDBNet. We visualize the boxes before the decomposition (left images of
the pairs) and the boxes after the recombination (right images of the pairs).
Red: ground-truth boxes. Green: the predictions, where the lighter colors
indicate higher IoU scores. Black: the boxes with low score, which will be
masked according to the regression loss. Boxes ranked by D&R module are
much better organized than the origin boxes and the localizations are much
correlated to the instances. All the results are from DDBNet with ResNet-50
as backbone on trainval35k split.
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Table 3.3 Comparison among different positive assignment strate-
gies. ‘None’ means no sampling method is applied. ‘PN’ denotes as the
definition in [48], which means center regions are positive and others are
negative. ‘PNI’ is the sampling used in [95,118], ignore regions are added be-
tween positive and negative. Note that the consistency term is not included
in this table.

Settings AP AP50 AP75 APS APM APL

None 33.6 53.1 35.0 18.9 38.2 43.7
PN 34.2 53.2 36.3 20.8 38.9 44.2
PNI 33.7 53.0 35.5 17.9 38.3 44.1
Ours 35.3 55.4 37.1 20.9 39.6 45.9

and the lighter colors indicate higher IoU scores. With D&R
module, boundaries are recombined together to obtain a tighter
box of each instance. The distribution of boxes after D&R mod-
ule is fitter than the origin boxes which is robust than the con-
ventional regression. As we mentioned in Section 3.1.3, there
exists recombined low-rank boxes with boundary scores lower
than the origin. These boundaries are masked according to the
Equation (3.2).

Analysis on Semantic Consistency

Dynamic or predefined positive assignment. To further
show the superiority of dynamic positive assignment in semantic
consistency module, we investigate other variants using differ-
ent predefined strategies mentioned in previous works. Fove-
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aBox [48] (denoted as ‘PN’) applies center sampling in their
experiments to improve the detection performance. This center
sampling method defines the central area of a target box based
on a constant ratio as positive while the others as negative.
‘PNI’ is taken used in [95, 118] which exploits positive, ignore
and negative regions for supervised network training. According
to the result in TABLE 3.3, ‘PN’ (second line) gets slight im-
provement compared to the baseline where no sampling method
is adopted. So restricting the searching space to the central area
makes sense in certain cases and indeed helps improve object
detection. But the ’PNI’ gets a lower performance, especially
on APS. Namely, adding an ignore region between the ring of
negative areas and the central positive areas does not further
improve the performance and gets a large drop on the detection
of small objects. The limited number of candidates of small ob-
jects and the lower ratio of positive candidates in ‘PNI’ result in
the poor detection capability. Contrastively, our proposed fil-
tering method does not need to pre-define the spatial constraint
while show best performances in all metrics.
Adaptive or constant ratio. As mentioned in section 3.1.3,
we investigate the constant ratio to replace the adaptive selec-
tion by mean. Four variants are obtained where the constant
ratio is set from 0.4 to 0.7. For instance I with M candidates,
top ⌊c×M⌋ candidates are considered as positive, and others
are negative, where c is the constant sampling ratio applied to
all instances. As shown in TABLE 3.4, these results indicate
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Table 3.4 Comparison among different ratio settings. where c is the
sampling ration for each instance.

ratios AP AP50 AP75 APS APM APL

c = 0.4 34.6 54.2 36.6 19.1 38.5 45.2
c = 0.5 34.1 53.5 35.9 19.2 38.4 44.2
c = 0.6 34.7 54.2 36.5 19.0 38.7 45.5
c = 0.7 35.1 54.6 37.1 19.3 39.1 45.7
mean 35.3 55.4 37.1 20.9 39.6 45.9

that the adaptive way in our method is better than the fixed
way to select positives from candidates.

2 End of chapter.



Chapter 4

Layout Hotspot Detection

4.1 Introduction

With the development of the semiconductor industry, transis-
tor feature size shrinks rapidly, which significantly challenges
manufacturing yield. For instance, low-fidelity pattern on wafer
(a.k.a. “hotspot”) is one of the emerging issues in the manu-
facturing [64, 110]. To ensure the printability of layout designs,
an efficient and accurate hotspot detector is indispensable. Cur-
rently, there are three main classes of methods: lithography sim-
ulation, pattern matching and machine learning. By using com-
plicated lithography models to identify hotspots, lithography
simulation [46, 75] is accurate but extremely time-consuming.
High performance clusters with amounts of nodes are needed
in the whole simulation flow and several days are required to
complete it. As good replacements of simulation-based meth-
ods, pattern matching and machine learning-based techniques
are proposed to accelerate the hotspot detection flow while the

42
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detection accuracy is attained as much as possible.
Pattern matching is to set up a collection of hotspot lay-

out patterns to identify any matched patterns in a new design
as hotspots [45, 92, 97, 105, 113]. For example, in [113], critical
topological features of hotspots are extracted as design rules in
design rule checking to locate the hotspot positions. To handle
partially variant layout patterns from the pre-defined hotspots,
Wen et al. [97] proposed a fuzzy matching model which inte-
grates both pattern-matching and machine-learning techniques
to dynamically tune the fuzzy region around a known hotspot.
Although the pattern matching overcame the runtime issue, this
approach, including fuzzy pattern matching, cannot give a con-
fident result on unseen hotspot patterns.

Machine learning-based methods have shown the capability
to offer accurate solutions to both known and unknown hotspot
patterns with generalized feature extractors [20,21,23,32,58,60,
89, 107, 109, 114–116]. A learning model is usually trained by
features which are extracted from a batch of labeled data and
then conducts hotspot prediction on new layout patterns effi-
ciently. Ding et al. [21] exploited a meta-classifier which com-
bines pattern matching and machine learning methods into a
unified framework. In [109], a detection flow based on criti-
cal feature extraction and PCA-SVM classifier is proposed. To
update the learning model with newly detected and verified lay-
out patterns, Zhang et al. [115] investigated a classifier based
on smooth boosting and optimized concentric circle sampling
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Figure 4.1 The conventional hotspot detection flow.
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Figure 4.2 The proposed region-based hotspot detection flow.

feature extractor. Recently, Ye et al. [107] pointed out the un-
certainty problem in hotspot detection and presented a Gaus-
sian process assurance to provide confidence in each prediction.
Conventional machine learning approaches achieve good perfor-
mance, but they are limited to manually-crafted feature extrac-
tors. Besides, these approaches are challenged by scalability
requirements for printability estimation of a large scale layout.

Convolutional neural networks (CNNs) have become a pow-
erful technique to improve hotspot detection performance [16,
33,43,59,77,99–102,108], thanks to its non-linearity and multi-
level feature extraction in an automatic manner. For example,
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Yang et al. [100] investigated a deep CNN which considered the
data unbalanced issue and achieved high classification accuracy.
Additionally, they designed a biased learning technique for an
unbalanced dataset and applied discrete-cosine transformation
(DCT) to give proper feature expression [102]. To handle the
scenario that labeled data are limited, a semi-supervised neural
network is built in [16]. In [43], Jiang et al. proposed a bina-
rized neural network to further enhance the performance of the
detector.

In literature, however, hotspot detectors only work on small
clips extracted from a whole chip layout and can only detect
one hotspot location at a time that occurs at a center (i.e. core
in [91]) of each clip. Fig. 4.1 illustrates a conventional hotspot
detection scheme, which requires repeatedly scanning overlap-
ping regions of a full chip design. Therefore, it could be a
waste of computational resources and time-consuming when fac-
ing with extremely large layouts. To solve this problem, [12] pro-
posed a new faster region-based hotspot detection framework,
which can mark multiple hotspot locations within a region that
is much larger than a clip applied in previous works, as shown
in Fig. 4.2. To the best of our knowledge, [12] is the first
art to design a hotspot detector on detecting multiple processes
weak points within very large scale layout clips in one step feed-
forward detection. The framework contains a regression and
classification multi-task flow which guide to higher accuracy,
higher detection speed and lower false alarm penalty. How-
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ever, there still exist some defects in our design for region-based
hotspot detector. For example, due to the single-scale descrip-
tion of layouts, the encoder-decoder structure limits the feature
expression of our extractor. Additionally, the regression loss
in [12] handles the coordinates individually where the geometric
constraint is not considered. Consequently, multi-branch design
for encoder-decoder and IoU regularizer are proposed to enhance
the preliminary region-based hotspot detector. The main con-
tributions of this paper are listed as follows:

• We construct a deep neural network specifically for region-
based hotspot detection task and our network framework
can be efficiently trained end-to-end.

• A clip proposal network and a refinement stage are built to
further improve accuracy and reduce false alarm.

• We apply a novel classification and regression strategy to
reduce the detection region and make the multiple hotspot
detection become realizable in large scales.

• Multi-branch design for encoder-decoder and IoU regular-
ization is introduced to further strengthen the proposed
region-based hotspot detector.

• Experimental results show that our proposed framework
has great advantages over the state-of-the-art detectors. It
can achieve 7.40% accuracy improvement and 13× speedup
on average.
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The rest of the paper is organized as follows. Section 4.2
introduces basic concepts and gives problem formulation. Sec-
tion 4.3 discusses the details of the proposed end-to-end neural
framework. Section 4.4 introduces the techniques to raise the
performance of the proposed detector. Section 4.5 lists experi-
mental comparisons with state-of-the-art methods, followed by
conclusion in Section 4.6.

4.2 Preliminaries

Due to the manufacturing process variation, designed layout
patterns stochastically cause defects on wafers during the litho-
graphic process. These sensitive patterns may cause reduction
of manufacturing yield or even potential circuit failures. Layout
patterns that are sensitive to process variations are defined as
hotspots. We also define a hotspot clip as a clip that contains at
least one hotspot at its core region [91]. Here the core region
is the middle area in the clip. In this paper, the following def-
initions and metrics are used to evaluate the performance of a
hotspot detector.

Definition 1 (Accuracy). The ratio between the number of cor-
rectly detected hotspots and the number of ground truth hotspots.

Definition 2 (False Alarm). The number of non-hotspot clips
that are detected as hotspots by the classifier.

Definition 3 (F1 score). The weighted harmonic mean of the
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test’s precision and recall. The score is calculated according to

F1 =

(
2

recall−1 + precision−1

)
. (4.1)

It should be noted that the accuracy is also equivalent to the
true positive rate and the false alarm corresponds to the num-
ber of false positives. Because a good hotspot detector aims to
recognize as many real hotspots as possible and avoids incor-
rect predictions on non-hotspot patterns, with the evaluation
metrics above, we define the region-based hotspot detection (R-
HSD) problem as follows.

Problem 1 (R-HSD). Given a layout region that consists of
hotspot and non-hotspot patterns, the objective of region-based
hotspot detection is training a model to locate and classify all
the hotspot and the non-hotspot within the region, such that
the detection accuracy is maximized with minimum false alarm
penalty.

4.3 R-HSD Neural Network

Our proposed region-based hotspot detection (R-HSD) neural
network, as illustrated in Fig. 4.2, is composed of three steps:
(1) feature extraction, (2) clip proposal network, and (3) refine-
ment. In this section, we will discuss each step with details.
At first glance, the R-HSD problem is similar to object detec-
tion problem, which is a hot topic in computer vision domain
recently. In object detection problem, objects with different
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shapes, types and patterns are the instances to be detected.
However, as we will discuss, there is a gap between hotspot de-
tection and object detection, e.g. the hotspot pattern features
are quite different from the objects in real scenes, thus typical
strategies and framework utilized in object detection cannot be
applied here directly.

4.3.1 Feature Extraction

Because of wide variations between traditional objects in real
scenarios and VLSI layout patterns, it is extremely crucial to
design an appropriate feature extractor in our neural network
framework. Our feature extractor aims at transforming original
layout features non-linearly while reducing computation over-
head. Besides, we also tend to enrich the feature diversity with
fewer parameters. Based on these two major principles, a feature
extractor based on encoder-decoder structure and inception-
based modules for efficient extraction is designed. Three convo-
lution layers and two max-pooling layers connect the encoder-
decoder structure and inception-based modules. This connec-
tion is applied to compress the feature map size from 224× 224

to 56 × 56 which can bring speed-up at the training stage and
inference stage.

Yang et al. [100] successfully applied DCT to manually ex-
tract layout pattern features. Although DCT keeps the spatial
information, inevitably, this manual design of the feature ex-
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pression ignores some key features thus may not give a com-
prehensive expression. Furthermore, the processing of the DCT
is very time-consuming. Compared to the manually rule-based
DCT, our proposed feature extractor can transform the origin
layout into a network-compatible expression automatically. As
the feature extractor is a part of the whole convolutional neural
network, the training procedure is more flexible and efficient.

The convolutional network structure designed by [100] per-
forms well feature extraction, but its structure is too simple thus
is limited to the single clip hotspot detection problem. The naive
replacement on DCT without redesign on further extractor is not
available to the region-based task. There are two metrics for us
to think about how to design a new structure in our work. One
is going deeper with more layers, while the other is going wider
with multiple branches.

Encoder-Decoder Structure

The encoder-decoder structure has been successfully applied to
many computer vision tasks, including object detection [29, 53,
79]. The vanilla encoder consists of several convolution layers
and the decoder includes the same number of deconvolution lay-
ers. The encoder gradually extracts the features from the origin
image space to high dimensions latent space by increasing the
number of the convolution kernels, then the decoder gradually
downsamples the features from high dimensions to origin image
space with the symmetrical kernel settings.
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Figure 4.3 The tensor structure of feature extractor.

Convolution Layer. The convolution layer is the major
part of the convolution neural network which has been widely
used. The operation between tensor and kernel can be expressed
as:

F⊗K(j, k) =
c∑

i=1

m∑
m0=1

m∑
n0=1

F(i, j −m0, k − n0)K(m0, n0),

(4.2)

with tensor F ∈ Rc×p×p and kernel K ∈ Rc×m×m.
Deconvolution Layer. In contrast to convolutional lay-

ers, deconvolution layers do the inverse operation which maps
the single input feature point to multiple outputs, which can
be considered as a feature generation. The expression can be
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written as:

T⊗K(j, k) =
c∑

i=1

m∑
m0=1

m∑
n0=1

T(i, j −m0, k − n0)

K(m−m0, n− n0),

(4.3)

where T ∈ Rc×n×n is the tensor F ∈ Rc×p×p padded with zero
and n = (m − 1) × 2 + p, kernel K ∈ Rc×m×m. Here padding
size is the number of pixels we fill on the border of the origin
feature maps. In our experiments, the size of a padded feature
map is equal to the size of output. Kernel size is the size of the
deconvolution kernel. We use 3 × 3 kernel size which is same
as the encoder part. During training, the feature map of the
deconvolution layer is updated with the back-propagation.

