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Abstract

Dominance breaking is a powerful technique in improving the solving efficiency of Con-
straint Optimization Problems (COPs) by removing provably suboptimal solutions with
additional constraints. While dominance breaking is effective in a range of practical prob-
lems, it is usually problem specific and requires human insights into problem structures to
come up with correct dominance breaking constraints. Recently, a framework is proposed
to generate nogood constraints automatically for dominance breaking, which formulates
nogood generation as solving auxiliary Constraint Satisfaction Problems (CSPs). However,
the framework uses a pattern matching approach to synthesize the auxiliary generation
CSPs from the specific forms of objectives and constraints in target COPs, and is only
applicable to a limited class of COPs.

This paper proposes a novel rewriting system to derive constraints for the auxiliary
generation CSPs automatically from COPs with nested function calls, significantly gen-
eralizing the original framework. In particular, the rewriting system exploits functional
constraints flattened from nested functions in a high-level modeling language. To gen-
erate more effective dominance breaking nogoods and derive more relaxed constraints in
generation CSPs, we further characterize how to extend the system with rewriting rules
exploiting function properties, such as monotonicity, commutativity, and associativity, for
specific functional constraints. Experimentation shows significant runtime speedup using
the dominance breaking nogoods generated by our proposed method. Studying patterns
of generated nogoods also demonstrates that our proposal can reveal dominance relations
in the literature and discover new dominance relations on problems with ineffective or no
known dominance breaking constraints.

1. Introduction

Constraint Optimization Problems (COPs) are ubiquitous in computer science and artificial
intelligence, and have applications in planning (Garrido, Onaindia, & Sapena, 2008; Booth,
Tran, Nejat, & Beck, 2016), scheduling (Baptiste, Le Pape, & Nuijten, 2001), packing (Korf,
2004; Fukunaga & Korf, 2007; Korf, Moffitt, & Pollack, 2010), etc. A COP usually consists
of an objective function to be minimized or maximized and constraints specifying compatible
value assignments to variables. The goal of solving a COP is to find an optimal solution, i.e.,
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an assignment of values to variables that satisfies all constraints of the COP and optimizes
the objective. Constraint Programming (CP) (Rossi, Beek, & Walsh, 2006) is a classical
paradigm for solving COPs. Users can state a COP formally and submit it to a CP solver,
which will solve the problem using the Branch and Bound algorithm (Land & Doig, 1960)
augmented with constraint propagation (Rossi et al., 2006).

Dominance breaking is a powerful technique to improve the efficiency of CP solvers in
solving COPs and has successful applications in a range of problems (Aldowaisan, 2001;
Getoor, Ottosson, Fromherz, & Carlson, 1997; Korf, 2004; Prestwich & Beck, 2004). The
technique exploits dominance relations (Ibaraki, 1977) among assignments in a COP. If
some assignments are proved to be dominated by others in a dominance relation of a COP,
then they are guaranteed to be suboptimal with respect to the satisfiability of constraints
and/or objective value. Such dominated assignments can be removed by adding dominance
breaking constraints into the COP without changing its optimal objective value. However,
applying dominance breaking demands sophisticated insights into the problem structures,
and therefore it is usually problem-specific and non-trivial to transfer from one problem to
another. Chu and Stuckey (2012) give a generic and manual method for deriving domi-
nance breaking constraints for general COPs. Later, Mears and Garcia de la Banda (2015)
automate the method to a large extent, but it still requires manual interventions to be
effective.

This paper follows the work on automatic dominance breaking for a class of COPs (Lee
& Zhong, 2020, 2023), which focuses on generating dominance breaking constraints in the
form of nogoods (Katsirelos & Bacchus, 2005). In this framework, nogood generation for
a COP is formulated as solving constraint satisfaction problems (CSPs) which can be con-
structed based on the types of objective and constraints in the original COP. For a class of
efficiently checkable objectives and constraints in COPs, such as linear objectives and linear
inequality constraints, the framework matches them to their corresponding constraints in
the generation CSPs, which guarantee the generated nogoods to remove suboptimal assign-
ments in the original COPs. As long as a COP consists of efficiently checkable objectives
and constraints, the framework can construct CSPs for nogood generation mechanically
and generate nogood constraints for dominance breaking automatically by using efficient
constraint solvers to solve the CSPs. Yet, the original framework of automatic dominance
breaking is restricted to COPs with only objectives and constraints that are all provably ef-
ficiently checkable. For example, in order to apply automatic dominance breaking to a COP,
the objective function is required to be either additively separable or submodular in the
original framework (Lee & Zhong, 2020, 2023). Later, the framework is generalized to allow
a COP to contain some non-efficiently checkable constraints, but the technique is effective
only when a relatively small number of variables are involved in these constraints (Lee &
Zhong, 2021). The restriction on efficiently checkable objectives and constraints prevents
the use of the framework for COPs with varying objectives and constraints, especially the
ones with nested function calls.

Functional expressions are ubiquitous in problem modeling, while the objective and
constraints with functional expressions are usually not efficiently checkable. In practice,
however, COPs are usually specified in a high-level modeling language (Frisch, Harvey,
Jefferson, Martinez-Hernandez, & Miguel, 2008; Nethercote, Stuckey, Becket, Brand, Duck,
& Tack, 2007) and normalized/flattened into a form with only standard constraints.
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Example 1. Consider a simple COP as follows:

minimize max(z1, z2) + 4z3

subject to 2z1 − 3z2 ∗ z3 ≤ 5,

z1, z2, z3 ∈ {1, 2, 3}
(1)

The objective with the max function and the constraint with the multiplying function are
not efficiently checkable. After normalization, the COP can become:

minimize obj

subject to y2 ≤ 5, obj = y1 + 4z3, y1 = max(z1, z2),

y2 = 2z1 − 3y3, y3 = z2 ∗ z3,
z1, z2, z3 ∈ {1, 2, 3}, y1, y2, y3, obj ∈ Z

(2)

Note that y1, y2, y3 and obj are newly introduced variables, and are functionally defined by
y1 = max(z1, z2), y2 = 2z1− 3y3, y3 = z2 ∗ z3 and obj = y1+4z3 respectively. We call these
functional constraints, while y2 ≤ 5 is a non-functional constraint.

In this paper, we propose a method to exploit functional constraints to derive constraints
in the generation CSPs, which further enhances the ability of the framework to generate
dominance breaking nogoods for COPs with nested function calls. We first generalize the
theory of dominance to normalized COPs which contain functionally defined variables and
functional constraints. Based on the generalized theory, we formalize the automatic deriva-
tion of constraints as a formal rewriting system. When functions in COPs are treated as
uninterpreted functions (Bryant, Lahiri, & Seshia, 2002), the rewriting system, which com-
prises the rules of replacement, binding, deletion and general decomposition, can handle
COPs with arbitrary nested functions and return their corresponding constraints in nogood
generation CSPs. If we further exploit function properties, such as monotonicity, commu-
tativity and associativity, then the system can be extended with decomposition rewriting
rules that derive more relaxed sufficient conditions for dominance and enable the genera-
tion of more dominance breaking nogoods for the target COPs. The proposed method is
implemented on top of MiniZinc (Nethercote et al., 2007), an open-source constraint mod-
eling language. Experimentation on various benchmarks confirms the superior efficiency of
the generated nogoods to solve problems with ineffective or no known dominance breaking
constraints in the literature. Even when nogoods are costly to generate, we give two case
studies on the Steel Mill Slab Design Problem (Frisch, Miguel, & Walsh, 2001a) and the
Balanced Academic Curriculum Problem (Castro & Manzano, 2001) to show how we can
discover dominance relations and compact dominance (symmetry) breaking constraints by
inspecting the nogood patterns of small instances.

The contributions of this work are multi-faceted. First, we further generalize the theory
of dominance and formalize a rewriting system for automatic synthesis of generation CSPs.
Second, we release a software tool to generate dominance breaking nogoods for MiniZinc,
an open-source constraint modeling language. Third, we present extensive experiments to
evaluate the effectiveness of the generated nogoods in solving COPs using three state-of-
the-art solvers. Fourth, we demonstrate that the insights gained from dominance breaking
nogoods can help to discover dominance relations and compact dominance (symmetry)
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breaking constraints. Compared with the preliminary version of this work that appeared in
CP 2022 (Lee & Zhong, 2022), the current paper is improved in the following aspects:

• In Section 4, we formalize the derivation of constraints in generation CSPs as a formal
rewriting system instead of giving an ad-hoc algorithm in the conference paper. We
also prove the soundness and Church-Rosser properties of the rewriting system.

• We characterize the conditions of rewriting rules that guarantee the soundness and
Church-Rosser properties of the rewriting system so that the system can be extended
with more rules satisfying the condition and exploiting function properties, which
allows the generation of more nogoods.

• We present in Table 1 the standard constraints implemented in our system and their
associated function properties.

• In Section 5, we include more experimental results using different solvers and config-
urations to demonstrate the advantages of generated dominance breaking nogoods in
solving COPs.

• In Section 6, we also include more detailed exposition on how to derive compact
dominance breaking constraints from generated dominance breaking nogoods.