Inception-based Structure

Empirically, a deeper neural network can give a much more ro-
bust feature expression and get higher accuracy compared to a
shallow structure as it increases the model complexity. However,
deeper networks are prone to overfitting, and gradient vanishing
attaches to it. Even worse, it brings sacrifice on speed at both
the inference stage and the training stage. Another point we
need to take into consideration is that features extracted from
the encoder-decoder structure are still in low dimension space.
In other words, more convolution kernels are needed. Addition-
ally, salient parts in images (i.e. hotspots in our case) may have
pretty large variations in locations and sizes. According to these
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issues, we propose an inception-based structure. The following
three points are the main rules of our design:

• Increase the number of filters in width at each stage. For
each stage, multiple filters do the convolution operation
with different convolution kernel size and then concatenate
them in channel direction as feature fusion.

• Prune the depth of the output channel for each stage.

• Downsample the feature map size in height and width di-
rection.

With the above rules, the inception structure [83] can take
a good balance between the accuracy and the time. The blobs
showed in Fig. 4.3 are what we apply in our framework. We
construct the module A with the operation stride one and four
branches. The aim of module A is to extract multiple features
without downsampling the feature map. The operation stride
of each layer in module B is two. Here the stride denotes the
convolution operation step of kernels on feature maps, the larger
strides can decrease the tensor size and reduce the number of
operations in subsequent layers. Note that Module B has the
same design principles as Module A, the bonus of Module B is
to reduce the spatial size of features. We only use one Module
B here, because the feature map size should not be too small,
while the low dimension of feature expression in final layers may
bring negative affects to the final result. The output feature size
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of final module A in Fig. 4.3 is 14× 14, which is the input fea-
ture map of Clip Proposal Network in Fig. 4.4. It can be seen
that 1× 1 convolution kernel has been applied in both modules.
The exploited 1×1 convolution kernel with low channel numbers
offers a channel-wise pooling, which brings the dimension reduc-
tion by decreasing the number of feature maps whilst retaining
their salient features. This technique successfully controls the
number of the parameters and convolutional operations, and
thus reduces the computational overhead.

In summary, the inception structure brings more abundant
feature expressions, which gives the network the ability to do
the kernel selection with no operation penalty.

4.3.2 Clip Proposal Network

Given the extracted features, a clip proposal network is devel-
oped here to detect potential hotspot clips. For both feature
maps and convolutional filters, the tensor structures of the clip
proposal network are illustrated in Fig. 4.4. Per preliminary ex-
periments, clips with single aspect ratio and scale (e.g. square
equal to the ground truth) may lead to bad performance. There-
fore, for each pixel in a feature map, a group of 12 clips with
different aspect ratios is generated.

The network is split into two branches: one is for classifi-
cation and the other is for regression. In classification branch,
for each clip, a prediction of hotspot and non-hotspot is calcu-
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lated through softmax function. The basic sampling strategy
to train the classifier is that the clips highly overlapped with
ground-truth are regarded as positive samples and the ones with
lower overlaps are considered as negative samples. Apparently,
it needs some tweaks and compromises to separate hotspots and
non-hotspots. In regression branch, the location and the shape
of each clip are determined by a vector [x, y, w, h], where x and
y refer to the location of a clip center while w and h respec-
tively record the width and the height of a clip. One criterion
for the regressor during training is that clips labeled as non-
hotspots are not fed into the regression branch since there are
no ground-truth clips for them. The output of our clip proposal
network is a bunch of proposals that will be examined by the
above-mentioned classifier and regressor to eventually check the
occurrence of hotspots. More precisely, it predicts the possibil-
ity of a clip being a hotspot or not, and refines the clip.

Clip Pruning

While the number of clips is extremely large during training,
high-quality clips should be reserved to train the classifier and
the low-quality clips which have medium intersection area to
the ground truth should be removed as they are the noises to
the classifier. For the clip regression task, it is not reasonable
to consider linear regression on these clips with large offset to
the ground truth clips. To overcome this problem, we consider
automatic clip pruning in our neural network.
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Figure 4.4 The kernel work flow of clip proposal network.

We first define intersection of union (IoU) as follows:

IoU =
clipgroundtruth

∩
clipgenerated

clipgroundtruth
∪

clipgenerated
. (4.4)

Then the following clip pruning rules are established:

• A clip’s IoU with ground truth clip higher than 0.7 should
be reserved as a positive sample;

• The clip’s IoU with any ground truth highest score should
be reserved as a positive sample;
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• A clip’s IoU with ground truth clip lower than 0.3 should
be reserved as a negative sample;

• Rest of clips do no contribution to the network training.

Hotspot Non-Maximum Suppression

After the classification and regression, the distance between
some neighbor hotspots is quite close to each other, there exists
a set of overlapped clips which have the same regression tar-
get. To avoid these redundant calculations at training and in-
ference stages, we develop a hotspot non-maximum suppression
(H-NMS) strategy to remove these clips. The H-NMS strategy
is shown in Algorithm 1.

Algorithm 1 hotspot non-maximum suppression
1: sorted_ws ← sorted clip set;
2: k ← size of clip set;
3: for i← 1, 2, ..., k do
4: current_w ← sorted_ws[i];
5: for j ← i, i+ 1, ..., k do
6: compared_w ← sorted_ws[j];
7: Overlap← Centre_IoU(current_w, compared_w);
8: if Overlap > threshold then
9: Remove compared_w; k ← k − 1;

10: end if
11: end for
12: end for
13: return sorted_ws;
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Figure 4.5 Examples of (a) conventional non-maximum suppression, and (b)
the proposed hotspot non-maximum suppression.

The elements of sorted_ws are arranged in descending order
according to the classification score (line 1). Centre_IoU is a
function returning the IoU score which focus on overlap of cores
(line 7). If the IoU is larger than the threshold, we remove the
clip with the lower score from the list (lines 8–10). The removed
clips will not contribute to further operation. Note that applying
H-NMS with higher threshold could lead to a drop on accuracy
due to aggressive suppression, while suppressing nearby clips
with a lower threshold would increase the false alarm since the
less confident proposals are less likely to be suppressed. To
some extents, the threshold value makes a tradeoff between two
conflicting needs. In our experiment, the IoU threshold value is
set to 0.7.

Compared to conventional non-maximum suppression method,
our proposed method takes advantage of the structural relation
between the core region and clips, thus can avoid error dropout
during the training. More importantly, the H-NMS does not
harm the ultimate detection accuracy but substantially reduces
the number of proposals. An example is shown in Fig. 4.5,
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Figure 4.6 Tensor structure of Refinement.

the clip with 0.5 classification score (CS) is removed in conven-
tional methods, while saved in our method if we consider the
core within each clip.

4.3.3 Refinement

After the prediction of the first classification and regression in
the clip proposal network stage, we get a rough prediction on
hotspot localization and filtered region which is classified as non-
hotspot. While the greedy method of clip filtering cannot guar-
antee all the reserved clips are classified correctly, the false alarm
may be too high. To bring a robust detection with lower false
alarms, we further construct refinement stage in the whole neu-
ral network, which includes a region of interests (RoI) pooling
layer, three inception modules, as well as another classification
and regression. The structure of Refinement is shown in Fig. 4.6.

RoI Pooling. The coordinates of each clip are the actual
location from the original input image. We scale down the co-
ordinates to conform with the spatial extent of the last feature
map before the refinement. In traditional image processing, the
most common ways to resize the image are cropping and warp-
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ing. The crop method cuts the pattern boundary to fix the
target size which leads to information loss. The warping oper-
ation will change the shape of origin features. Here we apply
region of interests (RoI) pooling to transform the selected fea-
ture region h × w to a fixed spatial size of H ×W (H and W

are the hyper-parameters, and we use 7 × 7 in this work). For
each pooled feature region ⌊h/H × w/W ⌋, the max-pooling is
applied independently. More specifically, the scaling is done by
the following two steps. Firstly, each clip proposal is divided
into equal-sized sections, the number of which is the same as
the dimension of the output. Afterward, the largest value is
found and output in each section. Consequently, the dimension
of the output does not depend on the size of the input feature
map nor on the size of the clips. On the contrary, it is deter-
mined solely by the number of sections we divide the proposal
into (i.e. H ×W in our algorithm). The RoI pooling transforms
clips with different sizes into a fixed size which reserves the whole
feature information and makes further hotspot classification and
regression feasible. It bridges the two stages of our region-based
hotspot detector, thus training object detection systems in an
end-to-end manner is allowed. Additionally, it also benefits the
processing speed in both the training and testing stage. Fig. 4.7
gives an example of RoI pooling operations.

Besides classification and regression in clip proposal network,
here additional classification and regression are designed to fine-
tune the clip location and give a more reliable classification re-



CHAPTER 4. LAYOUT HOTSPOT DETECTION 61

Pooling7⇥ 7
<latexit sha1_base64="9DI8Atbu9Xh2HqwtpJRJq6/BCH8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePFYwX5AE8pmu2mXbrJhdyKU0J/hxYMiXv013vw3btsctPXBwOO9GWbmhakUBl332yltbG5t75R3K3v7B4dH1eOTjlGZZrzNlFS6F1LDpUh4GwVK3ks1p3EoeTec3M397hPXRqjkEacpD2I6SkQkGEUr9RvERxFzQxr+oFpz6+4CZJ14BalBgdag+uUPFctiniCT1Ji+56YY5FSjYJLPKn5meErZhI5439KE2j1Bvjh5Ri6sMiSR0rYSJAv190ROY2OmcWg7Y4pjs+rNxf+8fobRTZCLJM2QJ2y5KMokQUXm/5Oh0JyhnFpCmRb2VsLGVFOGNqWKDcFbfXmddK7qnuUP17XmbRFHGc7gHC7BgwY04R5a0AYGCp7hFd4cdF6cd+dj2VpyiplT+APn8wcLC5Bo</latexit><latexit sha1_base64="9DI8Atbu9Xh2HqwtpJRJq6/BCH8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePFYwX5AE8pmu2mXbrJhdyKU0J/hxYMiXv013vw3btsctPXBwOO9GWbmhakUBl332yltbG5t75R3K3v7B4dH1eOTjlGZZrzNlFS6F1LDpUh4GwVK3ks1p3EoeTec3M397hPXRqjkEacpD2I6SkQkGEUr9RvERxFzQxr+oFpz6+4CZJ14BalBgdag+uUPFctiniCT1Ji+56YY5FSjYJLPKn5meErZhI5439KE2j1Bvjh5Ri6sMiSR0rYSJAv190ROY2OmcWg7Y4pjs+rNxf+8fobRTZCLJM2QJ2y5KMokQUXm/5Oh0JyhnFpCmRb2VsLGVFOGNqWKDcFbfXmddK7qnuUP17XmbRFHGc7gHC7BgwY04R5a0AYGCp7hFd4cdF6cd+dj2VpyiplT+APn8wcLC5Bo</latexit><latexit sha1_base64="9DI8Atbu9Xh2HqwtpJRJq6/BCH8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePFYwX5AE8pmu2mXbrJhdyKU0J/hxYMiXv013vw3btsctPXBwOO9GWbmhakUBl332yltbG5t75R3K3v7B4dH1eOTjlGZZrzNlFS6F1LDpUh4GwVK3ks1p3EoeTec3M397hPXRqjkEacpD2I6SkQkGEUr9RvERxFzQxr+oFpz6+4CZJ14BalBgdag+uUPFctiniCT1Ji+56YY5FSjYJLPKn5meErZhI5439KE2j1Bvjh5Ri6sMiSR0rYSJAv190ROY2OmcWg7Y4pjs+rNxf+8fobRTZCLJM2QJ2y5KMokQUXm/5Oh0JyhnFpCmRb2VsLGVFOGNqWKDcFbfXmddK7qnuUP17XmbRFHGc7gHC7BgwY04R5a0AYGCp7hFd4cdF6cd+dj2VpyiplT+APn8wcLC5Bo</latexit><latexit sha1_base64="9DI8Atbu9Xh2HqwtpJRJq6/BCH8=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqHgqePFYwX5AE8pmu2mXbrJhdyKU0J/hxYMiXv013vw3btsctPXBwOO9GWbmhakUBl332yltbG5t75R3K3v7B4dH1eOTjlGZZrzNlFS6F1LDpUh4GwVK3ks1p3EoeTec3M397hPXRqjkEacpD2I6SkQkGEUr9RvERxFzQxr+oFpz6+4CZJ14BalBgdag+uUPFctiniCT1Ji+56YY5FSjYJLPKn5meErZhI5439KE2j1Bvjh5Ri6sMiSR0rYSJAv190ROY2OmcWg7Y4pjs+rNxf+8fobRTZCLJM2QJ2y5KMokQUXm/5Oh0JyhnFpCmRb2VsLGVFOGNqWKDcFbfXmddK7qnuUP17XmbRFHGc7gHC7BgwY04R5a0AYGCp7hFd4cdF6cd+dj2VpyiplT+APn8wcLC5Bo</latexit>

7
7

Input Feature

Selected Feature

Pooled Feature

ROI Output Feature

Figure 4.7 Visualized 7× 7 RoI pooling.
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Figure 4.8 (a) 1st hotspot classification in clip proposal network; (b) The
labelled hotspots are fed into 2nd hotspot classification in refinement stage
to reduce false alarm.

sult. At this stage, most non-hotspot clips have been removed,
thus two stage of hotspot classification can efficiently reduce
false alarm. Fig. 4.8 illustrates an example of the two stage
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Figure 4.9 An example of features presentation in our framework.

hotspot classification.

4.3.4 Loss Function Design

We design a multi-task loss function called classification and
regression (C&R) to calibrate our model. As shown in Fig. 4.4
and Fig. 4.6, C&R is applied both in the clip proposal network
stage and refinement stage. The input tensors of 1st C&R are
boxes in Fig. 4.4. W , H and C are width, height and channel
respectively. The probability score of the hotspot, non-hotspot
and prediction of clip coordinates are grouped in the channel
direction. As aforementioned, x, y are the coordinates of the
hotspot, which means the centre of the clip area. w, h are the
width and height of the clip. In 2nd C&R, the tensor flow of
the classification and regression is the same as [49] using fully-
connected layers.