2. Preliminaries

A variable x is an unknown. A domain D maps each variable x to the finite set D(x) which
contains the possible values for x. An assignment θ on a set of variables S = {x1, . . . , xk}
is a tuple (v1, . . . , vk) ∈ DS = D(x1) × · · · ×D(xk), where vj = θ[xj ] is the value assigned
to xj in θ, and S = var(θ) is the scope of θ. We abuse notations to use θ[S′] to denote the
tuple formed by projecting θ ∈ DS onto a subset of variables S′ ⊂ S. A constraint c is a
subset of the Cartesian product DS where S = var(c) is the scope of c. An assignment θ
satisfies a constraint c if θ[var(c)] ∈ c, where var(θ) ⊇ var(c). We define a nogood ¬θ for
an assignment θ to be a constraint of the form ∨x∈var(θ)(x ̸= θ[x]), and its length is always
equal to the scope size |var(θ)|.

A Constraint Satisfaction Problem (CSP) is a tuple (X,D,C) where X is a set of
variables, D is a domain for X and C is a set of constraints. A Constraint Optimization
Problem (COP) (X,D,C, obj) extends a CSP with an objective variable obj which is to
be minimized. Let θ̄ ∈ DX denote a full assignment whose scope is X. A solution of a
COP/CSP P is a full assignment θ̄ ∈ DX such that θ̄ satisfies all constraints c ∈ C. We
let sol(P ) ⊆ DX denote the set of all solutions of P . The goal of solving a COP is to find
an optimal solution θ̄∗ ∈ sol(P ) such that θ̄∗[obj] ≤ θ̄[obj] for all solutions θ̄ ∈ sol(P ), and
θ̄∗[obj] is the optimal value of P .

Following Chu and Stuckey (Chu & Stuckey, 2012), a dominance relation for a COP P
is defined as a relation over the set of all full assignments of P .

Definition 1. (Chu & Stuckey, 2012) A dominance relation ≺ over DX (Chu, Banda, &
Stuckey, 2010) is a transitive and irreflexive relation such that ∀θ̄, θ̄′ ∈ DX , if θ̄ ≺ θ̄′ with
respect to P , then either:
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1. θ̄ is a solution of P and θ̄′ is not a solution of P , or

2. both θ̄ and θ̄′ are solutions of P and θ̄[obj] ≤ θ̄′[obj], or

3. both θ̄ and θ̄′ are not solutions of P and θ̄[obj] ≤ θ̄′[obj].

In this case, we say that θ̄ dominates θ̄′ with respect to P .

A full assignment that is dominated by another with respect to P is subordinate to
another full assignment concerning satisfiability and/or objective value. Therefore, a dom-
inated full assignment can be removed without changing the optimal objective value of
P (Chu & Stuckey, 2012). Dominance relations can be generalized (Lee & Zhong, 2020,
2023) to assignments over DS where S ⊆ X. Let DX

θ = {θ̄ ∈ DX | θ̄[var(θ)] = θ} be a
subset of DX . We say that θ dominates θ′ with respect to P iff ∀θ̄′ ∈ DX

θ′ , ∃θ̄ ∈ DX
θ such

that θ̄ ≺ θ̄′ for some dominance relation ≺ with respect to P . When the context is clear,
we abuse notations and let θ ≺ θ′ denote θ dominates θ′.

Theorem 1. (Lee & Zhong, 2020, 2023) Suppose θ, θ′ ∈ DS are assignments of P =
(X,D,C, obj) where S ⊆ X. If θ ≺ θ′ with respect to P , then removing all assignments in
DX

θ′ preserves the same satisfiability and optimal value of P .

Removing all dominated full assignments in DX
θ′ only requires adding a nogood ¬θ′ to

P . While generating all dominance breaking nogoods is impractical, Lee and Zhong (2020,
2023) formulate it as constraint satisfaction to identify and exploit only a subset of such
nogoods of length up to a predetermined threshold L. The high-level algorithm is as follows:

1. Choose a maximum length L for dominance breaking nogoods.

2. For each scope S ⊆ X where |S| ∈ {1, . . . , L},

(a) Synthesize generation CSPs to search for pairs (θ, θ′) of assignments over S,
whose constraints imply that θ ≺ θ′ with respect to P .

(b) Solve all solutions of the generation CSPs.

(c) Collect the derived nogoods from the solutions (one nogood from each solution).

3. Add all the collected nogoods to the COP before problem-solving.

The size and the complexity of generation CSPs depend on the scope size |S|. While the
number of dominance breaking nogoods and their collective pruning power increases with
larger L, the time of solving generation CSPs also increases. The threshold L is usually
relatively small compared to the number of variables |X| so that nogoods can be generated
by solving a group of small and easy CSPs.

The key step is to derive constraints in the generation CSPs automatically as sufficient
conditions for dominance relations. Lee and Zhong (2020, 2023) give such sufficient condi-
tions or constraints in the generation CSPs directly based on the objective and constraint
types. The method requires developers to include certain types of objectives and constraints
and define the corresponding sufficient conditions in the system. The method can only be
applied to a class of COPs consisting of efficiently checkable objectives and constraints.
However, it is not easily extensible especially when there are nested function calls as shown
in Example 1. To tackle this problem, we generalize the theory of dominance in Section 3
and present a method for automatic sufficient condition derivation in Section 4.
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3. Functional Constraints and Dominance

In this paper, we assume that a COP P = (X,D,C, obj) is the result of applying some sort
of flattening procedure, such as the one used in the MiniZinc compiler (Leo, 2018) and similar
to (2) in Example 1, to a problem model. Therefore, constraints with nested function calls
are flattened into a set CY of functional constraints which are of the form y = h(x1, . . . , xk),
where h : Rk 7→ R is a k-ary function. Any assignment on variables {x1, . . . , xk} corresponds
to a unique assignment on y, so we say that y is defined by a functional constraint y =
h(x1, . . . , xk). Our proposed method utilizes the functional constraints and the properties
of functions to derive sufficient conditions for dominance. Note that a high-level COP
can be flattened into different forms depending on the standard constraints provided by
the underlying solvers. To be independent of the underlying solvers, dominance breaking
nogoods generated by our methods are output as text and appended to the original non-
flattened problem model.

Before presenting the generalized theory of dominance, we give the following example
to demonstrate how to derive sufficient conditions over a pair of assignments such that one
assignment dominates another.

Example 2. Consider the COP in (2) and θ, θ′ ∈ DS where S = {z1, z2}. Suppose we
restrict DX to be the set of full assignments that satisfy all functional constraints in (2).
Therefore, values of y1, y2, y3 and obj in a valid full assignment are determined by the
functional constraints that define them. Our aim is to find constraints over θ and θ′ that
implies θ dominates θ′ with respect to P .

For notational convenience, we let θ̄ ∈ DX
θ denote a corresponding full assignment for

each full assignment θ̄′ ∈ DX
θ′ such that θ̄[z3] = θ̄′[z3]. In other words, we can obtain θ̄ from

θ̄′ by mutating values of z1, z2 and z3 assigned by θ′ to those assigned by θ. Following Lee
and Zhong (2020, 2023), if we can show that

• betterment: ∀θ̄′ ∈ DX
θ′ , θ̄[obj] ≤ θ̄′[obj],

• implied satisfaction: ∀θ̄′ ∈ DX
θ′ , θ̄[y2] ≤ θ̄′[y2], and

• not-equal: θ ̸= θ′, i.e., θ[z1] ̸= θ′[z1] ∨ θ[z2] ̸= θ′[z2],

then we can construct a relation ≺ over DX such that θ̄ ≺ θ̄′ for all θ̄′ ∈ DX
θ′ . If so, one can

verify that such a relation will be a dominance relation with respect to (2) by Definition 1,
and thus all full assignments in DX

θ′ can be removed without changing the optimal value.
Note that not-equal is a constraint over θ and θ′, while betterment and implied satisfaction
are quantified inequalities, for which we need to find quantifier-free sufficient conditions as
constraints over θ and θ′.

We can find such constraints over θ and θ′ for betterment as follows:

• Variable obj is defined by obj = y1 + 4z3. If we have

∀θ̄′ ∈ DX
θ′ , θ̄[y1] + 4θ̄[z3] ≤ θ̄′[y1] + 4θ̄′[z3], (3)

then betterment must hold since θ̄ and θ̄′ both satisfy all functional constraints.
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• Variable y1 is defined by y1 = max(z1, z2). It suffices to show that

∀θ̄′ ∈ DX
θ′ ,max(θ̄[z1], θ̄[z2]) + θ̄[z3] ≤ max(θ̄′[z1], θ̄

′[z2]) + θ̄′[z3]. (4)

• The summation function is monotonically increasing, (4) must be true if we have

∀θ̄′ ∈ DX
θ′ ,max(θ̄[z1], θ̄[z2]) ≤ max(θ̄′[z1], θ̄

′[z2]) ∧ θ̄[z3] ≤ θ̄′[z3] (5)

• Inequality (θ̄[z3] ≤ θ̄′[z3]) must hold since θ̄[z3] = θ̄′[z3] for all θ̄ ∈ DX
θ and θ̄′ ∈ DX

θ′ .
Further, since θ̄[z1] = θ[z1], θ̄[z2] = θ[z2], θ̄′[z1] = θ′[z1], and θ̄′[z2] = θ′[z2], the
condition (5) is equivalent to

max(θ[z1], θ[z2]) ≤ max(θ′[z1], θ
′[z2]). (6)

Thus, if θ and θ′ satisfy (6), the betterment condition must hold.