In the task of region-based hotspot detection, hi is the pre-
dicted probability of clip i being a hotspot. h′i is the ground
truth of clip i, which equals to 1 if a hotspot is located in
the centre and 0 vice versa. li = {lx, ly, lw, lh} ∈ R4 and l′i =

{l′x, l′y, l′w, l′h} ∈ R4 are assigned as coordinates of clips with in-
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dex i representing the encoded coordinates of the prediction and
ground truth respectively. The encoded coordinates can be ex-
pressed as:

lx = (x− xg)/wg, ly = (y − yg)/hg,

l′x = (x′ − xg)/wg, l′y = (y′ − yg)/wg,

lw = log(w/wg), lh = log(h/hg),

l′w = log(w′/wg), l′h = log(h′/hg),

(4.5)

where variables x, xg and x′ are for the prediction of clip, g-clip
and ground truth clip respectively (same as the y, w and h).

The classification and regression loss function for clips can be
expressed as:

LC&R(hi, li) = αloc

∑
i

h
′

illoc(li, l
′
i) +

∑
i

lhotspot(hi, h
′

i)

+
1

2
β(∥Tloc∥22 + ∥Thotspot∥22), (4.6)

where β is a hyper-parameter which controls the regularization
strength. αloc is the hyper-parameter which controls the balance
between two tasks. The term h

′

illoc(li, l
′
i) indicates that regres-

sion loss is only activated for clips labeled as hotspots. Tloc and
Thotspot are the weights of the neural network. For elements li[j]
and l′i[j] (j ∈ [1, 4]) in li, l

′
i respectively, lloc can be expressed as

lloc(li[j], l
′
i[j]) =


1

2
(li[j]− l′i[j])

2, if |li[j]− l′i[j]| < 1,

|li[j]− l′i[j]| − 0.5, otherwise,
(4.7)
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which is the so-called robust loss or smooth L1 loss (defined
in [34]) applied to avoid the exploding gradients problem at
training stage. lhotspot is the cross-entropy loss which is calcu-
lated as:

lhotspot(hi, h
′

i) = −(hi logh′

i + h
′

i loghi). (4.8)

In Equation (4.6), we apply the L2 regularization to the loss
function, which is the sum of the squares of all the weights in
the network. The L2 regularization penalizes peaky weight vec-
tors and prefers diffuse weight vectors. Due to multiplicative
interactions between weights and features, the L2 regularization
term has appealing property of encouraging the network to use
all of its inputs rather than skewed on partial of its inputs.

4.3.5 Example of Detection Flow

An example of R-HSD flow is illustrated in Fig. 4.9. We first
extract output tensors of each stage and sum up in channel-
wise for visualization. Note that we visualize the features in
grayscale, where the locations with lighter colors have higher
values and darker locations have lower values vice versa. With
feature extraction going deeper, values of features at hotspot
regions have higher response comparing to the non-hotspot re-
gions. The hotspot and non-hotspot areas presented as rectan-
gles (for a clear explanation, not all rectangles are shown in the
figures) in clip proposal network are cropped and downsampled
to the same size with RoI pooling at the refinement stage. After
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the second stage classification and regression, a more accurate
result is given.

4.4 Enhanced R-HSD Neural Network

In previous sections, the preliminary R-HSD neural network has
been proposed. However, there still exists some room to improve
the performance of our region based hotspot detector. For exam-
ple, the encoder-decoder structure in feature extractor becomes
a bottleneck since it lacks a multi-level description of an input
layout. Therefore, based on the preliminary design for R-HSD
Neural Network, two new concepts are introduced for further
enhancement.

4.4.1 Multi-branch Design for Encoder

The encoder-decoder in prior arts is in a single-branch structure,
which may bring the following issues into the learning process.
One is a fixed-size kernel cannot capture multi-scale information.
The other is naively stacking large convolution operations is
computationally expensive.

To alleviate the above issues, we propose our multi-branch
design based on the basic idea of Inception network [83] and
atrous convolution [7–9]. The core of the proposed design is
that convolutional kernels with multiple sizes operate on the
same level simultaneously. By aggregating the feature maps on
different scales, the encoder-decoder structure has the potential
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to surpass other feature extractors. Furthermore, to reduce the
computational complexity, we exploit atrous convolution as an
alternative to the standard convolution. As a generalization of
standard convolution operation, atrous convolution is a power-
ful technique that explicitly controls the resolution of features
computed by CNNs and adjust kernel’s field of view to handle
multi-scale information. Except for the dilated rate, it works
in a similar way as standard convolution which moves across
the whole image with a stride-size column change on the hori-
zontal movements, and a stride-size row change on the vertical
movements. We visualize the computation process of atrous
convolution in Fig. 4.10, where only grids filled with dashed and
oblique lines need to compute. It can be seen that the dilated
rate controls the field-of-view scope of a kernel and affects the
resolution of the output feature map. Note that when dilated
rate equals to 1, the atrous convolution degrades to standard
convolution. Hence, we can rewrite Equation (4.2) as following:

F⊗K(j, k)

=
c∑

i=1

m∑
m0=1

m∑
n0=1

F(i, j − r ∗m0, k − r ∗ n0)K(m0, n0), (4.9)

where r refers to the dilated rate. Implicitly expressed by Equa-
tion (4.9), the advantage of atrous convolution is that it expands
kernel size without introducing additional computational com-
plexity.
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Figure 4.10 The illustration of atrous convolution.
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Figure 4.11 The Illustration of proposed multi-branch design.

Building on top of the aforementioned ideas, our multi-branch
framework is designed as in Fig. 4.11. Three branches with
different dilated rates (e.g. 1, 3, 5 as fine-tuned configurations)
work collaboratively, and then all output tensors concatenate as
a fusion feature map via channel dimension.
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4.4.2 IoU Regularizer for Loss Function Design

To accelerate bounding box prediction, we leverage a novel IoU
[74,112] regularization term in our loss function. Hence, our loss
function is redesigned as:

LC&R(hi, li) = αloc

∑
i

h
′

illoc(li, l
′
i) +

∑
i

lhotspot(hi, h
′

i)

+
1

2
β(∥Tloc∥22 + ∥Thotspot∥22 +RIoU),

(4.10)

where RIoU is the proposed IoU regularizer.
IoU, also known as the Jaccard index, is a widely exploited

metric for comparing the similarity between two geometric shapes.
IoU encodes the shape and position properties of the objects un-
der comparison, e.g. the indices of left upper corner and right
bottom corner of two clips in our case, into the region property,
and then calculates a normalized measure that focuses on their
areas. This property makes IoU robust to the scale of the prob-
lem under consideration. Thanks to this appealing property,
this metric is the foundation of all performance measures in seg-
mentation, object detection, and tracking tasks. The exploited
IoU regularizer, shown in Fig. 4.12, directly enforces the max-
imal overlap between the predicted clip and the ground truth,
and jointly regresses all the bound variables as a whole unit.

To give a more mathematical understanding of the proposed
IoU regularizer, the deduction of back-propagated information
of itself is shown as follows. Assume the predicted clip and
corresponding ground truth are located as shown in Fig. 4.12.
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The ground truth =  (x0, y0, w0, h0)
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Figure 4.12 The illustration of the IoU regularizer.

Table 4.1 Benchmark information. case2, case3 and case4 are three cases
from ICCAD CAD contest 2016 benchmark suite [90]. Via is generated by
open source layout generator and simulated using Mentor Calibre. Clips for
training are generated by random cropping on layouts.

Bench Train #HS Test #HS Train #Clips† Test #Clips Training Set Size (µm× µm) Testing Set Size (µm× µm)

case2 40 39 1000 8 6.95 × 3.75 6.95 × 3.75
case3 1388 1433 1000 33 12.91 × 10.07 12.91 × 10.07
case4 90 72 1000 55 79.95 × 42.13 79.95 × 42.13
Via 2184 2184 1000 1947 53.82 × 53.82 53.82 × 53.82

Firstly, the partial derivatives of the area of the predicated clip
with respect to yl, yr, xl, xr, are computed as:

∂X

∂yl (or ∂yr)
= xr − xl, (4.11)

and
∂X

∂xl (or ∂xr)
= yr − yl. (4.12)

For simplicity, we use ∇X refer to any derivatives w.r.t yl, yr,
xl, xr. Next, the partial derivatives of the intersection area I

w.r.t any yl, yr, xl, xr, marked as ∇I, is deduced as:

∂I

∂yl
= xr − x′l, (4.13)
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while ∂I
∂yr

= 0 and
∂I

∂xr
= y′r − yl, (4.14)

while ∂I
∂xl

= 0. Eventually, the back-propagated information of
proposed regularization w.r.t p is

∇RIoU =
I (∇X −∇I)− U∇I

U 2IoU

=
1

U
∇X − U + I

UI
∇I,

(4.15)

where the union area U equals to (X +X ′). According to Equa-
tion (4.15), the first term 1

U
∇X penalizes the predicted clip,

whilst the second term is a soft constraint on the intersection
area. When the gradient equals to zero, the limit case which
means predicted clip exactly matches the ground truth are at-
tained.

4.5 Experimental Results

Our region-based hotspot detection flow is evaluated on ICCAD
CAD Contest 2016 benchmark suite [90], which contains four
designs that are shrunk to match EUV metal layer design rules.
Ground truth hotspot locations are labelled according to the re-
sults of industrial 7nm metal layer EUV lithography simulation
under a given process window1. As there are limited defects
found with lithography simulation on the first benchmark, all

1Shrunk benchmarks and their hotspot information is available at https://github.
com/phdyang007/ICCAD16-N7M2EUV

https://github.com/phdyang007/ICCAD16-N7M2EUV
https://github.com/phdyang007/ICCAD16-N7M2EUV
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our experiments are conducted on rest three designs. Each lay-
out is split into two equal halves with one part used for training
and the other one used for testing. Besides these three cases,
we generate a much larger benchmark called Via to present a
more comprehensive comparison with previous related works.
Via benchmark is generated following an open source layout
generator2, and simulated using Mentor Calibre. More details
about benchmarks are shown in TABLE 4.1. We implement our
region based hotspot detection framework with Tensorflow [1]
in Python, and test it on a platform with a Xeon Silver 4114
processor and a Nvidia GTX Titan graphic card. Nvidia GTX
Titan has a comparable computational capacity as the high per-
formance clusters with 24 Maxwell stream processors. Note that
three training layouts are merged together to train one model that
will be used in the inference stage. In the following experiments,
the neural network is trained with following parameter settings:
input size = 256 × 256 (corresponding to 2.56µm × 2.56µm),
batch size = 12, initial learning rate = 0.002 (decay ten times
for each 30000 steps), aspect ratio = [0.5, 1.0, 2.0] and scales

= [0.25, 0.5, 1.0, 2.0]. The parameters of the loss function are
heuristically chosen, what we use are β = 0.2, αloc = 2.0. At the
inference stage, we follow the same data generation rule applied
in [102].

We list the detailed result comparison in TABLE 4.2. Col-
umn “Bench” lists three benchmarks used in our experiments.

2https://github.com/phdyang007/layout-generator

https://github.com/phdyang007/layout-generator
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False AlarmDetected Hotspot Missed Hotspot

(a) Ground-truth (b)
TCAD’19 [102]

(c) R-HSD [12] (d) Enhanced
R-HSD

Figure 4.13 Visualization of different hotspot detection results.

Columns “Accu”, “FA”, “Time” denote hotspot detection accu-
racy, false alarm count and detection runtime respectively. Col-
umn “TCAD’19” lists the result of a deep learning-based hotspot
detector proposed in [102] that adopts frequency domain feature
extraction and biased learning strategy. We also implement
two baseline frameworks that employ Faster R-CNN [71] and
SSD [57], respectively, which are two classic techniques match
our region-based hotspot detection objectives well. Note that we
do not apply the pre-trained model in this work, all the models
are trained from scratch. The corresponding results are listed
in columns “Faster R-CNN [71]” and “SSD [57]”. The rest two
columns, “R-HSD” and “Enhanced R-HSD”, denote the meth-
ods proposed in [12] and the framework presented in this work.
The results in R-HSD surpass [102] with average of 6.11% im-
provement on hotspot detection accuracy and ∼ 170 less false
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alarm penalty, while our enhanced R-HSD behaves even better
with an average accuracy of 94.97 % and further decrease on the
false alarm compared to the R-HSD. Especially, our framework
gets much better on case2 with 95.74% detection accuracy com-
pared to 77.78%, 1.8% and 71.9% for [102], Faster R-CNN, and
SSD respectively.

The advantage of the proposed two-stage classification and
regression flow can also be seen here that [102] achieves similar
hotspot detection accuracy compared to our frameworks but has
extremely large false alarms that will introduce additional issue.
As shown in TABLE 4.3, the detection runtime for the proposed
region-based framework is much faster than [102] thanks to the
region-based detection scheme. We can also observe that al-
though Faster R-CNN and SSD are originally designed for large
region object detection, they perform very poor on hotspot de-
tection tasks which reflects the effectiveness and efficiency of our
customized frameworks. Different from the atrous spatial pyra-
mid pooling (ASPP) proposed in [7,9] which extracts features in
multiple scales. Multi-branch encoder with atrous convolution
layer designed for clip-wise feature extractions has much lower
dilation rate than ASPP, because the size and scale of clips are
much regular than objects in real life. The setting of ASPP is
not compatible with the hotspot detection task. The experi-
ments in TABLE 4.4 show that our proposed design in hotspot
detection task outperforms ASPP by a large margin.

We also study how different configurations of our framework
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Figure 4.14 Runtime comparison among different settings.

affect performance. TABLE 4.5 and Fig. 4.14 summarize the
contributions of encoder-decoder structure, multi-branch encoder-
decoder, L2 regularization, IoU regularizer and refinement stage
to our backbone neural network. “w/o. ED” denotes the frame-
work without the encoder-decoder structure, “w/o. MBED” de-
notes the framework without the multi-branch design for the
encoder-decoder structure, “w/o. L2” stands for the framework
without the L2 regularization, “w/o. IoU” denotes the frame-
work without the IoU regularizer, “w/o. Refine” denotes the
framework without the refinement classification and regression,
and “Full” is our framework with entire techniques. The abla-
tion study shows that with the encoder-decoder structure, we
get 7.17% accuracy improvement on average, which indicates
that the encoder-decoder structure gives a more efficient feature
expression than the original input. After incorporating multi-
branch design for the encoder-decoder structure, the accuracy
is improved by 1.82% on average, which demonstrates the effec-
tiveness of this configuration. It can be seen that without IoU
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regularizer, the performance degrades with 45 additional false
alarms. With the L2 regularization, the framework gets around
3% improvement in all cases, which means under the same ex-
periment settings, the L2 regularization resolves the overfitting
problem effectively. Comparing the whole framework with the
model without refinement, the model with refinement reduces
around 20% false alarms and achieves 5.25% further improve-
ment on average accuracy. TABLE 4.6 shows an ablative com-
parison on different anchor generation settings. “Anchor num-
ber” denotes the number of anchors we generate for each loca-
tion. “Scales” denotes the size ratio compared to a standard
anchor with the shape of 16× 16. “Aspect Ratios” denotes the
ratio between anchor width and height. With the increasing
of anchors, the number of false alarms can be reduced signfi-
cantly, which indicates a sufficient sampling is necessary for the
training.