Similarly, we can find such constraints for implied satisfaction as follows:

• Variable y2 is defined by y2 = 2z1 − 3y3, the implied satisfaction must be true if

∀θ̄′ ∈ DX
θ′ , 2θ̄[z1]− 3θ̄[y3] ≤ 2θ̄′[z1]− 3θ̄′[y3]. (7)

• Since the result of subtraction increases with the increasing of the minuend and the
decreasing of the subtrahend, (7) must be true if

∀θ̄′ ∈ DX
θ′ , 2θ̄[z1] ≤ 2θ̄′[z1] ∧ 3θ̄[y3] ≥ 3θ̄′[y3]. (8)

• Variable y3 is defined by y3 = z2 ∗ z3. Since z2, z3 ≥ 0, 3θ̄[y3] ≥ 3θ̄′[y3] must hold if

∀θ̄′ ∈ DX
θ′ , θ̄[z2] ≥ θ̄′[z2] ∧ θ̄[z3] ≥ θ̄′[z3]. (9)

Since θ̄[z3] = θ̄′[z3], (8) must hold if

∀θ̄′ ∈ DX
θ′ , 2θ̄[z1] ≤ 2θ̄′[z1] ∧ θ̄[z2] ≥ θ̄′[z2]. (10)

• By definitions, we have θ̄[z1] = θ[z1], θ̄[z2] = θ[z2], θ̄
′[z1] = θ′[z1], and θ̄′[z2] = θ′[z2],

and therefore (7) and (8) must hold if

θ[z1] ≤ θ′[z1] ∧ θ[z2] ≥ θ′[z2] (11)

In other words, if θ and θ′ fulfill (6), (11) and θ ̸= θ′, then it suffices to show that θ
dominates θ′ with respect to the COP in (2). By solving (6), (11) and θ ̸= θ′ as a constraint
satisfaction problem, we can obtain one possible solution pair (θ, θ′) where θ = {z1 = 1, z2 =
2} and θ′ = {z1 = 2, z2 = 1}, and the constraint ¬θ′ ≡ (z1 ̸= 2 ∨ z2 ̸= 1) is a dominance
breaking nogood in (2). Similar derivation can also be applied to pairs of assignments over
other scopes to obtain more dominance breaking nogoods.
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Example 2 exemplifies the procedure to derive sufficient conditions for betterment and
implied satisfaction considering the functional constraints. We will establish a formal rewrit-
ing system for automatic derivation of such sufficient conditions. In the following, we first
generalize the theory of dominance to facilitate our presentation.

Recall that a normalized COP consists of functional and non-functional constraints. For
simplicity, we associate each non-functional constraint c ∈ (C \ CY ) with a reified variable
b ∈ {0, 1}, where θ̄ ∈ DX satisfies c if and only if θ̄[b] = 1. In other words, we treat
each constraint c ∈ (C \ CY ) as a function returning 0/1 and define a (reified) functional
constraint cb ≡ (b = c(xi1 , . . . , xik)). If θ̄[b] ≥ θ̄′[b] for two full assignments θ̄ and θ̄′, then
θ̄′ satisfies c implies that θ̄ also satisfies c. We let CB denote the set of (reified) functional
constraints and B denote the set of reified variables.

Without loss of generality, let (Z, Y,B) and (CB, CY ) be partitions of variables X and
constraints C respectively in a normalized COP, where Z ∪ Y ∪ B = X, CB ∪ CY = C
and obj ∈ Y . Note that Z, Y,B are pairwise disjoint and CB ∩ CY = ∅. In case a variable
y ∈ Y is introduced by the flattening procedure, we set the domain for y to be the largest
possible set. Note that when there is no flattening and reification, our definition of a COP
degenerates to the classical definition (Rossi et al., 2006).

To exploit functional constraints in normalized COPs, the following definition charac-
terizes a key property of full assignments.

Definition 2. Let P = (X,D,C, obj) be a normalized COP where (Z, Y,B) and (CB, CY )
be a partition of variables X and constraints C respectively. A full assignment θ̄ ∈ DX is
functionally valid if and only if

• θ̄[b] = c(θ̄[xi1 ], . . . , θ̄[xik ]) for a reified constraint (b = c(xi1 , . . . , xik)) ∈ CB, and

• θ̄[y] = h(θ̄[xi1 ], . . . , θ̄[xik ]) for a functional constraint (y = h(xi1 , . . . , xik)) ∈ CY

Note that when θ̄ in a normalized COP is functionally valid, it corresponds to a full
assignment in the original non-flattened problem model. The value for a variable y ∈ Y
(respectively b ∈ B) in a functionally valid full assignment can be computed from cy ∈ CY

(respectively cb ∈ CB) as well as values for variables in Z. Since variables in Y ∪ B can
be auxiliary variables introduced during the flattening process and may not appear in the
original problem model, we only focus on generating nogoods involving variables in Z.

In the remainder of the paper, we assume that P = (X,D,C, obj) is a normalized COP
and consider only functionally valid full assignments in DX . Our aim is to find sufficient
conditions for a pair of assignments θ and θ′ over S ⊆ Z such that θ ≺ θ′ with respect to
P . Recall that θ ≺ θ′ requires ∀θ̄′ ∈ DX

θ′ ,∃θ̄ ∈ DX
θ such that θ̄ ≺ θ̄′ for some dominance

relation over DX . It is expensive to check whether there exists θ̄ that dominates θ̄′ for each
θ̄′ in DX

θ′ . Instead, we check only whether a specific θ̄ dominates θ̄′ by utilizing a mutation
mapping for two assignments θ and θ′ over the same scope.

Definition 3. The mutation mapping µθ′→θ for two assignments θ, θ′ ∈ DS over a scope
S ⊆ Z maps a full assignment θ̄′ ∈ DX

θ′ to another full assignment θ̄ ∈ DX
θ such that:

• θ̄[z] = θ[z] for z ∈ var(θ),

• θ̄[z] = θ̄′[z] for z ∈ Z \ var(θ),
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• θ̄[y] = h(θ̄[xi1 ], . . . , θ̄[xik ]) where y ∈ Y is defined by y = h(xi1 , . . . , xik) ∈ CY ,

• θ̄[b] = c(θ̄[xi1 ], . . . , θ̄[xik ]) where b ∈ B is defined by b = c(xi1 , . . . , xik) ∈ CB.

In other words, µθ′→θ “mutates” the θ′ component of θ̄′ to become θ and assigns the
computed values to variables in Y ∪B accordingly. The following proposition characterizes
some useful properties of the mutation mapping in Definition 3.

Proposition 1. Let µθ′→θ be a mutation mapping for two assignments θ, θ′ ∈ DS over a
scope S ⊆ Z. The followings are always true for functionally valid full assignments θ̄′ ∈ DX

θ′ ,
where θ̄ = µθ′→θ(θ̄′):

• If z ∈ S, then θ̄[z] = θ[z] and θ̄′[z] = θ′[z].

• If z ∈ Z \ S, then θ̄[z] = θ̄′[z].

With the mutation mapping, the following result gives a sufficient condition governing
when a partial assignment θ dominates another θ′ with respect to P .

Theorem 2. If a pair of assignments θ, θ′ ∈ DS satisfies:

• empty intersection: DX
θ ∩ DX

θ′ = ∅,

• betterment: ∀θ̄′ ∈ DX
θ′ , µ

θ′→θ(θ̄′)[obj] ≤ θ̄′[obj], and

• implied satisfaction: ∀b ∈ B, ∀θ̄′ ∈ DX
θ′ , µ

θ′→θ(θ̄′)[b] ≥ θ̄′[b],

then θ dominates θ′ with respect to P .

Proof. We construct a relation ≺ over DX such that ≺= {(µθ′→θ(θ̄′), θ̄′) | θ̄′ ∈ DX
θ′ }. Since

DX
θ and DX

θ′ have empty intersection, the relation ≺ is trivially transitive and irreflexive.
By betterment and implied satisfaction, one can check θ̄ and θ̄′ must satisfy one of the three
conditions of a dominance relation. Therefore, θ dominates θ′ with respect to P .

Theorems 1 and 2 imply that ¬θ′ is a dominance breaking nogood that can remove all
dominated solutions in DX

θ′ without changing the optimal value of P . The empty intersection
is trivially satisfied if θ ̸= θ′. In order to show that a partial assignment θ′ is dominated
by another θ using Theorem 2, what remains is to find constraints over θ and θ′ that are
sufficient conditions for the empty intersection, the betterment and the implied satisfaction
conditions. Since empty intersection can be easily modeled by ∨xi∈Sθ[xi] ̸= θ′[xi], we will
focus on finding sufficient conditions for the betterment and implied satisfaction in Section 4.

Recall that we enumerate all dominance breaking nogoods ¬θ′ derived from pairs (θ, θ′)
of partial assignments that are solutions of generation CSPs. It is necessary to ensure that
all nogoods are compatible in the sense that not all optimal solutions of P are eliminated.
To ensure the compatibility of all derived nogoods, a lexicographical ordering constraint
between θ and θ′ is a sufficient condition to ensure the compatibility of generated nogoods.
Given two tuples θ = (v1, . . . , vk), θ

′ = (v′1, . . . , v
′
k) ∈ DS where S ⊆ Z, we say that θ is

lexicographically smaller than θ′, denoted by θ <lex θ′, if and only if ∃i ∈ {1, . . . , n} such that
vi < v′i and ∀j < i, vj = v′j . If θ <lex θ′, and the pair (θ, θ′) satisfies betterment and implied
satisfaction, then we can preserve the lexicographically smallest optimal solution, which is

9
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an optimal solution of P and is lexicographically smallest among all optimal solutions of
P (Lee & Zhong, 2020, 2023).

The above definitions and results degenerate to those in the original framework (Lee &
Zhong, 2020, 2023) when Y and CY are empty.

4. Automatic Sufficient Condition Derivation

In this section, we present a rewriting system that derives automatically useful sufficient
conditions for betterment and implied satisfaction over a pair of assignments θ, θ′ ∈ DS ,
where S ⊆ Z in a COP. When it is clear from the context, we let θ̄ = µθ′→θ(θ̄′) ∈ DX

θ

denote the image of θ̄′ ∈ DX
θ′ by the mutation mapping in Definition 3.

Note that both betterment and implied satisfaction in Theorem 2 are predicates requir-
ing an inequality to hold for all θ̄′ ∈ DX

θ′ . The aim of our rewriting system is to derive
constraints over θ and θ′ without quantifiers as sufficient conditions for the quantified in-
equalities. We first present a general rewriting system (Definition 4) which only utilizes
functional constraints and properties in Proposition 1 to find such sufficient conditions.
While this rewriting system is generic, the derived sufficient conditions are sometimes too
restricted. Next, we discuss how the generic rewriting system can be extended with rules
that derive more relaxed sufficient conditions. In particular, we give examples of rewrit-
ing rules that exploit common functional properties such as monotonicity (Definition 5),
associativity and commutativity (Definitions 6). With more relaxed sufficient conditions
and constraints in generation CSPs, more useful nogoods can be generated for dominance
breaking by solving generation CSPs.

4.1 A Rewriting System for Uninterpreted Functions

To formalize the derivation of sufficient conditions, we adopt the inductive definition of
terms (Baader & Nipkow, 1998) from rewriting systems as follows:

• a variable or a constant is a term, and

• if f is a k-ary function and t1, . . . , tk are terms, then f(t1, . . . , tk) is a term.

By abusing notations, we also define the notation var(t) for a term as follows:

• if t is a constant, then var(t) = ∅;

• if t is a variable x, then var(t) = {x};

• if t is a function term f(t1, . . . , tk), then var(t) = ∪ivar(ti);

Note that f can either be the constraint c in a reified constraint b = c(xi1 , . . . , xik) or the
function h in a functional constraint y = h(xi1 , . . . , xik). A term t is fixed in θ if and only
if x ∈ var(θ) for all variables x in t; otherwise t is free.

A substitution is a finite mapping from variables to terms which assigns to each variable
x a term t different from x. We write a substitution as β = {xi1/t1, . . . , xik/tk} where
xi1 , . . . , xik are different variables, t1, . . . , tk are terms and ∀j ∈ {1, . . . , k}, xij /∈ var(tj).
A substitution β can be applied to a term t to obtain tβ by replacing every occurrence of

10
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variable xij in var(t) by the term tj for all j ∈ {1, . . . , k}. An assignment θ can be treated
as a special substitution that replaces each occurrence of a variable x ∈ var(θ) with θ[x].

Let ◁ be a binary comparison operator in {≤,≥,=}. The betterment and the implied
satisfaction conditions in Theorem 2 are predicates in the form (∀θ̄′ ∈ DX

θ′ , tθ̄ ◁ tθ̄′), where
tθ̄ and tθ̄′ are obtained by substituting each variable in var(t) with its values in θ̄ and θ̄′

respectively. The derivation in Example 2 recursively rewrites the conjunction of quantified
inequalities until all variables in the inequalities are fixed in θ and θ′. Therefore, our
rewriting system maintains two sets of predicates Q and F where Q is the set of predicates
that has to be further rewritten, and F is the set of predicates with all variables in S. We
write a rewriting rule as (Q∪{p}, F )⇝ (Q∪Q′, F ∪F ′), in which a predicate p is rewritten
into a set Q′ of quantified inequalities and a set F ′ of condition over θ and θ′ by a rewriting
rule. Note that Q′ and F ′ are sometimes empty.

Our first rewriting system operates without considering the semantics of functions and
treats them as uninterpreted functions. These functions are required only to fulfill func-
tional consistency, meaning that a function should produce the same output when given
the same input arguments. The generic rewriting system comprises four fundamental rules:
(1) Replacement, which involves substituting a defined variable with its defining function;
(2) Binding, which removes quantifiers and moving predicates from Q to F whenever feasi-
ble; (3) Deletion, which disregards predicates on non-interesting variables; and (4) General
Decomposition, which decomposes a predicate to ones requiring all arguments to have the
same values in both assignments. This rewriting system can be applied to predicates with
arbitrary functions. The formal definition is as follows.

Definition 4. Given a normalized COP P = (Z ∪ Y ∪ B,D,CB ∪ CY , obj) and a scope
S ⊆ Z. The general rewriting system is initialized with the pair (Q, {}), where Q = {(∀θ̄′ ∈
DX

θ′ , θ̄[obj] ≤ θ̄′[obj])}∪{(∀θ̄′ ∈ DX
θ′ , θ̄[b] ≥ θ̄′[b]) | b ∈ B}, and applies the following rewriting

rules to a predicate (∀θ̄′ ∈ DX
θ′ , tθ̄ ◁ tθ̄′) ∈ Q until Q is empty:

• Replacement: if var(t) ∩ (Y ∪B) ̸= ∅, then

(Q ∪ {∀θ̄′ ∈ DX
θ′ , tθ̄ ◁ tθ̄′}, F )⇝ (Q ∪ {∀θ̄′ ∈ DX

θ′ , tβθ̄ ◁ tβθ̄′}, F ),

where β = {x/f(xi1 , . . . , xik)} and x ∈ var(t)∩(Y ∪B) is defined by x = f(xi1 , . . . , xik).

• Binding: if var(t) ⊆ S ⊆ Z, then

(Q ∪ {∀θ̄′ ∈ DX
θ′ , tθ̄ ◁ tθ̄′}, F )⇝ (Q,F ∪ {tθ ◁ tθ′}).

• Deletion: if var(t) ⊆ (Z \ S), then

(Q ∪ {∀θ̄′ ∈ DX
θ′ , tθ̄ ◁ tθ̄′}, F )⇝ (Q,F ).

• General decomposition: if var(t) ⊆ Z, var(t) ∩ S ̸= ∅ and var(t) ∩ (Z \ S) ̸= ∅, then

(Q ∪ {(∀θ̄′ ∈ DX
θ′ , tθ̄ ◁ tθ̄′)}, F )

≡(Q ∪ {(∀θ̄′ ∈ DX
θ′ , f(t1θ̄, . . . , tkθ̄)◁ f(t1θ̄

′, . . . , tkθ̄
′))}, F )

⇝(Q ∪ {(∀θ̄′ ∈ DX
θ′ , tiθ̄ = tiθ̄

′) | ∀i ∈ {1, . . . , k}}, F ).

11
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Note that the applicability of rewriting rules in Definition 4 depends on the set var(t)
of variables. The conditions are mutually exclusive and exhaustive, which means that there
must be one applicable rewriting rule for each predicate in Q. In particular, when we
apply the general decomposition rule, var(t) is a subset of Z and var(t) has a non-empty
intersection with both S and Z \ S, and the term t must contain at least two variables and
be a function term of the form f(t1, . . . , tk).

We can check easily the Church-Rosser property of the rewriting system.

Theorem 3. The rewriting system in Definition 4 has the Church-Rosser property.

Proof. Since the rewriting rules are mutually exclusive and exhaustive depending on the
set var(t) of variables, there is only one applicable rewriting rule to each predicate p ∈ Q.
Therefore, the rewriting rules are pairwise commutative.

The more important property is that the conjunction of all predicates in Q∪F , denoted
as Q ∧ F , is always a sufficient condition for the conjunction of betterment and implied
satisfaction for a COP P .

Theorem 4. The rewriting rules in Definition 4 preserves the invariant that Q∧F is always
a sufficient condition for the betterment and the implied satisfaction of P .

Proof. Since Q is initialized with predicates of the betterment and the implied satisfaction
conditions, the statement holds automatically. By induction, it suffices to show that Q∧F
is still a sufficient condition after applying each rewriting rule:

• Replacement: the predicate ∀θ̄′ ∈ DX
θ′ , tθ̄◁tθ̄

′ is equivalent to ∀θ̄′ ∈ DX
θ′ , (tβ)θ̄◁(tβ)θ̄

′,
because all full assignments are all functionally valid by Definition 2.