4.6 conclusion

In this paper, we have proposed an innovative end-to-end region-
based hotspot detection framework. Our feature extractor based
on multi-branch encoder-decoder design and inception module
provides a self-adaptive way to perform feature transformation,
which is very compatible with convolution neural networks. With
pruning and hotspot non-maximum suppression strategies, the
clip proposal network locates the potential hotspot in an effi-
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cient regression way. We take advantage of L2 regularization’s
property to prevent over-fitting and get higher performance. IoU
regularizer is leveraged to boost the regression procedure thus
attain improvements on both accuracy and false alarm. Addi-
tionally, our classification and regression strategy with refine-
ment reduces false alarms and increases accuracy at a remark-
able speed. The experimental results show that our framework
outperforms the current deep learning based models. The defect
results in this paper come from rigorious EUV model simulation
model. In our future work, more experiments with compact
lithography simulation will be discussed. We hope this paper
can give a new perspective on deep learning based hotspot de-
tection and provide a more powerful solution for the advanced
design for manufacturability (DFM) research.

2 End of chapter.
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Table 4.4 Comparison with ASPP Module. ASPP module is approached
in [9], which is designed for general objects.

Bench
ASPP [9] + R-HSD [12] Enhanced R-HSD

Accu
FA F1

Time Accu
FA F1

Time
(%) (s) (%) (s)

case2 82.05 22 0.68 3.6 95.74 15 0.81 2.3
case3 90.95 96 0.92 11.0 94.72 78 0.94 10.8
case4 100 143 0.50 4.45 100 92 0.61 6.6
Via 87.61 2558 0.58 44.7 89.4 2435 0.58 46.3

Average 90.39 704.8 0.67 15.38 94.97 655 0.74 16.5
Ratio 1.00 1.00 1.00 1.00 1.05 0.97 1.10 1.07
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Chapter 5

Layout Pattern Analysis

5.1 Introduction

The yield of manufactured integrated circuits (ICs) is defined
as the percentage of good dies among all dies manufactured.
A high and stable yield could ensure profitability and reliabil-
ity of products. However, as the feature size decreases, specific
layout patterns that are hard to fabricate tend to cause more
systematic defects, such as open or bridge defects in neighboring
wires. These layout patterns are an important source of yield
loss. Since layout configurations of new designs may differ from
existing ones, identifying layout patterns that lead to yield loss
through test chips, SRAMs, etc., is becoming less effective. Per-
forming hotspot detection [11, 102, 108] on entire layouts may
result in overcorrection which can adversely affect chip area and
performance. Physical failure analysis (PFA) is a straightfor-
ward method to determine whether a layout pattern is the root
cause of systematic defects. However, it requires both experi-

82
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ence and a proper understanding of the fabrication process and
is usually time-consuming and expensive.

To efficiently identify the root cause of systematic defects,
statistical methods have been adopted to automatically identify
common physical defect features by analyzing volume diagnosis
reports. One of the most prominent work is a Bayesian method
proposed in [3], which characterizes the conditional distribution
of systematic defect given potential root causes. It learns the
optimal root cause distribution by maximizing the likelihood of
observed diagnosis report using an Expectation-Maximization
(EM) learning algorithm. There are also works [18,87] focusing
on improving the quality of diagnosis results by evaluating the
impact of diagnosis features to improve the root cause identifi-
cation accuracy. These methods fall short of considering root
cause layout patterns which largely restricts their applicability
to real tasks. Cheng et al. [17] proposed an advanced solution
based on [3]. They take root cause layout patterns into con-
sideration when identifying the correct layout patterns inducing
systematic yield loss. In practice, there usually exists complex
interactions between different root causes, as well as root cause
and systematic defect, but the causal relationship between can-
didate layout patterns and the systematic defect was not con-
sidered in [17].

Another class of seminal works [85,86] focus more on the geo-
metric structure of layout patterns by adopting clustering algo-
rithms to improve the systematic IC-defect identification. Both
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Figure 5.1 Overview of prior methods. Upper: [3, 18]; lower: [85, 86].

connectivity-based and centroid-based clustering algorithms are
used to group rotation-, mirror-equivalent layout snippets to-
gether. These works conduct clustering on raw layout snippets
in a two-stage manner and manually check all possible geomet-
ric equivalence between different clusters. Simulation experi-
ments in [85] indicate that the resolution of the identification
results of clustering-based methods is limited, since they may
require a failure analysis expert’s judgment to pick a single lay-
out snippet for each cluster. Furthermore, layout snippets that
are shift-equivalent are regarded as different candidates, which
is commonly considered unreasonable since these snippets share
identical or similar geometric structures.

To address the above issues and improve the resolution of
root cause identification, a unified framework for layout pattern
analysis with deep causal effect estimation is proposed in this
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work. Compared to existing statistical learning methods, our
framework characterizes the causal relationship between poten-
tial root causes and the systematic defect. Compared to meth-
ods using clustering algorithms, our framework regards rotation-
, mirror-, and shift-invariant layout snippets as equivalent with-
out requiring any manual equivalence check. At the first stage
of the framework, a novel contrastive learning method is used to
train an encoder network to extract from layout snippets their
rotation-, mirror-, and shift-invariant latent features. The latent
features are then clustered to form layout patterns. Based on
the learned layout patterns, we use a Structural Causal Model
(SCM) to model the causal relationship between candidate lay-
out patterns and the systematic defect, i.e. the model describes
the relationship between the occurrence/presence of a certain
layout pattern and the systematic defect. Lastly, the Average
Causal Effect (ACE) of candidate layout patterns on the sys-
tematic defect is estimated as the metric for the identification
of the root cause of systematic defects. Experimental results
on large-scale designs show that our framework achieves state-
of-the-art results which significantly outperforms a commercial
tool in terms of accuracy as well as inference time.

To the best of our knowledge, this work is the first to apply
contrastive learning-based deep learning techniques and average
causal effect estimation to identify the root cause. The main
contributions of this work are threefold:
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• We propose a unified solution to volume diagnosis-based
root causes layout pattern identification task. Both pat-
tern clustering and root cause identification are taken into
consideration. A novel clustering loss is proposed to solve
the limitation of conventional contrastive learning method.
Our framework can identify the critical root causes and
provide high-resolution clustered snippets for further anal-
ysis.

• The causal relationship between different candidate layout
patterns and the systematic defects is characterized using a
neural network and a neural network attribution method is
adopted to estimate the average causal effect for root cause
identification.

• Experimental results on several industrial designs show the
effectiveness and robustness against the noise of our frame-
work. The accuracy of our framework outperforms a com-
mercial tool and state-of-the-art framework in different sce-
narios and we get ×8.4 speedup on average at inference.

The remainder of this paper is organized as follows. Sec-
tion 6.2 introduces terminologies and problem formulation re-
lated to this work. Section 6.3 describes the problem formula-
tion and the algorithmic details of our framework. Section 6.4
lists the experimental results, followed by the discussion and
conclusion in Section 6.5.
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5.2 Preliminaries

In this section, preliminary knowledge related to the proposed
framework is briefly reviewed.

5.2.1 Layout Pattern Analysis

Layout Pattern Analysis (LPA) takes a step towards identify-
ing the layout patterns which cause systematic defects. Cheng
et al. [17] proposed an LPA solution which is an enhanced flow
based on [3]. Attribute to the external steps on layout pat-
tern processing, this work makes root cause identification on
layout patterns becomes feasible. The challenge of how to han-
dle a large number of potential layout patterns to be considered
for analysis is solved. And the risk of over-fitting caused by
Bayesian modeling is also addressed. Layout pattern extraction
is designed to extract all unique layout patterns around loca-
tions that could be physical defects. In layout pattern matching,
layout patterns are transformed to canonical forms which make
shifted, rotated, or mirrored patterns identical. Combining pre-
vious steps with the root cause identification method proposed
in [3], root cause analysis results including root cause distribu-
tion and layout patterns are returned for further study.
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Figure 5.2 Idea of contrastive learning: maximize the similarity between
latent features of an image and its augmented version and simultaneously
minimize the similarity between latent features of inputs correspond to dif-
ferent original images.

5.2.2 Contrastive Learning

Conventional deep networks training often relies on large amounts
of annotated data to learn representations in a latent space.
Since the annotated data can be costly or even impossible to
collect, self-supervised learning leverages unlabeled data to per-
form pretext tasks for representation learning [22, 62]. Con-
trastive learning is a class of self-supervised learning that uses
contrastive objectives. The general idea of contrastive learn-
ing is to maximize the similarity between an instance and its
augmentation, while keep the discriminative power against dif-
ferent instances through a contrastive loss in the latent space,
as illustrated in Fig. 5.2. Recent contrastive learning meth-
ods [13,14,26,36] have achieved competitive results in visual rep-
resentation learning compared with prominent supervised learn-
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Figure 5.3 An SCM (a) without and (b) under intervention. Nodes represent
random variables and directed edges x→ y indicates that x is a direct cause
of y. Under intervention do(t′), the intervened variable t is fixed to the
intervened value t′ and all its incoming edges are removed.

ing methods for computer vision tasks.

5.2.3 Structural Causal Models

Structural Causal Models (SCMs) [67] are developed towards a
comprehensive theory of causation and serve as a key ingredient
of our framework.

Definition 4 (Structural Causal Model [67]). A structural causal
model M is a 4-tuple (E,X, F, P (E)), where

• E is a set of exogenous (unobserved) variables;

• X is a set of endogenous (observed) variables;

• F represents a collection of functions F = {fi} such that
each endogenous variable xi ∈ X is determined by a func-
tion fi ∈ F , where fi is a mapping from the respective
domain of ϵi ∪ Pai to xi, with ϵi ⊆ E, Pai ⊆ X\{Xi} is
the set of direct parents of xi;
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• The uncertainty is encoded through a probability distribution
over the exogenous variables, P (E).

SCMs provide a compact way of characterizing average causal
effect ACEy

do(xi)
, which is defined as E[y|do(xi = 1)]−E[y|do(xi =

0)] for binary xi. E[y|do(xi = α)], known as interventional ex-
pectation [67], denotes the expectation of y when intervening the
value of xi to be α. For an SCM, such intervened model can be
represented by replacing the structural equation xi = fi(Pai, ϵi)

by a constant xi = α.

5.2.4 Neural Network Attributions

Attribution methods aim to provide interpretability of deep net-
works by identifying the effect of an input neuron on a specific
output neuron [78, 81]. Recently, [5] approached neural net-
work attribution problems from a causal perspective. They
view a multilayer perceptron (MLP) {l1, . . . , ln} as an SCM
M ′(E, {l1, ln}, f ′, P (E)), where l1 is the input layer, ln is the
output layer, E refers to a set of exogenous random variables
which act as causal factors for the input neurons l1, f ′ refers to
the mapping from the input to output by marginalizing out all
hidden neurons.

Based on SCM reformulation, [5] approximated the interven-
tional expectation of the output neurons f ′(l1) under the inter-
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vention do(xi = α) as:

E[f ′(l1)|do(xi = α)] ≈ f ′(µ)+

1

2
tr(∇2f ′(µ)E[(l1 − µ)(l1 − µ)T |do(xi = α)]),

(5.1)

where tr(·) is the trace operator, µ = [µ1, . . . , µk]
T and each

entry µi′ = E[xi′|do(xi = α)], ∀xi′ ∈ l1, is the interventional
expectation of xi′ when xi is intervened to the value α.

5.3 Methodologies

5.3.1 Overview

The objective of LPA in this work is to identify true root cause(s)
of systematic defect by analyzing a dataset consisting of m diag-
nosis reports R = {re}me=1 and layout snippets of potential root
causes in these reports. Each report re consists of several inde-
pendent symptoms (i.e., defects), whose possible causes are also
given along with several important properties (e.g., ID, score,
etc.). Our framework identifies the true root cause(s) induc-
ing systematic defects in R by exploiting both the geometric
structure of layout snippets (Section 5.3.2) and causal relation-
ship between potential root causes and systematic defect (Sec-
tion 5.3.3).

An illustration of our LPA framework is given in Fig. 5.4.
It uses diagnosis reports and layout snippets of potential root
causes in these reports as the inputs. First, a contrastive learning-
based method is adopted to extract rotation-, mirror-, and shift-
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Figure 5.4 Overview of the framework.
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invariant latent features from input layout snippets. Then, the
latent features are clustered using k-means clustering to identify
layout patterns from a large amount of layout snippets. Each
cluster corresponds to one layout pattern. Third, a feed-forward
neural network, which acts as the SCM involves all candidate
layout patterns and systematic defect, is trained to maximize
the likelihood of the input diagnosis reports given the represen-
tation of candidate layout patterns as inputs. After training, the
Average Causal Effects (ACEs) of layout patterns to systematic
defect are evaluated to identify the true root cause(s).

5.3.2 Deep Layout Snippet Clustering (DLSC)

The identification of layout patterns from layout snippets using
clustering algorithm is elaborated in this section.

Since there are a considerable number of duplicate and equiv-
alent layout snippets in the diagnosis reports, layout pattern
matching is usually conducted to recognize layout snippets that
are rotated, mirrored, or shifted version of each other as geo-
metrically equivalent. Clustering algorithms are a widely-used
class of techniques in layout pattern matching. Although apply-
ing connectivity-based or centroid-based clustering algorithms
on raw layout snippets achieved certain improvements on iden-
tifying root causes, they heavily rely on manual design and
may have difficulty when generalized to new manufacturing pro-
cesses.
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To circumvent the need of manually designed clustering rules,
we introduce deep neural networks in layout pattern match-
ing. Specifically, an encoder network is trained using contrastive
learning to extract latent features that are invariant to trivial
transformations such as rotation, mirror and shift. Besides, the
self-supervised nature of contrastive learning allows us to con-
struct a huge amount of training data set by cropping unlabeled
layout snippets from the entire layout designs.