• Binding: by Proposition 1, since all variables in var(t) also belong to S ⊆ Z, we have
θ̄[x] = θ[x] and θ̄′[x] = θ′[x] for all x ∈ var(t). The predicate (∀θ̄′ ∈ DX

θ′ , tθ̄ ◁ tθ̄′) is
equivalent to (tθ ◁ tθ′).

• Deletion: by Proposition 1 again, when x ∈ Z and x /∈ S, we have θ̄[x] = θ̄′[x].
Therefore, the predicate tθ̄ = tθ̄′ must hold and imply that tθ̄ ≤ tθ̄′ and tθ̄ ≥ tθ̄′.

• General decomposition: since f(t1θ̄
′, . . . , tkθ̄

′) is a functional or reified constraint,
the conjunction ∧k

i=1(∀θ̄′ ∈ DX
θ′ , tiθ̄ = tiθ̄

′) implies (∀θ̄′ ∈ DX
θ′ , f(t1θ̄, . . . , tkθ̄) ◁

f(t1θ̄
′, . . . , tkθ̄

′)) by the property of functional consistency.

Therefore, the invariant is preserved by the rewriting system in Definition 4.

Note that (Q,F )⇝ (Q′, F ′) by replacement, binding and deletion are equivalent trans-
formations such that (Q ∧ F ) ⇔ (Q′ ∧ F ′), while (Q′ ∧ F ′) implies (Q ∧ F ) after applying
general decomposition. By Theorem 4, the execution of the rewriting system can recursively
derive the sufficient condition for a predicate in Q until either the predicate becomes a triv-
ial statement or it is transformed into constraints over the pair (θ, θ′) due to the mutation
mapping. What remains is to show the termination of rewriting.

Theorem 5. The rewriting system in Definition 4 always terminates, and Q must be empty
when the rewriting system terminates.

12
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Proof. Without loss of generality, we assume that each variable y ∈ Y appears only in at
most one constraint other than the functional constraint y = h(xi1 , . . . , xik) that defines
y; otherwise, an additional variable y′ defined by y′ = h(xi1 , . . . , xik) can be introduced to
replace each extra occurrence of y. By definition of a COP, Y ∪ B and CY ∪ CB are finite
sets. We maintain three natural numbers:

• n1: the number of variables in Y ∪B that have not been substituted in replacement,

• n2: the number of occurrences of function symbols in Q, and

• n3: the sum of |var(t)| for all predicates (∀θ̄′ ∈ DX
θ′ , tθ̄ ◁ tθ̄′) ∈ Q.

We claim that applying each rewriting rule reduces the triple (n1, n2, n3) in a lexicographic
sense. Each variable x ∈ Y ∪B is only substituted when x is in the flattened constraint or
the reified constraint, replacement must decrease n1 by 1. General decomposition decreases
n2 while keeping n1 unchanged. Further, binding and deletion remove one predicate (∀θ̄′ ∈
DX

θ′ , tθ̄ ◁ tθ̄′) from Q and therefore decrease n3 by var(t). The termination follows directly
from the fact that there is no infinite descending sequence of triples of natural numbers.
Rewriting rules in Definition 4 are exhaustive, and therefore Q must be empty when no
rules are applicable and the rewriting system terminates.

We say that the rewriting system is sound with respect to a COP P if it always termi-
nates and Q ∧ F is a sufficient condition for the betterment and implied satisfaction of P .
The following corollary is a direct consequence of Theorems 4 and 5.

Corollary 1. The rewriting system in Definition 4 is sound with respect to a COP P .

By Theorem 3 and Corollary 1, the general rewriting system will always give the same
set of predicates after finite steps of rewriting with respect to the scope S ⊆ Z.

4.2 Exploiting Function Properties

When applying the general decomposition rule to a predicate of the form p ≡ (∀θ̄′ ∈
DX

θ′ , f(t1θ̄, . . . , tkθ̄)◁f(t1θ̄
′, . . . , tkθ̄

′)), the rewriting system in Definition 4 always treat the
function f as an uninterpreted function without any properties. This may sometimes result
in sufficient conditions that are too restrictive.

Example 3. Consider Example 2 again. If we apply the general decomposition rule to (4),
the resulting set of predicates will become

∀θ̄′ ∈ DX
θ′ ,max(θ̄[z1], θ̄[z2]) = max(θ̄′[z1], θ̄

′[z2]) ∧ θ̄[z3] = θ̄′[z3]. (12)

Applying the deletion and binding rules again, we will get the sufficient condition

max(θ[z1], θ[z2]) = max(θ′[z1], θ
′[z2]) (13)

for betterment. Similarly, we obtain θ[z1] = θ′[z1], θ[z2] = θ′[z2] as the sufficient condition
for implied satisfaction. Together with the empty intersection condition in Theorem 2,
the generation CSP will become unsatisfiable. No solution can be found by solving such a
generation CSP, and no nogoods can be generated.
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In Example 2, the success in deriving a dominance breaking nogood relies on the fact
that the derivation also exploits function properties when deriving sufficient conditions in
each step. For instance, when deriving (5) from (4), we also consider the fact that the
max function is monotonically increasing. Though both (5) and (12) imply (4), the former
is more relaxed than the latter. The more relaxed sufficient conditions in the generation
CSPs, the more dominance breaking nogoods are generated by solving the CSPs. In this
section, we extend the rewriting system in Definition 4 with additional decomposition rules
that exploit common and useful function properties as we will explain in the following
subsections. The extended rewriting system only applies the general rewriting rule when
no other decomposition rules can be applied for a predicate to be rewritten.

Before presenting concrete decomposition rules, we first characterize the conditions of
rules that can guarantee the soundness and the Church-Rosser properties of the rewriting
system. Let a decomposition rule be of the form (Q∪{p}, F )⇝ (Q∪Q′, F ∪F ′), where Q′

and F ′ are the sets of resulting predicates from the rewriting of a predicate p. We say that
a decomposition rule is

• diminishing if the number of function symbols in Q′ decreases while there are no new
variables introduced in predicates of Q′ after rewriting, and

• invariant-preserving if Q′ ∧ F ′ is a sufficient condition of p.

We have the following theorem for the soundness of the extended rewriting system.

Theorem 6. If the rewriting system in Definition 4 is extended with decomposition rules
that are both invariant-preserving and diminishing, then the extended system is sound with
respect to a COP P .

Proof. The soundness property of the rewriting system requires the system to terminate
and preserve the invariant that Q ∧ F is a sufficient condition for the betterment and the
implied satisfaction conditions of a COP P . The proof of preservation of the invariant is
essentially the same as that of Theorem 4. Since all decomposition rules are diminishing,
we can prove the termination in the same way as the proof of Theorem 5.

As for the Church-Rosser property, Theorem 3 requires that all rewriting rules in the
system are mutually exclusive, while multiple rewriting rules can be applied to the same
predicate after introducing additional decomposition rules into the system. Therefore, we
define the precedence over additional decomposition rules as follows. We say that a predicate
p1 is weaker than another predicate p2 if and only if p2 implies p1, and p2 is stronger than
p1. Suppose that two decomposition rules are both applicable to a predicate p, we say that
a decomposition rule subsumes another if the conjunction of the resulting predicates of the
former is weaker than that of the latter. In the extended rewriting system, we adopt a
conservative approach to always apply a rewriting rule that subsumes others to retain the
Church-Rosser property.

Proposition 2. The extended rewriting system has the Church-Rosser property.

Proof. In the extended rewriting system, all decomposition rules are still mutually exclu-
sive due to the rule precedence. It is also exhaustive since we always apply the general
decomposition rule when no special function properties can be exploited.

14
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In the following, we give several decomposition rules catering for common and use-
ful function properties such as monotonicity, associativity and commutativity for deriving
weaker sufficient conditions. For each introduced decomposition rule, we prove its diminish-
ing and invariant-preserving properties. We also analyze the subsumption relation among
decomposition rules that can be applied to the same predicate, so that the extended rewrit-
ing system always applies the one returning the weakest possible sufficient conditions for
the betterment and the implied satisfaction conditions.

4.2.1 Decomposition Rules for Monotonic Functions

The first property of interest is monotonicity. A function f : Rk 7→ R is monotonically
increasing if

(∀i, ai ≤ bi) ⇒ f(a1, . . . , ak) ≤ f(b1, . . . , bk)

and is monotonically decreasing if

(∀i, ai ≥ bi) ⇒ f(a1, . . . , ak) ≤ f(b1, . . . , bk)

where ai, bi ∈ R. For the ease of presentation, we say that the reverse operators of ≤,
≥ and = are ≥, ≤ and = respectively. When the function f is monotonically increasing
or decreasing, the decomposition rule can be relaxed, resulting in predicates that contain
relaxed inequalities which are easier to satisfy.

Definition 5. Suppose p ≡ (∀θ̄′ ∈ DX
θ′ , f(t1θ̄, . . . , tkθ̄)◁ f(t1θ̄

′, . . . , tkθ̄
′)) ∈ Q is a predicate

in the rewriting system, and ▷ is the reverse operators of ◁.