Encoder Network. The principle of the encoder network is
to transform raw layout snippets into a low-dimensional latent
space, in which equivalent layout snippets are mapped to an
identical embedding (vector). The low dimensional embeddings
represent prototypes of layout snippets. The network structure
of our model is shown in Fig. 5.5. “SeparableConv” indicates
depthwise separable convolution layer which is a variant con-
volution layer widely used in [39] for computation efficiency.
“Block A” and “Block B” are two modules with residual con-
nections. Three “Linear” layers are attached to the feature ex-
tractor as a bottleneck structure maps two-dimensional features
to embeddings.

Contrastive Learning. Given a batch of embeddings trans-
formed from raw layout snippets by the encoder network, our
goal is to make the embeddings of equivalent layout snippets
identical, while keeping those of non-equivalent as dissimilar as
possible. To achieve this, ℓp-norm is used as a metric to mea-
sure the dissimilarity between embeddings zi and zj of a pair of
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layout snippets:
d(zi, zj) = ∥zi − zj∥p , (5.2)

where p is a real number greater than 1 and is set to p = 2 in
this work. Conventional contrastive loss [10, 93] based on the
metric above is given by

Lcon(z,p,n) = max(d(z,p)− d(z,n) +marg, 0), (5.3)

where marg is a non-negative value indicating an appropriately
set margin, z, p, and n are the embeddings of one layout snip-
pet, the embedding of a positive sample of z, and the embed-
ding of a negative sample of z, respectively. marg represents
the minimum difference between positive and negative distances
that is required for the loss to be zero. During training, positive
samples p are getting closer to the anchor embedding z and neg-
ative samples n are penalized to be far from anchor embedding.
An illustration on contrastive learning with an encoder is shown
in Fig. 5.6.

Clustering Loss. According to Equation (5.3), the embed-
ding clustering is improved by pair-wise comparison directly.
While this method has drawbacks, the property of clusters is
overlooked. An example of a small batch size with two clusters
is presented in Fig. 5.7, the pair-wise operation may pull the
positive samples away from the center of clusters. The double-
headed arrow with a dotted line indicates the penalization term
in Equation (5.3), this term causes two samples away from the
center of corresponding clusters. This may cause negative ef-



CHAPTER 5. LAYOUT PATTERN ANALYSIS 96

fects on the efficiency of convergence and clustering quality. It
will be more difficult for training when the batch size is larger,
since more clusters might be disrupted. To tackle this issue,
we propose a clustering loss by adding a regularization term to
improve the quality of clusters. This term is expressed as:

R(mz, z) = ∥mz − z∥p , (5.4)

where mz is the cluster center of sample z. The whole optimiza-
tion objective is expressed as:

L(z,p,n,mp,mn) = Lcon(z,p,n) + αR(mp,p) + βR(mn,n),

(5.5)
where α and β are the weights of regularization terms. With the
regularization terms for positive samples and negative samples,
the drawback of contrastive loss in [10] is avoided and the risk
of low resolution is reduced. Each iteration of the training de-
creases the quantization error of the clusters since for the same
cluster, we have the following inequality:∑

i

R(m′, zi)−R(m, zi) =
∑
i

∥m′ − zi∥p − ∥m− zi∥p ≤ 0,

where m′ is the updated cluster center and si is the sample i

belongs to the cluster. Repeatedly replacing m by m′ speeds up
the convergence of the training schedule. Experimental results
verified that the proposed clustering loss requires less training
data and computation resources. The advantage of clustering
loss is summarized in TABLE 5.1. A visualized illustration of
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Table 5.1 Advantage of Clustering Loss compared to Contrastive Loss used
in [10].

Cluster Awareness Training Effciency Low Data Requirement

Ours 3 3 3

[10] 7 7 7

Equation (5.5) is presented in Fig. 5.8. The detail of how to
construct the positive and negative samples and training scheme
is clarified in Section 6.4.

After training the encoder network, it is used to extract em-
beddings of layout snippets. Then k-means clustering algorithm
is applied to these embeddings to partition them into k clusters
Ci, i ∈ {1, . . . , k}. Each cluster Ci consists of ni equivalent
layout snippets that correspond to one layout pattern. The
silhouette method [76] which is a measurement of how similar
an object is to its own cluster compared to other clusters is
adopted to determine the optimal value of the number of clus-
ters k. By embedding clustering, equivalent layout snippets can
be grouped into the same cluster without artificial modulation.

An example of the DLSC is illustrated in Fig. 5.9, layout
snippets with a large number of pixels are transformed to low-
dimensional embeddings which reduces the clustering compu-
tation remarkably while improves the layout pattern matching
accuracy. Experimental results in section 6.4 empirically show
that encoder network trained using layout snippets of one layout
design can also generalize to new layout designs.
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5.3.3 Deep Average Causal Effect Estimation (DACE)

In this section, we introduce how we use average causal effect
estimation to identify true root cause(s) from a large amount of
potential root causes using diagnosis reports and the results of
layout pattern matching.

Defect SCM Training. Based on the clustering results, we
transform the embeddings of layout snippets to the cluster space
and then build the SCM between candidate layout patterns and
systematic defect. First, distance matrix D ∈ Rn×k is computed,
whose (j, i)-th entry [D]j,i denotes the distance of j-th embed-
ding to the center of cluster i. Then the distance matrix are
converted to a cluster membership matrix P ∈ Rn×k whose en-
tries indicate the probability of each embedding belonging to
each cluster as follows

[P]j,i =
exp (−Dj,i/τ)∑
i′ exp (−Dj,i′/τ)

, (5.6)

where τ is a temperature parameter, set as 0.1 in this work. The
layout snippets closer to the cluster center have higher proba-
bilities.

With all layout snippets represented in the form of member-
ship vectors in P, we model the SCM between candidate lay-
out patterns and systematic defect with a multilayer perceptron
(MLP) M to characterize their causal relationship. MLP as a
neural network can be regarded as directed graphs with directed
edges from a lower layer to the layer above. The final output is
based on the hierarchy of interactions between lower level nodes.
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Proposition 1. Given an l-layer feedforward neural network
N(l1, l2, ..., ln) where li is the set of neurons in layer i has a cor-
responding SCM M(X, [l1, l2, ..., ln], [f1, f2, ..., fn], P (E)), where
l1 is the input layer and ln is the output layer. Corresponding
to every li, fi refers to the set of causal functions for neurons in
layer i.

Proof. In a feedfoward neural network, each layer neurons can
be regarded as functions of neurons in its previous layer, i.e.
∀i ∈ l : ∀lij ∈ li : lij = fij(li−1). The input layer l1 can be
assumed to be functions of exogenous variables E such that
l1i = f1i(ei)∀l1i ∈ l1 and ei ∈ E. This structure in the random
variables, neurons in the network, can be equivalently expressed
by a SCM M(X, [l1, l2, ..., ln], [f1, f2, ..., fn], P (E)).

The causal structure can be reduced to SCM M
′
(X, [l1, ln], f

′
, P (E))

by marginalizing out hidden neurons, since only the neurons in
layer l1 and layer ln are observables.

Corollary 1. Every l-layer feedfoward neural network N(l1, l2, ..., ln)

with li denoting the set of neurons in layer i, has a correspond-
ing SCM M(X, [l1, l2, ..., ln], [f1, f2, ..., fn], P (E)) which can be
reduced to an SCM M

′
(X, [l1, ln], f

′
, P (E)).

Proof. Starting with each neuron lni
in the output layer ln, the

corresponding causal function fni
(ln−1) can be substituted as

fni
(fn−11(ln−2), fn−12(ln−2), fn−13(ln−2), ..., fn−1|ln−1|

(ln−2)). This
can be written as lni

= f
′

ni
(ln−2). fij refers to the causal function
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of neuron j in layer i and lij refers to neuron j in layer i. Proceed-
ing recursively layer by layer, we have modified functions such
that, ∀lni

∈ ln : lni
= f

′

ni
(l1). The causal mechanisms set f ′ of the

reduced SCM M
′ would be {f ′

ni
|lni
∈ ln} ∪ {l1i = fli(ei)|l1i ∈ l1

and ei ∈ E}

With Proposition 1 and Corollary 1, we can simplify the SCM
as M and concentrate on the input and output layers of M

in the following procedures. The input layer l1 of M has k

input neurons xi, i ∈ {1, . . . , k}, each of which corresponds to
one layout pattern. Its output layer ln has one output neuron
indicating the probability of systematic defect. The objective
function for training the M is

L(θ) = −
m∑
e=1

log
[∑

i

p(re|yi)p(yi|µi,θ)

]
, (5.7)

where m is the number of diagnosis reports, θ denotes the pa-
rameters of M, µi = 1

ni

∑n
j∈Ci

Pj,: is the mean representation
of cluster i with ni layout snippets, p(yi|µi,θ) is the output
of M corresponding to layout pattern xi, which indicates the
probability of layout pattern xi inducing the systematic defect,
p(re|yi) is the conditional probability of diagnosis report re if
layout pattern xi occurs. We train the neural network M by
minimizing the negative log-likelihood in Equation (5.7). The
detail on estimating p(re|yi) is elaborated in Section 6.4.

LPA by ACE estimation. After the objective in Equa-
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tion (5.7) converges, M is viewed as an SCM containing candi-
date layout patterns and systematic defect. We assume that the
true root cause has the most significant average causal effect on
the systematic defect. Therefore, average causal effects of input
neurons (corresponding to layout patterns) on the output neu-
ron (corresponding to the systematic defect) are estimated as
the metric to identify root causes. Causal neural attribution in
Equation (5.1) is adopted to compute the ACE of each layout
patterns on the systematic defect.

When training the M, the inputs are representations obtained
from the membership matrix P whose entries are continuous
values between [0, 1]. Since entries in P indicate the probability
of a layout snippet belonging to a certain cluster, they have
monotonic property, i.e., the closer (j, i)-th entry is to 1 (resp.
0), the higher (resp. lower) the probability of j-th layout snippet
belonging to cluster i is. As a result, when regarding xi as a
binary variable, the ACE of xi on y characterizes the causal
effect of the presence of layout pattern xi on the systematic
defect. This ACE can be estimated as

ACEy
do(xi)

= |E[y|do(xi = 0)]− E[y|do(xi = 1)]| . (5.8)

The interventional expectation when xi is intervened to 0 in
Equation (5.8) can be estimated using Equation (5.1) as

E[y|do(xi = 0)] ≈ f ′(µi0)+

1

2
tr(∇2f ′(µi0)E[(lin − µi0)(lin − µi0)

T |do(xi = 0)]),
(5.9)
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where f ′ refers to the mapping from the input of M to its output
y, the vector of interventional expectation µi0 is obtained by
intervening the value of i-th entry of µi to 0. Similar steps apply
for the computation of the interventional expectation when xi is
intervened to 1. After obtaining the ACE of all layout patterns
on systematic defect, we normalize them to form the root cause
distribution of all candidate layout patterns as

p(xi) =
ACEy

do(xi)∑
i′ ACEy

do(x′
i)

. (5.10)

5.3.4 Inference flow

An overview of this unified framework and modules of DLSC
and DACE are introduced in Section 5.3.2 and Section 5.3.3.
Here we give a detailed explanation on the inference flow of the
framework.

Pseudocode of the inference flow is presented in Algorithm 2,
lines 1-7 correspond to the inference steps of DLSC and lines
8-12 represent the procedure of DACE. Firstly, layout snippets
are transformed to embeddings in a latent space and clustered
within each layer with the dedicated optimal cluster number kd

respectively. Layer-wise clustering is performed due to the con-
sideration of process variance of different layers and efficiency.
Secondly, the membership matrix of layout snippets in each
layer are computed and different matrices from all layout layers
are concatenated along axis zero to form P. An SCM M is then
learned using the information in diagnosis reports. Lastly, the
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Algorithm 2 The Inference flow of the Framework.
Input: R = {re}me=1 - a set of diagnosis reports, S = {sj}nj=1 - a set of layout

snippets of all potential root causes;
Output: Root cause distribution

1: for d = 1→ L do
2: for j = 1→ |S| do
3: Encoder(sj)→ zj, ∀j ∈ d; ▷ Equation (5.5)
4: end for
5: Get optimal kd with highest silhouette score;
6: Compute distance matrix Dd using optimal kd;
7: end for
8: Construct D by concatenating Dd, ∀d ∈ {1, . . . , L};
9: Convert D to P; ▷ Equation (5.6)

10: Train defect SCM M(θ); ▷ Equation (5.7)
11: for i = 1→ k do
12: Calculate ACE of clusters; ▷ Equation (5.8)
13: end for
14: return Root cause distribution; ▷ Equation (5.10)
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Table 5.2 Notation on Diagnosis Report Features.

Feature Description

rule_id ID of the potential root cause
sej The score of potential root cause j in re

he
j DFM hits of potential root cause j in re

vj DFM violations of potential root cause j

⟨xj, yj⟩ Coordinate of potential root cause j

layer Layer name of current potential root cause
type Defect category of current potential root cause

average causal effect of each cluster on the systematic defect
is estimated according to Equation (5.8). The root causes are
identified based on the estimated ACE of all candidate layout
patterns.

5.4 Experimental results

We evaluate the effectiveness of our proposed framework by
testing its root cause identification accuracy on six noise-free
datasets from six different layout designs, forty noisy datasets
from five layout designs, and fifty mixture datasets from five
layout designs. The advantage of our framework over compared
methods in runtime is also validated by all related experiments.
The accuracy is defined as the percentage of datasets that the
real root cause is identified.
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Table 5.3 Layout Design Information.

Size(µm× µm) #Layers #Gates

Case 1 8881× 9328 5 9337
Case 2 429× 384 9 1560k
Case 3 8033× 7822 6 9278k
Case 4 1091× 1304 8 4176k
Case 5 2300× 2410 9 5598k
Case 6 1483× 1736 7 455k

5.4.1 Datasets

Encoder Training. We crop layout snippets according to the
point of interests (POI) from the layout design in Case 2. Their
size is determined by the pitch size in the corresponding layer.
Layout snippets in other designs are not used during the train-
ing. We find out that the trained encoder can be applied to
new designs directly without sacrificing clustering quality. Each
cropped layout snippet is rotated, mirrored and shifted to gen-
erate positive samples for itself. Samples corresponding to dif-
ferent original layout snippets are deemed negative samples in
contrastive learning.

LPA. We follow the same steps of defect injection performed
in [3] to generate diagnosis reports. It requires around one to
two hours to generate reports for one injection experiment. De-
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Table 5.4 Defect Injection Statistics.