• Increasing decomposition: if f is monotonically increasing, then

(Q ∪ {p}, F )⇝ (Q ∪ {(∀θ̄′ ∈ DX
θ′ , tiθ̄ ◁ tiθ̄

′) | ∀i = 1, . . . , k}, F )

• Decreasing decomposition: if f is monotonically decreasing, then

(Q ∪ {p}, F )⇝ (Q ∪ {(∀θ̄′ ∈ DX
θ′ , tiθ̄ ▷ tiθ̄

′) | ∀i = 1, . . . , k}, F )

We can easily check the following properties.

Theorem 7. The increasing decomposition and the decreasing decomposition rules in Def-
inition 5 are invariant-preserving and diminishing.

Proof. The rules are invariant-preserving by the definitions of monotonically increasing and
monotonically decreasing functions and the fact that all full assignments are functionally
valid. The function symbol f is removed, and therefore the rules are also diminishing.

Theorem 8. The increasing and decreasing decomposition rules in Definition 5 both sub-
sume the general decomposition rule in Definition 4.

Proof. Let p ≡ (∀θ̄′ ∈ DX
θ′ , f(t1θ̄, . . . , tkθ̄)◁ f(t1θ̄

′, . . . , tkθ̄
′)) be a predicate in the rewriting

system. Suppose that (Q ∪ {p}, F ) ⇝ (Q ∪ Q′, F ) by the increasing decomposition (re-
spectively the decreasing decomposition), while (Q ∪ {p}, F )⇝ (Q ∪Q′′, F ) by the general
decomposition. By the fact that each predicate (∀θ̄′ ∈ DX

θ′ , tiθ̄ = tiθ̄
′) must always be a

sufficient condition for both (∀θ̄′ ∈ DX
θ′ , tiθ̄◁ tiθ̄

′) and (∀θ̄′ ∈ DX
θ′ , tiθ̄▷ tiθ̄

′), the conjunction
of predicates in Q′ must be weaker than that of Q′′.
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By Theorems 7 and 8, the increasing decomposition and the decreasing decomposition
rules can be included in the rewriting system, and they have higher precedence than the
general decomposition when f is monotonically increasing or monotonically decreasing.

4.2.2 Decomposition Rules for Associative and Commutative Functions

We only consider fixed-arity functions so far, but we can generalize them and define a
variadic function to be a mapping f : ∪k∈NRk 7→ R which can take an arbitrary non-zero
number of arguments. In this section, we show that associativity and commutativity of
variadic functions can make the decomposition rules in Definitions 4 and 5 obtain even
weaker sufficient conditions.

To facilitate the presentation, we use a special notation to denote a variadic function. Let
t = ⟨t1, . . . , tk⟩, t1 = ⟨t1, . . . , tj⟩ and t2 = ⟨tj+1, . . . , tk⟩ be vectors of terms, where 1 ≤ j ≤ k.
Using these notations, the followings denote the same function call: f(t1, . . . , tk), f(t) and
f(t1, t2). A variadic function is associative if f(t) = t and f(t1, t2) = f(f(t1), t2), and
is commutative f(t1, . . . , tk) = f(tπ(1), . . . , tπ(k)) where π is a permutation over {1, . . . , k},
i.e., a bijection from the set to itself. Common variadic functions, such as summation,
maximum, and minimum, are usually associative and commutative. By commutativity, a
function has the following useful property.

Proposition 3. Let f be a commutative function and θ ∈ DS be an assignment where S ⊆
Z. If there are j ≥ 1 fixed terms among t1, . . . , tk, then we can always find a permutation
π over {1, . . . , k} such that

∀θ̄ ∈ DX
θ , f(t1θ̄, . . . , tkθ̄) = f(tπ(1)θ̄, . . . , tπ(j)θ̄, tπ(j+1)θ̄, . . . , tπ(k)θ̄),

where tπ(1), . . . , tπ(j) are all fixed in θ, while tπ(j+1), . . . , tπ(k) are free terms.

The proof directly follows the definition of commutativity. In other words, we can
always find a permutation for arguments of a variadic and commutative so that all fixed
terms are clustered. If the function f in the general decomposition rule is a commutative and
associative variadic function, we can use a more flexible decomposition rule that combines
partial information from fixed terms and requires all other unfixed terms to have identical
values in both assignments.

Definition 6. Suppose p ≡ (∀θ̄′ ∈ DX
θ′ , f(t1θ̄, . . . , tkθ̄) ◁ f(t1θ̄

′, . . . , tkθ̄
′)) is a predicate

where there are j ≥ 1 fixed terms among t1, . . . , tk. Let π be a permutation over {1, . . . , k}
such that t1 = ⟨tπ(1), . . . , tπ(j)⟩ and t2 = ⟨tπ(j+1), . . . , tπ(k)⟩ consist of all fixed terms and
free terms respectively.

• General Decomposition with Aggregation: if f is commutative and associative, then

(Q ∪ {p}, F )

⇝(Q ∪ {(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄

′) | ∀i = j + 1, . . . , k}, F ∪ {f(t1)θ = f(t1)θ
′}).

The followings show that the new decomposition rule in Definition 6 can replace the
general decomposition rule in Definition 4 when the function is commutative and associative.
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Theorem 9. The general decomposition with aggregation rule in Definition 6 is invariant-
preserving and diminishing.

Proof. It is straightforward to see that the rule is diminishing, while the invariant-preserving
property is proved as follows:

(∀θ̄′ ∈ DX
θ′ , f(t1θ̄, . . . , tkθ̄)◁ f(t1θ̄

′, . . . , tkθ̄
′))

⇔(∀θ̄′ ∈ DX
θ′ , f(t1θ̄, t2θ̄)◁ f(t1θ̄

′, t2θ̄
′))

⇔(∀θ̄′ ∈ DX
θ′ , f(f(t1)θ̄, t2θ̄)◁ f(f(t1)θ̄

′, t2θ̄
′))

⇐(
k∧

i=j+1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄)) ∧ (∀θ̄′ ∈ DX

θ′ , f(t1)θ̄ = f(t1)θ̄
′)

⇔(

k∧
i=j+1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄)) ∧ (f(t1)θ = f(t1)θ

′)

The second and the third steps are due to the commutativity and the associativity of f
respectively, while the fourth step holds because all full assignments are functionally valid.
By Proposition 1, the last step holds because θ̄[x] = θ[x] and θ̄′[x] = θ′[x] for all θ̄′ ∈ DX

θ′

and θ̄ = µθ′→θ(θ̄′).

Theorem 10. The general decomposition with aggregation rule in Definition 6 subsumes
the general decomposition rule in Definition 4.

Proof. Let p ≡ (∀θ̄′ ∈ DX
θ′ , f(t1θ̄, . . . , tkθ̄)◁ f(t1θ̄

′, . . . , tkθ̄
′)) be a predicate to be rewritten,

where f is a commutative and associative varadic function. Suppose that (Q ∪ {p}, F ) ⇝
(Q ∪ Q′, F ∪ F ′) by the general decomposition with aggregation rule and (Q ∪ {p}, F ) ⇝
(Q ∪ Q′′, F ) by the general decomposition rule. After applying the general decomposition
rule, the conjunction of predicates in Q′′ is

k∧
i=1

(∀θ̄′ ∈ DX
θ′ , tiθ̄ = tiθ̄

′)

⇔(

j∧
i=1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄)) ∧ (

k∧
i=j+1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄))

⇒(

j∧
i=1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄)) ∧ (∀θ̄′ ∈ DX

θ′ , f(t1)θ̄ = f(t1)θ̄
′)

⇔(

j∧
i=1

(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ = tπ(i)θ̄)) ∧ (f(t1)θ = f(t1)θ

′)

where π is as defined in Definition 6. The third step holds because all full assignments
are functionally valid, and the last step is by Proposition 1. Therefore, the conjunction of
predicates in Q′ ∧ F ′ is weaker than that for Q′′.
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We can also have similar relaxed decomposition rules for monotonically increasing or
decreasing functions, in which they first aggregate the partial information from fixed terms
and then applies increasing or decreasing decomposition from Definition 5.

Definition 7. Suppose p ≡ (∀θ̄′ ∈ DX
θ′ , f(t1θ̄, . . . , tkθ̄) ◁ f(t1θ̄

′, . . . , tkθ̄
′)) is a predicate

in the rewriting system such that there are j ≥ 1 fixed terms among t1, . . . , tk. Let π be
a permutation over {1, . . . , k} such that t1 = ⟨tπ(1), . . . , tπ(j)⟩ and t2 = ⟨tπ(j+1), . . . , tπ(k)⟩
consist of all fixed terms and free terms respectively.

• Increasing Decomposition with Aggregation: if f is monotonically increasing, commu-
tative and associative, then (Q ∪ {p}, F ) is rewritten into

(Q ∪ {(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ ◁ tπ(i)θ̄

′) | ∀ = j + 1, . . . , k}, F ∪ {f(t1)θ ◁ f(t1)θ
′}).