#TotalInjections #Open #Bridge

Case 1 68 50 18
Case 2 107 72 35
Case 3 93 69 24
Case 4 44 28 16
Case 5 25 18 7
Case 6 39 28 11

Case 2 noise* 963 648 315
Case 3 noise 736 544 192
Case 4 noise 221 145 76
Case 5 noise 176 125 51
Case 6 noise 429 356 73

* We increase the number of injection experiments
which is greater than the statistics presented in [10].

fects of type Open and Bridge are considered in the injection
steps. The detailed information within diagnosis reports are
listed in TABLE 6.1. Three classes of datasets are considered
in our evaluation: (1) Noise-free dataset. Besides three differ-
ent layout designs presented in [10], three more layout designs
are used to construct noise-free datasets. Basic information of
six designs is shown in TABLE 6.2. Case 2 to case 6 are five
real silicon datasets that result from real in-production IC. Di-
agnosis reports in one noise-free dataset share one single true
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root cause of systematic defect. The data of each layout de-
sign consists of #TotalInjections noise-free datasets and both
open and bridge types are considered in our experiments (TA-
BLE 6.3). (2) Noisy dataset. A certain percentage of diagnosis
reports in the dataset share a single true root cause and the
remaining diagnosis reports have root causes different from the
true one (i.e., noise). Different percentages of noise are consid-
ered during the process of injections and the sources of noise
are randomly sampled from the entire layout designs among all
metal layers. (3) Mixture dataset. Diagnosis reports in this
dataset are divided into four portions. Each portion share one
root cause independently. Three portions of root causes are true
and the rest portion is different from the true one. E.g., pro-
portion ’50-20-20-10’ in TABLE 6.6 means 50%, 20%, and 20%
of diagnosis reports have three true root causes correspondingly
and 10% of diagnosis reports have random noise.

Besides the diagnosis reports, layout snippets of potential
root causes in these reports are another required inputs of our
framework. Note that in the noisy dataset, both the number of
injection and types of defect are the same across different noise
levels. We merged them as ‘Case # noise’ in TABLE 6.3.

5.4.2 Implementation Details

The proposed framework is implemented in Python with Py-
Torch library [65]. The encoder network is trained using four
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Table 5.5 Accuracy(%) on Noise-free Datasets.

Dataset Baseline Commercial Tool LPA-DCE [10] eLPA-DCE

Case 1 25.00 98.53 100.00 100.00
Case 2 55.88 92.52 98.04 98.04
Case 3 58.06 98.92 98.92 100.00
Case 4 43.71 72.09 97.67 100.00
Case 5 39.25 82.05 91.3 100.00
Case 6 56.29 84.62 94.87 89.74

Average 46.37 88.12 96.8 97.96

Nvidia Tesla V100 GPUs. SGD optimizer is adopted with initial
learning rate 1e−1, weight decay 5e−4, and momentum 0.9. The
batch size, number of epochs, margin marg in Equation (5.3)
are set to 64, 16, and 1.5 in the experiments, respectively. Reg-
ularization weights α and β in Equation (5.5) are set as 1 in
all experiments. Following [14], we add a single linear layer be-
fore the output of encoder during training to avoid the feature
collapsion problem.

When conducting LPA, the defect SCM M is trained using
SGD optimizer with initial learning rate 1e−2, weight decay
1e−3, and momentum 0.9. The maximum number of epoch of
model training is set as 100 and the training will be early stopped
if there is no improvement of the training loss in consecutive 5

epochs. The conditional probability of diagnosis report re if
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layout pattern xi is true is calculated as

p(re|yi) =
he
j∗s

e
j∗

vj∗
⊮{s|s≥90}(sej∗), (5.11)

where j∗ = arg maxj∈Ci

∑
e s

e
j⊮{s|s≥90}(sej), ⊮{s|s≥90}(sej) is an in-

dicator function which evaluates to 1 if sej ≥ 90 and 0 otherwise.

5.4.3 Results and Analysis

We compare the proposed framework eLPA-DCE with LPA-DCE
[10] and an industry-leading commercial tool. One Nvidia Tesla
V100 GPU is used for inference. The DFM hits are the num-
ber of a potential root cause appearing in the diagnosis report,
more DFM hits indicate the layout snippet is more likely to be
the root cause to a certain extent. To justify the necessity of
our causality-based approach, a diagnosis statistical approach is
presented as the baseline. The baseline approach finds the root
cause in the following steps: (1) Given a volume of diagnosis
reports, collect the DFM hits and DFM violations of potential
root causes. (2) Calculate the ratio between DFM hits and DFM
violations of layout snippets and get mean ratio within each clus-
ter. (3) The cluster with the top rank of ratio is regarded as the
root cause predicted by the diagnosis reports.

On noise-free datasets. As shown in TABLE 6.4, our
method outperforms the commercial tool 9.84% on average un-
der the setting of noise-free defect injection. The average ac-
curacy of the baseline is 46.37% which is much lower than our
method and the commerical tool. This indicates that by using



CHAPTER 5. LAYOUT PATTERN ANALYSIS 110

simple statistics according to the diagnosis report it is hard to
locate the root cause accurately. With the new clustering loss,
we got 1.16% improvement compared to LPA-DCE [10]. This
means we get a better quality on membership matrix with the
proposed regularization.

On noisy datasets. When given more challenging tasks
of root cause identification, we observe that the performance
of baseline becomes worse when the noise level is higher. Our
proposed method can estimate the root cause with better perfor-
mance under different noise levels, see TABLE 6.5. The average
accuracy of the framework is 40.01% higher than the commercial
tool. In case 5, the commercial tool can not identify the root
cause under the noise perturbation. Our method can identify
the root cause with robust performance across different noise
levels. For other cases, especially when the ratio of noise is
greater than 70%, it is difficult for the commercial tool to iden-
tify the root cause precisely. While our framework locates the
root cause with higher accuracy than the commercial tool. E.g.,
the performance of case 3 and case 4 of the commercial tool at
80% noise level is 26.88% and 14.29% and ours are 100% and
76%. The proposed method is robust to the injection noise and
it also outperforms LPA-DCE [10] in most cases.

On mixture datasets. We conduct the mixture root causes
identification experiments to test whether our framework can
be extended to multiple root causes scenario. The experimen-
tal results in TABLE 6.6 show that the proposed framework
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has competitive results compared to the commercial tool espe-
cially in tasks of identifying three true root causes from mixture
dataset, while the commercial tool may provide misleading re-
sults which can not be used for further study. Especially when
the percentage of root causes is low, e.g., proportion ‘20-20-20-
40’, the causal-based methods are much more reliable, since it is
more frequent we have a low percentage of root causes. Similar
to the results of the commercial tool presented in TABLE 6.5,
the root causes of case 5 can not be identified. We infer that
the pitch sizes of patterns used in the commercial tool are differ-
ent and this might be the reason why the identification of root
causes of this case failed. Our framework achieves 82.91% high
accuracy and got 47.17% better on average than the commercial
tool. eLPA-DCE also got better results on four out of five designs
than the LPA-DCE [10].

Top-3 accuracy on mixture datasets. We analyze the
performance of identifying 1, 2, and 3 true root causes from the
mixture datasets. Since there are 3 true root causes in each
dataset, a true root cause belonging to one of top-3 layout pat-
tern in the root cause distribution is a successful identification.

The accuracies of identifying 1, 2, and 3 true root causes are
shown in Tables 5.8 to 5.12, our method can identify at least 1
root cause in all cases while the commercial tool fails to achieve
100% accuracy. Also, the average accuracy of identifying 2 root
causes of our method is greater than 95%, which is around 30%
better than the commercial tool.



Comparing the performance of eLPA-DCE and LPA-DCE [10],
the root cause distributions generated with the encoder trained
by clustering loss are more concentrated than the ones trained
with conventional contrastive loss. Dense and recognizable clus-
ters are beneficial to identify the root causes especially the num-
ber of clusters is large.

Inference speed. The inference time of our framework and
the commercial tool on single root cause datasets are shown in
Fig. 5.11. The speed of the proposed deep learning framework
method surpasses the conventional commercial tool by a large
margin. We got around ×10.4 and ×2.3 speedup on noise-free
datasets and noisy datasets. The robustness of accuracy and
inference speed indicate our method is valuable for industry.

Clustering quality. We compare the clustering quality of
DLSC with directly applying k-means algorithm and DBSCAN
algorithm on raw layout snippets using the adjusted rand in-
dex (ARI ∈ [−1, 1], [80]). ARI computes a similarity measure
between two partitions by considering all pairs of samples and
counting pairs that are assigned in the same or different clusters
in the predicted and true clusterings. High ARI indicates good
match between the clustering results and the ground truth. In
layout pattern analysis, high ARI scores indicate high resolu-
tion. The experiments are conducted on case 2 to case 6, 256
layout snippets are sampled layer-wise of each case for evalua-
tion. Note that these cases are not available during the training
of the encoder network. The ARIs of clustering using raw lay-
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out snippets, embeddings in LPA-DCE [10] and embeddings in
this work presented in Fig. 5.12 is the mean of ten independent
evaluations. The ARI scores of embeddings with the clustering
loss outperform the conventional contrastive learning method
presented in [10] in all metal layers. Also, both the embedding-
based clustering get higher ARI scores than the raw-based clus-
tering. This indicates the contrastive learning can improve the
quality of layout pattern matching. The clustering loss can make
it performs better since it avoids the drawback of the primitive
method.

Advantage of clustering loss on encoder training. The
number of layout snippets used to train encoder with contrastive
learning proposed in LPA-DCE and the clustering loss presented
in this work is shown in Fig. 5.13. Only 4 × 105 samples are
required to train the encoder in this work, which is 10× lower
than the number of samples used in LPA-DCE [10]. The budget
for training data and computation resources is much less. Regu-
larization with clustering loss lower the requirements of training
set scales and speed up the procedure of model training, which
reduces budgets of retraining on new designs with different tech-
nological process.

2 End of chapter.
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Figure 5.5 Encoder network structure for contrastive learning. Note that all
Convolution, Separable Convolution and Linear layers are followed by batch
normalization.
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Figure 5.6 Illustration of encoder network training using contrastive learning.
Parameters of encoders are shared.

Figure 5.7 The drawback of contrastive loss. Pushing away two samples from
different clusters may lead to negative effects on resolution.
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Figure 5.8 Contrastive Loss in [10] vs. Clustering Loss. The bold stars are
the arithmetic mean centers of clusters.
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Figure 5.9 An example of Deep Layout Snippet Clustering.
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Figure 5.10 Left: The defect SCM for Layout Pattern Analysis without in-
tervention. Right: Apply intervention on cluster i.
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Figure 5.11 Inference speed comparison between our framework and the com-
mercial tool.
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Figure 5.12 ARI of conducting layout pattern matching using raw layout
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emb) [10] and embeddings presented in this work(Ours-emb).
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Figure 5.13 Training sample requirements for training encoder with con-
trastive learning proposed in LPA-DCE vs. the clustering loss used in this
work.



Chapter 6

Root Cause Identification via
Reinforcement Learning

6.1 Introduction

With the feature size shink down, specific layout patterns that
are hard to fabricate tend to cause more systematic defects,
such as open or bridge defects in neighboring wires. These lay-
out patterns are an important source of yield loss. The yield of
semiconductor devices refers to the percentage of non-defective
dies of all dies manufactured. To ensure the profitability and
reliability of products, a high and stable yield is expected to be
achieved before volume production. Since layout configurations
of new designs may differ from existing ones, identifying layout
patterns that lead to yield loss through test chips, SRAMs, etc.,
are becoming less effective. Traditional yield learning methods
such as Physical failure analysis (PFA), test structure, and in-
line inspection have been widely used to identify the root causes.

126
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However, these methods are usually less effective due to the de-
sign iteration process and require both experience and a proper
understanding of the fabrication process. A reliable PFA re-
sult documentation methodology is required to detect the design
commonality across a large number of samples over a long pe-
riod. Detecting defects [6,12,32] on entire layouts may adversely
affect chip area and performance due to the overcorrection.

Many researchers consider the property of layout features.
Clustering and pattern matching methods are adopted to help to
improve systematic defect identification. Such as centroid-based
and connectivity-based clustering methods presented in [85,86],
layout snippets sharing the equivalent geometric structure are
grouped. These methods have limitations on improving resolu-
tion, because failure analysis experts still need to judge whether
the layout snippets in clusters are critical or not in simulation
experiments. And the layout snippets that are shift-equivalent
are regarded as different candidates, which further increases the
difficulty.

A separate branch of works identifies the root causes of sys-
tematic defects using statistical methods. Such methods iden-
tify critical physical defects by analyzing volume diagnosis re-
ports. [18, 87] tried to improve the root cause identification ac-
curacy by evaluating the impact of diagnosis features. Monte-
Carlo simulation is presented in [87] to explain the impact and
feasibility of factors in diagnosis reports. To speed up the pro-
cessing time on identifying the systematic defects, [18] used data
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Root Cause Identification

Classification 
Methods

Causal Graph 
based 

Methods

Overfitting 

Avoid Overfitting
Causality

Correlation

Single Root Cause

Multiple Root Causes

Figure 6.1 A summary on the advantage of Causal Graph based methods.

mining methods to reduce the PFA cost. The Bayesian method
is used in [3] identifying the root causes of systematic defects
based on the conditional distribution, which is a pioneering work
in the field of determining root causes. By maximizing the
likelihood of observed diagnosis report with the Expectation-
Maximization (EM) learning algorithm, the optimal root cause
distribution can be inferred. While these works focus on the
diagnosis reports and overlook the layout patterns which limit
the applicability in real scenarios.

Recently, several works take advantage of deep learning tech-
nology to further improve the identification quality. A self-
adaptive deep learning framework is introduced in [42] to an-
alyze the root cause. Compared to the conventional EM algo-
rithm, the proposed classification method can transfer to new
designs efficiently. The layout features are not considered in
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Previous Solution

Ours Solution
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Causal Graph Search

Optimal SCM
Reinforcement  

Learning 
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Feature 
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Root Cause 
Distribution

Layout 
Snippets

Diags Report

Figure 6.2 The proposed reinforcement learning based framework find the
optimal causal relations which outperforms the empirical Structural Causal
Model presented in [10].

this work. Chen et al. [10] presented a layout pattern analy-
sis framework to predict the root causes via causal inference.
Both layout patterns and diagnosis reports are utilized to infer
the root cause distribution and provide high-resolution clusters
for analysis, which provide a unified solution to this problem.
Causal graphs are used in their work to construct causal re-
lations. With the causal property, the overfitting problem is
avoided, which is common in classification-based methods, such
as [42]. Moreover, conventional classification methods are lim-
ited to identifying the only single root cause, whereas the pro-
posed structure causal model can identify multiple root causes.
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The reasons why causal graph-based methods outperform the
classification methods are highlighted in Fig. 6.1.

One major drawback in [10] is that all the statistical features
in diagnosis reports are included in the causal graph where some
of these observed variables may bring uncertainty to the model.
Especially when some physical features are biased or not pre-
cise in diagnosis reports, the empirical causal graph may not
ensure the identification accuracy, since the confounders lead
the incorrect causal relations. We observed that some features
oriented to the high probability of root causes can not imply
that they are the true causes. To tackle this problem, we pro-
pose a reinforcement learning-based framework to improve the
root cause identification quality. Reinforcement learning has a
principled way to choose problem-specific combinations of score
functions and search strategies, which is an advantage to search
for the optimal causal graph. With the optimal causal graph, we
can locate the root cause more precisely. The advantage of our
work compared to [10] is shown in Fig. 6.2. We use an encoder-
decoder network as the actor-network. The layout features are
encoded as latent codes to represent the states and the outputs
of the decoder as the representation of the causal graphs. The
action space is carefully designed to improve the robustness of
searching, The average causal effect-based reward function is
designed to guide the reinforcement learning system to find the
optimal causal graph cooperating with the critic network. Then
the critic network updates the state of the actor-network. The
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contributions of this work are summarized as follows:

• To make sure the agent can find the causal graph efficiently,
a diagnosis-aware action space design is proposed. Instead
of traversing the whole action space of suspect patterns,
it is much more effective to learn with the diagnosis-aware
action space.

• An encoder-decoder network is designed to speed up the
learning procedure. States of the actor-network are repre-
sented in latent space and are utilized to update the critic
network.

• A novel reinforcement learning framework for root cause
identification is proposed. With the guidance of the actor-
critic algorithm, redundant suspect patterns presented in
diagnosis reports are wiped out. Detect quality of root
causes outperforms the state-of-the-artwork and industry
solutions.

The remainder of this paper is organized as follows. Sec-
tion 6.2 introduces terminologies and problem formulation re-
lated to this work. Section 6.3 describes the algorithmic details
and reinforcement learning agent of our framework. Section 6.4
lists the experimental results, followed by the discussion and
conclusion in Section 6.5.
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6.2 Preliminaries

In this section, preliminary knowledge and related works on rein-
forcement learning and structural causal learning is abbreviated
reviewed.

6.2.1 Reinforcement Learning

The idea of reinforcement learning (RL) is to have an agent in-
teract with the environment in order to learn. The optimal pol-
icy for sequential decision-making problems is learned through
trial and error in different fields, such as the natural, social, and
engineering sciences. With the help of big data, powerful com-
putation, i.e. Graphics Processing Unit (GPU), and advanced
software and hardware co-design, The reinforcement learning
field has been experiencing a rebirth in recent years.

A reinforcement learning agent interacts with an environ-
ment over time. RL problems can be formulated as Markov
Decision Processes (MDPs), consisting of following elements: ac-
tions, states, state transition, and reward:

• Actions A: a finite set of actions taken by the agent.

• States S: a finite set of representations of possible states of
the environment.

• State Transition P : given a state and an action, the prob-
ability distribution over next states.
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• Reward R: the reward signal after state transition with an
action.

At time step t, the agent receives a state st in a state space S. An
action at is selected from an action space A with a policy π(at|st).
Normally, π(at|st) is the agent’s behavior, i.e., a mapping from
state st to actions at according to the reward function R(s, a).
The agent receives a scalar reward rt, and transitions to the next
state st+1 with the state transition probability P (st+1|st, at). In
an episodic scenario, the agent will continue until reach a ter-
minal state then restarts.

Deep reinforcement learning [2, 27, 63] gets attention in re-
cent years owing to the blooming of deep learning. The com-
ponents of reinforcement learning such as value function, v̂(s; θ)
or q̂(s, a; θ), policy π(a|s; θ), and state transition function and
reward function. Here, the parameters θ are the weights of the
deep learning model. The difference between deep RL and con-
ventional RL is that stochastic gradient descent is used as a
function approximator to update weight parameters in deep RL.
There has been many works on applying reinforcement learning
methods in EDA problems such as [38, 51, 56, 61] in floorplan-
ning, placement and routing.

6.2.2 Structural Causal Learning

Causality is a generic relationship between an effect and the
cause that gives rise to it. The definition of causality is hard to



CHAPTER 6. ROOT CAUSE IDENTIFICATION VIA REINFORCEMENT LEARNING134

describe since the causes and effects we know about are intuitive
in general. Different from the statistical associations, identifying
the causation is the key step towards human-level intelligence
and can serve as the foundation of artificial intelligence.

Structural Causal Model (SCM) is a conceptual model that
describes the causal mechanism of a system. An SCM normally
consists of the causal graph and the structural equations. A
causal graph forms a special class of Bayesian network with
edges representing the causal effect.

Definition 5 (Structural Causal Model [67]). A structural causal
model M is a 4-tuple (Ex,En, F, P (Ex)), where

• Ex is a set of exogenous variables, which is unobserved. Its
measure is determined outside the model;

• En is a set of endogenous variables, which is observable.
Its measure is determined by the model;

• F represents a collection of functions F = {fi} such that
each endogenous variable xi ∈ X is determined by a func-
tion fi ∈ F , where fi is a mapping from the respective
domain of ϵi ∪ Pai to xi, with ϵi ⊆ E, Pai ⊆ X\{Xi} is
the set of direct parents of xi;

• The uncertainty is encoded through a probability distribution
over the exogenous variables, P (Ex).

SCMs provide a compact way of characterizing average causal
effect ACEy

do(xi)
, which is defined as E[y|do(xi = 1)]−E[y|do(xi =
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X Y

T

(a) SCM without
intervention.

X Y

T

(b) SCM with
intervention

0)] for binary xi. E[y|do(xi = α)], known as interventional ex-
pectation [67], denotes the expectation of y when intervening the
value of xi to be α. For an SCM, such intervened model can be
represented by replacing the structural equation xi = fi(Pai, ϵi)

by a constant xi = α. They enable the codification of the exist-
ing knowledge in diagrammatic and algebraic forms and conse-
quently leverage data to estimate the answers to interventional
and counterfactual questions.

6.2.3 Problem Overview

Given a dataset contains batches of diagnosis reports R = {rn}mn=1

and layout snippets of potential root causes in these reports. We
want to identify the causal relationships between independent
defects in reports and find the true root cause(s) causing sys-
tematic defects in reports R. The geometric structure of layout
snippets will be used to find the optimal structure causal model.

This problem can be formulated as to minimize a score func-
tion Score(g) to each directed acyclic graphs (DAGs) g accord-
ing to the diagnosis reports and layout snippets. Then search
over the space of all DAGs for the best scoring:
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min
g

Score(g) (6.1a)

s.t. g ∈ DAGs. (6.1b)

The DAG with the best scoring can represent the causal relation
among the suspects and identify the root causes correctly.

6.3 Algorithm and Framework

The objective of this work is to acquire an effective method to
find the causal graph among suspect patterns, where the ob-
tained causal graph can represent the causal relationship be-
tween potential root causes and systematic defects. To model
this problem using reinforcement learning (RL), there are the
following challenges we need to solve:

• Discovering the causal relation among the suspects with
RL requires a proper measurement of graph quality. An
effective score function is required to evaluate the quality
of the causal graph.

• Generally, there are hundreds of suspects present in diag-
nosis reports. The original action space to find the optimal
DAG which can represent the causation between suspects
and root causes is extremely large in the combinatorial op-
timization problem.

• The number of the layout snippets is large, an effective
representation is required as the prior knowledge to update
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the critic-network.

In this section, we will introduce how to formulate the score func-
tion with the average causal effect, and then we discuss how to
construct an effective action space to find the causal graph, and
how to design the reward function. Finally, an overview of the
proposed reinforcement learning framework will be presented.

6.3.1 Score Function with the guidance of Average Causal
Effect

Mining the casual structure from observed diagnosis reports and
layout features via score-based methods such as the Bayesian In-
formation Criterion [94] and the Bayesian Gaussian equivalent
score [31] is time-consuming. A feasible score function S(g) is
required to judge the quality of DAGs which can find the cau-
sation between suspects and root causes efficiently. We use the
average causal effect as an estimator on root cause distribution
under the assumption that the true root cause has the most
significant average causal effect on the systematic defect. The
average causal effect on each independent defect xi is calculated
as:

τ ydo(xi)
= |E[y|do(xi = 0)]− E[y|do(xi = 1)]| . (6.2)

The notation of do(·) is the do calculus which simulates physi-
cal interventions by deleting or modifying certain functions from
the model, replacing them with a constant value, while keeping
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the rest of the model unchanged. Here do(xi) represents the
intervention on defect xi. The average difference between po-
tential outcomes are calculated under the binary treatments.
do(xi = 0) indicates the do operation on xi by modifying the
variable to zero, which represents the situation that the defect
xi does not appear in the design. do(xi = 1) means the do oper-
ation on xi by modifying the variable to one, which represents
the situation that the defect xi exists in the design. The root
cause distribution of suspect layout patterns is formed by nor-
malizing the ACE scores of all layout patterns on the systematic
defect, which is expressed as

p(xi) =
τ ydo(xi)∑
i′ τ

y
do(x′

i)

, (6.3)

By sorting the rank of root cause probability, a long-tailed dis-
tribution will be generated ideally. The value of root causes
should be greater than the suspects. The score function with
the guidance of average causal effect is defined as

S(g) = −
∑

i∈root causes Irank(i)× p(xi)

N
, (6.4)

where N is the number of root causes and Irank(i) is an indicator
function:

Irank(i) =

1 if the rank of root cause i is correct

0 otherwise.
(6.5)

If the rank of root cause i is consistent with the ground truth, the
value is one, otherwise, it is zero. The causal graph identifying
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the root cause correctly has lower score values, and the causal
graph that can not identify any of the root causes will get zero.

6.3.2 Action Space Design

The original action space of a d-node graph can be presented
as a adjacency matrix W ∈ Rd×d. Let B(W ) ∈ {0, 1}d×d be
the binary matrix such that [B(W )]ij = 1 ⇔ wij ̸= 0 and zero
otherwise. B(W ) defines the adjacency matrix of a directed
graph G(W ). The objective to learn causal graph among action
space is expressed as

min
W∈Rd×d

S(B(W )) (6.6a)

s.t. G(B(W )) ∈ DAGs, (6.6b)

where G(B(W )) is the d-node graph induced by the binary ad-
jacency matrix and S is a score function. Using a deep neural
network as the actor-network to generate such cases is difficult
since a directed graph g with binary adjacency matrix W is
acyclic if and only if the trace of eW is equal to the number
of the vertex. Adding this regularization as a term in reward
requires hyperparameter tuning which is time-consuming. To
simplify the learning schedule, an effective action space design
considering the structure of diagnosis reports is proposed.

The hierarchical structure of diagnosis reports is show in
Fig. 6.3. A diagnosis report contains three layers includes logic
faults layer, defects layer, and root causes layer. Logic faults
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Logic Faults
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Type Scores Layers

Cause 
Type
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Layers

Open

Bridge

95~100
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M1

M2

M3

M4

M5
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M0, M2, M4, 
M5

BB
90~100

BB
Open

Defects and root causes

Figure 6.3 Top: Hierarchical structure of diagnosis reports. Bottom: Vi-
sualized illustration on action space design. The example report represents
physical and logical features of a design including six layers, suspect scores
ranging from 80 to 100, and two defect types.



CHAPTER 6. ROOT CAUSE IDENTIFICATION VIA REINFORCEMENT LEARNING141

are specific logic failures at a specific logic location in a netlist.
Physical features such as cause types (e.g. open and bridge)
and scores are included in the defect layer. Different defects
are related to variance physical effects and at different physical
locations. Cause types, scores, and layers are the most critical
factors when judging the possibility of root causes in practice.
Inspired by the structure of diagnosis reports and the objective
of causal graph searching, the action space A is designed which
includes three subsets:

Acause := {Open,Bridge}, (6.7a)

Ascore := {[80 + i ∗ 5, 85 + i ∗ 5]|i ∈ [0, 3], i ∈ Z}, (6.7b)

Alayer := {Mi|i ∈ [0, n), i ∈ Z}, (6.7c)

where n is the number of metal layers of the design. Instead of
predicting the binary adjacency matrix B(W ), vectors vs, vc,
and vl are constructed to represent Ascore, Acause, and Alayer in
our implementation. As shown in the bottom part of Fig. 6.3,
the grey blocks indicate the predicted vectors vs, vc, and vl.
Causal graphs are generated after the vectors are binarized with
B. The objective to find the causal graph among diagnosis based
action space is expressed as

min
vs∈R4×1,vc∈R2×1,vl∈Rn×1

S(B(vs)), S(B(vc)), S(B(vl)) (6.8a)

s.t. G(B(vs)) ∈ DAGs, (6.8b)

G(B(vc)) ∈ DAGs, (6.8c)

G(B(vl)) ∈ DAGs. (6.8d)
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The agent learns among three action spaces and selects the op-
timal one as the target causal graph at inference. We use the
softmax function with a constant threshold of 0.4 as B in this
work.

6.3.3 Reward

The reward incorporates the score function in Equation (6.4)
and the causal graph related constraints:

R(g, r) = −(S(g) + λI(r /∈ {Ascore, Acause, Alayer})), (6.9)

where r is the set of root causes and λ is the penalty weight.
The indicator function I(r /∈ {Ascore, Acause, Alayer})) will be one
if the root causes are not included in predicted vectors vs, vc,
and vl, e.g. one root cause is on M1, while the corresponding
value is zero in vl. In this case, we can not identify this root
cause by calculating the average causal effect. The probability
of this root cause is zero. So the root causes must be included
in the predicted causal graph or the reward should be penalized.
The training objective of RL agent is expressed as:

Q(θ|x) = EA∼π(·|s)[−(S(g) + λI(r /∈ {Ascore, Acause, Alayer}))],
(6.10)

where x are training samples drawing from the dataset. θ and
π(·|s) denote the model parameters and the policy.
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Figure 6.4 Reinforcement Learning Agent for Root Cause Identification. We
use actor-critic algorithm as the guidance of exploitation and exploration
scheme for causal graph learning.

6.3.4 RCI Reinforcement Learning Framework

By integrating the above reinforcement learning modules, the
RCI reinforcement learning framework is constructed. A full
view of the framework is shown in Fig. 6.4, the RL agent deter-
mines where to search automatically with the stochastic policy.