• Decreasing Decomposition with Aggregation: if f is monotonically decreasing, com-
mutative and associative, then (Q ∪ {p}, F ) is rewritten into

(Q ∪ {(∀θ̄′ ∈ DX
θ′ , tπ(i)θ̄ ▷ tπ(i)θ̄

′) | ∀i = j + 1, . . . , k}, F ∪ {f(t1)θ ▷ f(t1)θ
′}).

Similar to Theorems 9 and 10, we have the following results for the rules of increas-
ing/decreasing decomposition with aggregation.

Theorem 11. The rules of increasing decomposition with aggregation and decreasing de-
composition with aggregation in Definition 7 are invariant-preserving and diminishing.

Theorem 12. The increasing (respectively decreasing) decomposition with aggregation in
Definition 7 subsumes the increasing (respectively decreasing) decomposition in Definition 5.

The following example shows the advantages of decomposition with aggregation.

Example 4. Suppose we want to find sufficient conditions for θ and θ′ where var(θ) =
var(θ′) = {z1, z3}. Let (Q ∪ {p}, F ) be the pair of the rewriting system where

p ≡ (∀θ̄′ ∈ DX
θ′ ,min(θ̄[z1], θ̄[z2], θ̄[z3]) ≤ min(θ̄′[z1], θ̄

′[z2], θ̄
′[z3])). (14)

If we apply increasing decomposition directly to (14), we get

(Q ∪ {(∀θ̄′ ∈ DX
θ′ , θ̄[zi] ≤ θ̄′[zi]) | i = 1, 2, 3}, F ) (15)

Since the min function is commutative and associative, we can obtain

(Q ∪ {(∀θ̄′ ∈ DX
θ′ ,min(θ̄[z1], θ̄[z3]) ≤ min(θ̄′[z1], θ̄

′[z3])), (∀θ̄′ ∈ DX
θ′ , θ̄[z2] ≤ θ̄′[z2])}, F ) (16)

by applying the increasing decomposition with aggregation to (14).

After applying binding and deletion in Definition 4 to (15) and (16) respectively, we
obtain θ[z1] ≤ θ′[z1] ∧ θ[z3] ≤ θ′[z3] and min(θ[z1], θ[z3]) ≤ min(θ′[z1], θ

′[z3]) as sufficient
conditions for (14). The former sufficient condition is stronger than the latter one.

18



Exploiting Functional Constraints in Automatic Dominance Breaking

Constraint Defines Arguments Mono. Com. & Asso.

y =
∑n

i=1 xi − d0 y x1, . . . , xn Increasing Yes

y = max(x1, . . . , xn) y x1, . . . , xn Increasing Yes

y = min(x1, . . . , xn) y x1, . . . , xn Increasing Yes

y =
∏n

i=1 xi where D(xi) ⊆ Z+ y x1, . . . , xn Increasing Yes

y = element([d1, . . . , dn], x) y x No No

y = abs(x) y x No No

y = bool2int(b) y b Increasing No

b0 ↔ (x = y) b0 x, y No No

b0 ↔ (x ̸= y) b0 x, y No No

b0 ↔ (x ≤ d) b0 x Decreasing No

y = w · x where w ∈ R≥0 y x Increasing No

y = w · x where w ∈ R<0 y x Decreasing No

b0 ↔ and(b1, . . . , bn) b0 b1, . . . , bn Increasing Yes

b0 ↔ or(b1, . . . , bn) b0 b1, . . . , bn Increasing Yes

b0 ↔ xor(b1, . . . , bn) b0 b1, . . . , bn No Yes

b0 ↔ ¬b1 b0 b1 Decreasing Yes

Table 1: Common constraints for detecting dominance relations

By Theorems 10 and 12, we can always aggregate partial information from fixed terms
to derive weaker sufficient conditions when the variadic function f in a predicate is both
commutative and associative.

Table 1 summarizes common constraints in a normalized COP and the properties of
functions that can be used for deriving weaker sufficient conditions. For each type of
standard constraint, we give the functionally defined variable, arguments, its monotonicity
property (“Mono.”), and whether the function is commutative and associative (“Com. &
Asso.”). To facilitate the generation of nogoods, a global constraint can be represented as
a conjunction of standard constraints in Table 1 when constructing generation CSPs.

Example 5. The alldifferent(z1, . . . , zk) constraint (Régin, 1994) is a global constraint
that enforces a set of variables taking distinct values. To apply the rewriting system, the
constraint is first reified into b0 ↔ alldifferent(z1, . . . , zk). Let D̃ ⊆

⋃k
j=1D(zj) be the set

of values that appear in the domains of at least two variables in {z1, . . . , zk} and d = |D̃|.
We can compile the constraint into a set of standard constraints:

•
∧

vi∈D̃
∧k

j=1(bjvi ↔ (zj = vi) ∧ yjvi = bool2int(bjvi)),

•
∧

vi∈D̃(y0vi = sum(y1vi , . . . , ykvi) ∧ bvi ↔ (y0vi ≤ 1)), and

• b0 ↔ and(bv1 , . . . , bvd),

where y0vi , yjvi , bjvi and bv are introduced variables defined by standard functional constraints
that enjoy the properties of monotonicity, commutativity and associativity. Therefore, the
decomposition rules in Definitions 5 and 6 can be applied to derive sufficient conditions for
the implied satisfaction condition of the alldifferent constraint.
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Other global constraints, such as global cardinality constraint (Régin, 1996; Oplobedu,
Marcovitch, & Tourbier, 1989) and bin packing constraints (Shaw, 2004), can also be sup-
ported similarly. Note that global constraints are treated as a conjunction of standard
constraints only in synthesizing generation CSPs, and are untouched in problem-solving.

5. Experimental Evaluation

In this section, we report the experimental results on various optimization problems to
show the utility of our proposed rewriting system in generating dominance breaking no-
goods. We use MiniZinc (Nethercote et al., 2007) as the high-level modeling language and
implement our nogood generation method by modifying the publicly available MiniZinc
compiler with version 2.6.21. In a compiled model, we treat constraints with the annotation
“defines_var” as functional constraints, while others are non-functional constraints that
should be reified. The generated nogoods for each problem are output as text and then
appended to the original MiniZinc models before problem-solving.

The augmented models are submitted to MiniZinc using the Chuffed solver 0.10.4 (Ohri-
menko, Stuckey, & Codish, 2009), the CP-SAT solver in OR-Tools v9.6 (Perron & Furnon,
2023), and the Gecode solver 6.3.0 (Schulte, Lagerkvist, & Tack, 2009). The first two
are state-of-the-art hybrid solvers with lazy clause generation, and the last one is a well-
established pure CP solver. There are totally five different configurations for problem-
solving:

• Chuffed(User): using the Chuffed solver with the user-specified search heuristic.

• Chuffed(VSIDS): using the Chuffed solver with the Variable State Independent De-
caying Sum search heuristic.

• CP-SAT(User): using the CP-SAT solver with the user-specified search heuristic.

• CP-SAT(Auto): using the CP-SAT solver with the underlying SAT solver’s heuristics.

• Gecode(User): using the Gecode solver with the user-specified search heuristic.

Note that our method aims to analyze a user-defined model with nested functions, not
necessarily that of the best model. All experiments are run on Quad Xeon Platinum 8268
2.90GHz processors.

There are six benchmark problems including talent scheduling problem (Cheng, Dia-
mond, & Lin, 1993), warehouse location problem (Van Hentenryck, 1999), team assignment
problem, budgeted maximum coverage problem (Khuller, Moss, & Naor, 1999), partial cover
problem (Kearns, 1990) and sensor placement problem (Krause, Leskovec, Guestrin, Van-
Briesen, & Faloutsos, 2008). For all benchmarks, we attempt to generate all dominance
breaking nogoods of length up to L (L-dom), and compare our method to the basic prob-
lem model (basic) and the model with manual dominance breaking constraints (manual)
whenever they are available. The timeout for the whole solving process (nogood generation
+ problem-solving) is set to 7200 seconds, while we reserve at most 3600 seconds for nogood

1. We modify the embedded Geas solver and use the free search option for solving the generation CSPs.
Our implementations are available at https://github.com/AllenZzw/auto-dom.
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Config. Group
basic manual 2-dom 3-dom 4-dom

#s #t #s #t #s #t #s #t #s #t

Chuffed
(User)

n = 16 19 935.07 0 – 20 892.55 20 484.66 20 2142.00
n = 18 2 6441.28 0 – 2 6497.44 9 4830.68 5 6897.56
n = 20 0 – 0 – 0 – 1 6880.22 0 –
n = 22 0 – 0 – 0 – 0 – 0 –

Chuffed
(VSIDS)

n = 16 20 213.00 7 6235.85 20 216.32 20 171.36 20 1785.49
n = 18 18 1628.28 0 – 18 1751.84 20 824.58 16 5414.10
n = 20 11 5115.84 0 – 11 5086.09 15 2950.20 6 6757.51
n = 22 0 – 0 – 0 – 0 – 0 –

CP-SAT
(User)

n = 16 19 2213.05 0 – 18 2191.73 20 365.56 20 1326.33
n = 18 0 – 0 – 0 – 12 4769.87 15 5886.23
n = 20 0 – 0 – 0 – 0 – 0 –
n = 22 0 – 0 – 0 – 0 – 0 –

CP-SAT
(Auto)

n = 16 18 829.80 1 7062.29 18 853.75 20 186.56 20 1257.97
n = 18 1 6876.40 0 – 1 6828.59 10 3856.81 15 5498.32
n = 20 0 – 0 – 0 – 1 6751.72 1 7122.93
n = 22 0 – 0 – 0 – 0 – 0 –

Gecode
(User)

n = 16 20 372.66 0 – 20 369.46 2 7074.7 0 –
n = 18 9 6006.68 0 – 8 5950.27 0 – 0 –
n = 20 0 – 0 – 0 – 0 – 0 –
n = 22 0 – 0 – 0 – 0 – 0 –

Table 2: Comparison of different methods in the talent scheduling problem

generation and use the remaining time for problem-solving in L-dom. If nogood genera-
tion times out in 3600 seconds, we augment the problem model with all nogoods generated
before the timeout. Otherwise, the remaining time will be used for problem-solving.