Actor-Network and Critic-Network. To facilitate the
learning efficiency, an encoder-decoder based neural network is
proposed as the actor-network and a three-layer Multilayer Per-
ceptron (MLP) with a scalar output is used as the critic-network.
The reasons why to use an encoder-decoder network to represent
the actor-network are motivated by the following considerations:

• A simple and effective state representation is required for
updating. The encoder is a feasible neural network struc-
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Table 6.1 Notation on Diagnosis Report Features.

Feature Description

snj The score of potential root cause j in rn

hn
j DFM hits of potential root cause j in rn

vj DFM violations of potential root cause j

layer Layer name of current potential root cause
type Defect category of current potential root cause

ture to transfer the origin features as encrypted codes.

• Sharing the embedding state codes with the critic-network
is effective for training the actor and critic in synchronous.

• Different from the reinforcement learning frameworks solv-
ing floor planning or placement, generating the action space
according to the corresponding state in this task is hard to
model in an explicit way.

The diagnosis reports statistic features are encoded as the latent
codes to represent the states of actor and then are decoded to
generate vs, vc, and vl. The structure of the actor-network
are presented in Fig. 6.5. The diagnosis report features fdiag

are concatenated as ns × ndiag as input features, where ns is
the number of suspects and ndiag is the size of diagnosis report
features. Firstly, the encoder transfer the origin features to ns×4
as latent codes z with five linear layers. The latent codes are
used to update the critic-network by minimizing the difference
between true rewards and predictions with mean-square loss.
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CHAPTER 6. ROOT CAUSE IDENTIFICATION VIA REINFORCEMENT LEARNING146

Then, features are merged by summation operation as ns × 1.
Finally, features are decoded with three linear layers. vs, vc,
and vl are generated through three branches. Diagnosis report
features used in this work are listed in TABLE 6.1. The input
features are concatenated as:[

hn
j | snj | vj | l | t

]
,

where l is the index of layer and t is the label of defect categories.
Concatenated features are normalized to improve the numerical
stability during training.

Training and Inference. Algorithm 3 describes the train-
ing and inference procedures of RCI RL agent. We follow [10]
using Deep Layout Snippet Clustering (DLSC) as the feature ex-
tractor to generate clusters for a fair comparison. The number
of generated clusters k are equal in experimental settings of this
work and [10]. Reward functions of Ascore, Acause, and Alayer are
used to update the actor during training. During training, the
parameters of the actor-network and critic-network are updated
through the stochastic optimization method Adam by minimiz-
ing the loss functions. At inference stage, the causal graphs
gs, gc, gl are generated according the predictions of the actor-
network. In line 19, the layout snippets which are not included
in gs, gc, gl are removed since they are not the causal reasons to
the root causes. Non-relevant layout snippets are filtered out
by the judgment of the reinforcement learning agent. In line 25,
the optimal root cause distribution is returned according to the
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voting results of three distributions.

6.4 Experimental results

The proposed framework is implemented in Python with Py-
torch library [65]. We train the framework on one Nvidia Tesla
V100 GPU. The implementation of the feature extractor is ob-
tained from the authors of [10]. The effectiveness of our pro-
posed framework is evaluated on six noise-free datasets from six
different layout designs, forty noisy datasets from five layout de-
signs, and fifty mixture datasets from five layout designs. Two
Adam optimizers [47] are used to train the actor-network and
critic-network respectively. At the initial stage of the training,
the probability that the root causes are not in the action space
is high. We use a cross-entropy loss as the guidance at the first
several steps to make sure the robustness of training. We regard
the percentage of datasets that the root cause is identified as the
accuracy.

Datasets. In this work, the datasets including the diagnosis
reports and layout designs presented in [10] are used. The diag-
nosis reports are generated following the same steps performed
in [3]. Defects of type Open and Bridge are considered in the
injection steps. In the evaluation, three classes of datasets are
considered:

• Noise-free dataset. Case 2 to case 6 are five real silicon
datasets that result from real in-production designs. Diag-
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Algorithm 3 Training and Inference flow of RCI RL agent.
Input: R = {rn}mn=1 - a set of diagnosis reports, S = {sj}nj=1 - a set of

layout snippets of all potential root causes;
1: function RL_Agent_Train(R,S);
2: x← extract features from R;
3: vs,vc,vl ← Actor(x);
4: gs, gc, gl ← generate causal graphs with vs,vc,vl;
5: Cluster features c← DLSC(S);
6: Train defect SCM(c);
7: for i = 1→ k do
8: τ is, τ

i
c , τ

i
l ← calculate ACE respect to gs, gc, gl; ▷ Equation (6.2)

9: end for
10: ps, pc, pl ← get root cause distributions respect to gs, gc, gl; ▷

Equation (6.3)
11: R(gs, r), R(gc, r), R(gl, r)← get rewards of causal graphs; ▷

Equation (6.9)
12: Update Actor and Critic using actor-critic algorithm; ▷

Equation (6.10)
13: end function
14: function RL_Agent_Inference(R,S);
15: x← extract features from R;
16: vs, vc, vl ← Actor(x);
17: gs, gc, gl ← generate causal graphs with vs,vc,vl;
18: S ′ ← select layout snippets according to gs, gc, gl;
19: Cluster features c′ ← DLSC(S ′);
20: Train defect SCM(c′);
21: for i = 1→ k do
22: τ is, τ

i
c , τ

i
l ← calculate ACE respect to gs, gc, gl; ▷ Equation (6.2)

23: end for
24: p∗ ← get root cause distribution respect to g∗; ▷ Equation (6.3)
25: return Root cause distribution p∗;
26: end function
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nosis reports in one noise-free dataset share one single true
root cause of the systematic defect. Both open and bridge
types are considered in our experiments (TABLE 6.3). The
data of each layout design consists of #Injections noise-
free datasets.

• Noisy dataset. In the noisy dataset, a certain percentage
of diagnosis reports share a single true root cause and the
remaining diagnosis reports have root causes different from
the true one (i.e., noise). The sources of noise are sam-
pled from the entire layout designs among all metal layers.
Furthermore, we consider the different percentages of noise
during the process of injections which are much close to the
real cases.

• Mixture dataset. Diagnosis reports in this dataset are
divided into four portions. Each portion share one root
cause independently. Three portions of root causes are true
and the rest portion is different from the true one. For
example, the proportion ’30-30-20-20’ in TABLE 6.6 means
30%, 30%, and 20% of diagnosis reports have three true
root causes correspondingly and 20% of diagnosis reports
have random noise.

Noted that the diagnosis reports of Case 2 are used to train the
RCI agent, the diagnosis reports generated by each injection are
regarded as one sample.
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Table 6.2 Layout Design Information.

Size(µm× µm) #Layers

Case 1 8881× 9328 5
Case 2 429× 384 9
Case 3 8033× 7822 6
Case 4 1091× 1304 8
Case 5 2300× 2410 9
Case 6 1483× 1736 7

Table 6.3 Defect Injection Benchmark Statistics.

#Injections #Open #Bridge

Case 1 68 50 18
Case 2 107 72 35
Case 3 93 69 24
Case 4 44 28 16
Case 5 25 18 7
Case 6 39 28 11

Case 2 noise 963 648 315
Case 3 noise 736 544 192
Case 4 noise 221 145 76
Case 5 noise 176 125 51
Case 6 noise 429 356 73
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Table 6.4 Accuracy(%) on Noise-free Datasets.

Dataset Commercial Tool LPA-DCE [10] Ours

Case 1 98.53 100.00 100
Case 2 92.52 98.04 100
Case 3 98.92 98.92 100
Case 4 72.09 97.67 97.67
Case 5 82.05 91.3 95.65
Case 6 84.62 94.87 97.44

Average 88.12 96.8 98.46
Ratio 0.895 0.983 1.0

6.4.1 Comparison with Previous Works.

Experimental results on the noise-free dataset, noisy dataset,
and mixture dataset are presented in this section. The Com-
mercial tool and previous work are regarded as the baseline for
comparison.

Performance on noise-free dataset. The performance of
the RCI RL framework on noise-free datasets is presented in
TABLE 6.4. We got 100% accuracy on case 1 to case 3. 4.35%
and 2.57% gain on case 5 and case 6 compared to the previous
work. The overall performance on six cases is 10.34% higher
than the commercial tool and 1.66% better than the result pre-
sented in [10].

Performance on noisy dataset. The setting of the noisy
dataset is much more challenging than the situation of the noise-
free dataset since non-relevant diagnosis reports and layout snip-
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pets are mixed into the inputs. Even so, the identification per-
formance of our framework is better than the industry tool and
state-of-the-art solution. The proposed framework outperforms
the previous work [10] 1.68%, 1.21%, 2.4%, 0.43%, and 0.32%
on case 2 to case 6 correspondingly. The industry tool can not
identify the root cause in case 5 due to the conflict between the
pitch size of layout snippets and tool settings.

Performance on mixture dataset. By evaluating the per-
formance of the proposed framework on mixture datasets, which
is a setting much close to the real scenario. The RCI RL frame-
work got a competitive result compared to the previous work
and got a much better identification result than the commercial
tool. We got 3.63%, 5.5%, 2.7, and 2.26% accuracy gain on case
2, case 3, case 5, and case 6 correspondingly. In case 4, most
of the accuracy of different proportion settings are the same be-
tween [10] and ours. This is because the root causes are evenly
distributed among mixture diagnosis reports and action space is
not pruned in most cases.

6.4.2 Runtime

The runtime profiling of the proposed framework is presented
in Fig. 6.6. ‘RL’ indicates the proportion of runtime on rein-
forcement learning, ‘SCM’ is the proportion of runtime on the
structural causal model. We spend around 10.21% runtime on
the RL agent, which is a small portion of additional resource
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67.06%

Feature Extractor

10.21%

RL

22.73%

SCM

Figure 6.6 Runtime breakdown of our framework.

consumption.

6.4.3 Future Works

The completeness of diagnosis reports is assumed to be equal
in all cases during the modeling procedure. A more challenging
situation such as designs at the beginning of a production ramp-
up stage, where the information is not perfectly available in
the diagnosis reports is not discussed in this work. Also, the
transferability between diagnosis reports on different designs is
worth thinking about. Extending the structural causal models
to refer to the diagnosis reports is a challenging topic. We leave
these for exploration in future works.
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6.5 Discussion and Conclusion

In this paper, we propose a framework to identify the root causes
by searching the optimal causal graph. Reinforcement learn-
ing with the actor-critic algorithm is used as the guidance of
exploitation and exploration scheme. To facilitate the feature
learning efficiency, we construct the encoder-decoder network to
learn the causal graph. Instead of conventional structural learn-
ing predicting the DAG with an adjacency matrix, we consider
the critical factors in hierarchical diagnosis reports and formu-
late a simplified action space. Experimental results on several
industry cases show that our framework outperforms the state-
of-the-art solutions.

2 End of chapter.
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Chapter 7

Conclusion

In the thesis, several Artificial Intelligence methodologies are
introduced to solve layout defect problems in design for manu-
facturability. We discuss the lithography defect detection at the
post-layout stage and take a step further to identify the system-
atic defects. In this chapter, we first conclude each proposed
methodology and then discuss the future extensions.

7.1 summary

The reduction of quality in circuits is mainly attributed to vari-
ations in lithography. As an alternative to resolution enhance-
ment technologies, layout hotspot detection can also ease the
variations. Existing hotspot detectors only work on small clips
extracted from a whole chip layout and can only detect one
hotspot location at a time that occurs at the center of each
clip. A conventional hotspot detection scheme requires repeat-
edly scanning overlapping regions of a full chip design. In Chap-

157
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ter 4, we propose a new faster region-based hotspot detection
framework to avoid the waste of computational resources and
time-consuming when facing extremely large layouts. The pro-
posed framework can mark multiple hotspot locations within a
region that is much larger than a clip applied in previous work.
A regression and classification multi-task flow is implemented
in the framework to guide to higher accuracy, higher detection
speed, and lower false alarm penalties. To further improve ac-
curacy and reduce false alarms, a clip proposal network and
refinement stage are built. We introduce a multi-branch design
for encoder-decoder and IoU regularization to further enhance
the proposed region-based hotspot detector.

Detecting hotspots across entire layouts may result in over-
correction, which negatively affects chip area and performance.
Traditional methods, such as Physical failure analysis (PFA),
are able to reveal whether a layout pattern is the root cause
of systematic defects. While it is typically time-consuming and
costly and requires both experience and knowledge of fabrication
processes. In Chapter 5, a unified framework for layout pattern
analysis with deep causal effect estimation is proposed. Our
framework characterizes the causal relationship between poten-
tial root causes and the systematic defect. By using contrastive
learning we train an encoder to extract from layout snippets
rotation-, mirror-, and shift-invariant latent features. In exper-
iments on large-scale designs, our framework achieves state-of-
the-art results which significantly outperform commercial tools
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in terms of accuracy and inference time. We propose a reinforce-
ment learning-based framework to improve the root cause iden-
tification quality in Chapter 6 to solve the drawback of empirical
causal graphs. The principle of reinforcement learning allows it
to select problem-specific combinations of search strategies and
scores, which is an advantage to search for the optimal causal
graph.

7.2 Possible Future Directions

Concerning hotspot detection, more advanced machine learning
and deep learning techniques will be introduced and customized
to aid the detection flow. Layout features under different tech-
nology nodes should be considered during modeling the learning
problems. Besides, multi-layer layout hotspot detection and full-
chip scale detection are promising directions, and layout clippers
can be further investigated.

For the techniques in layout pattern analysis, as mentioned
in the experimental result part of Chapter 5, more exploration
at the gate level is required since identifying the root cause at
an earlier stage has great benefits to the yields. Layout pat-
tern analysis can identify the layout level defects such as open
and bridge. Adding layout information to the diagnosis helps to
improve failure analysis by reducing turnaround time and cost.
But, as the industry moves into the FinFET era, product engi-
neers are finding that the established scan test diagnosis needs
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an upgrade. We see more front-end-of-line (FEOL) defects at the
transistor level rather than in the interconnect, and fin-related
defects tend to be timing-related, making physical failure anal-
ysis and yield analysis far more difficult challenges than in the
past. Also, considering the probability of low fidelity on diag-
nosis reports, identifying the root causes at the yield ramp-up
stage is an interesting direction we need to explore.

Apart from the above, limited by the number of datasets
in academia, methodologies on data generation and argumenta-
tion are necessary. Augmentation strategies, layout generation
methods, and related methods also need to concern. More ad-
vanced methodologies will be developed in the future.

2 End of chapter.
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