The standard benchmark for optimization problems includes several instance groups
of various problem sizes, with each group consisting of 20 random instances. For each
method under different configurations, we report the number of solved instances (#s) and
the geometric mean of the total time (#t) in seconds. If an instance times out, we use
7200 seconds as its total time to compute the geometric mean of the corresponding instance
group, and an entry of ”–” indicates that all instances timed out in an instance group.
We compare different methods by first comparing the number of solved instances and then
by the geometric mean of the total time. We highlight the best method in bold for each
instance group in each configuration. It is worth noting that the original framework of
automatic dominance breaking (2020, 2023) is inapplicable to all benchmarks due to nested
function calls in either the objective or constraints.

5.1 Talent Scheduling Problem

The Talent Scheduling Problem (Cheng et al., 1993) is prob039 in CSPLib (Gent & Walsh,
1999), which is to place n scenes and minimize the total costs for a set of actors. Each actor
appears in several scenes and is paid a fixed cost per day if they are present. All actors
need to be present on location from the first scene they are in till the last scene they are
in. The problem is modelled as a sequencing problem using one variable for each scene.
The objective is a weighted sum of several min/max functions. The manual dominance
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Config. Instance
basic manual 2-dom 3-dom 4-dom
#t #t #t #t #t

Chuffed
(VSIDS)

film118 561.49 – 563.35 732.56 4882.80
film103 1386.03 – 1526.29 1182.97 5852.37
film119 2076.49 – 1127.79 1314.97 5048.47
film116 5298.20 – 2534.79 1503.89 6064.68
film105 4015.22 – 4993.56 1643.53 5528.25
film117 – – 7150.62 1803.31 6158.02
film114 – – – – –

MobStory – – – – –

Table 3: Comparison of different methods for instances from Smith (2005)

breaking constraints for manual are by Chu and Stuckey (Chu & Stuckey, 2012), which
exclude solutions where the total cost decreases by swapping positions of two scenes.

Table 2 shows the results for standard benchmark for n ∈ {16, 18, 20, 22} in different
search configurations. We note that the total solving time of manual is even larger than
that of basic. Expressing manual dominance breaking in the MiniZinc model requires
additional variables and introduces overheads for propagation. Chu and Stuckey (Chu &
Stuckey, 2012) implement the manual dominance breaking constraints in Chuffed, which
requires sophisticated and bespoke techniques to reduce the overhead. The generated no-
goods by our method only involve variables in the original model, and they can be posted in
the MiniZinc model without modifying the backend solver. Overall, the generated nogoods
can help to improve the number of solved instances or reduce the mean total time in all
configurations except for using the Gecode solver. The 2-dom configuration has similar
number of solved instance and mean total time as the basic configuration for all solvers,
since it cannot generate sufficient nogoods for dominance breaking. The 3-dom configura-
tion usually achieves the smallest total time in all instance groups when using the Chuffed
and CP-SAT solvers. The 4-dom configuration, while having a longer mean time due to the
overhead of solving generation CSPs, still achieves the smallest number of solved instances
for the CP-SAT solver. The results show the usefulness of generated nogoods in solving the
talent scheduling problem, but the best method varies for different configurations.

We also test our method on instances previously used by Smith (2005), and present the
results in Table 3, highlighting the smallest total time for each instance. We only show
the result for the Chuffed(VSIDS) configuration since it performs the best in the talent
scheduling problem (as shown in Table 2). The instances are sorted by the time of the
basic method and then by the smallest total time of L-dom. As shown in Table 3, our
method reduces the total time for the majority of instances compared to the basic method.

5.2 Warehouse Location Problem

The Warehouse Location Problem (Van Hentenryck, 1999) is prob034 in CSPLib (Gent &
Walsh, 1999). In this problem, we are required to choose a subset of possible warehouses
in several locations to supply goods for a set of n stores. Each warehouse has a certain
capacity defining how many stores it can supply, and there is a cost for supplying goods for
different stores. When a warehouse needs to supply more than one store, there is a fixed
opening cost. The objective is to minimize the total cost consisting of the total opening cost
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Config. Group
basic 2-dom 3-dom 4-dom

#s #t #s #t #s #t #s #t

Chuffed
(User)

n = 35 0 – 20 36.88 20 2002.85 20 3629.15
n = 40 0 – 20 109.38 20 3176.24 20 3742.91
n = 45 0 – 20 154.63 20 3726.52 20 3722.41
n = 50 0 – 16 917.73 19 3973.95 19 3966.55

Chuffed
(VSIDS)

n = 35 0 – 20 44.85 20 2045.68 20 3634.98
n = 40 2 4310.27 20 114.28 20 3201.58 20 3765.55
n = 45 4 4382.41 20 145.25 20 3778.30 20 3742.90
n = 50 3 5923.10 20 463.40 19 3920.71 19 3928.86

CP-SAT
(User)

n = 35 2 3447.64 20 47.38 20 2000.19 20 3615.22
n = 40 8 443.69 20 53.52 20 2133.72 20 3617.49
n = 45 5 1348.29 20 74.46 20 3057.62 20 3625.16
n = 50 2 3930.56 20 81.75 20 3624.23 20 3633.50

CP-SAT
(Auto)

n = 35 20 43.50 20 37.49 20 2006.22 20 3619.27
n = 40 19 75.38 20 41.39 20 2189.52 20 3627.02
n = 45 19 204.93 20 52.72 20 2906.85 20 3633.75
n = 50 16 809.41 20 70.22 20 3618.79 20 3628.91

Gecode
(User)

n = 35 0 – 20 119.43 20 3629.60 17 5340.69
n = 40 0 – 19 296.92 12 5231.45 9 6354.57
n = 45 0 – 20 573.97 3 7087.60 1 7155.10
n = 50 0 – 13 2838.35 0 – 0 –

Table 4: Comparison of different methods in the warehouse location problem

for all warehouses and the total supplying costs for all stores. We model the problem using
one integer variable for each store to indicate its supplying warehouse, and the objective is
a weighted sum with nest logical disjunctions to indicate the opening of warehouses.

Table 4 gives the results for instances with n ∈ {30, 35, 40, 45} and 15 warehouses. The
results in the table show that the 2-dom method solves more instances within the time
limit and reduces the mean total time compared with the basic method. In this problem,
it is usually not beneficial to increase the maximum length of nogoods to 3 or 4 since the
reduced time in problem-solving cannot compensate for the additional overheads in nogood
generation and handling of a large amount of nogoods during problem-solving.

5.3 Team Assignment Problem

The Team Assignment Problem appears in MiniZinc Challenge 2018 and 2022 (Stuckey,
Becket, & Fischer, 2010). There are n boards, each consisting of m players. Players from
the same board must be assigned to different teams. Each player has a rating and may
have preferences regarding whom they want to be in the same team. The total rating of a
team is the sum of ratings of all its players. The objective is to maximize the satisfaction
of preferences and minimize the range of ratings of all teams simultaneously. We use one
integer variable to represent the assigned team for each player. Therefore, the objective
is a weighted sum of nested max/min functions to compute the range of team ratings and
nested equalities to indicate whether any two players are in the same team.

Table 5 displays the results for n ∈ {9, 10, 11, 12} and m = 6 obtained by various solver
configurations. The Gecode solver’s results are excluded since it failed to solve any instances.
The addition of dominance breaking nogoods generally improves the performance of the

23



J. H. M. Lee and A. Z. Zhong

Config. Group
basic 2-dom 3-dom 4-dom

#s #t #s #t #s #t #s #t

Chuffed
(User)

n = 9 0 – 1 6576.16 1 6387.49 1 7008.99
n = 10 0 – 2 6161.83 2 6428.42 2 7013.05
n = 11 0 – 0 – 0 – 0 –
n = 12 0 – 0 – 0 – 0 –

Chuffed
(VSIDS)

n = 9 12 920.29 20 136.96 18 669.42 20 3837.97
n = 10 11 1841.32 17 333.90 17 1306.15 15 4491.93
n = 11 16 927.98 15 719.01 18 1751.76 19 4125.28
n = 12 11 2447.37 14 1023.45 19 2881.53 16 4925.37

CP-SAT
(User)

n = 9 9 1053.75 12 939.54 12 1561.77 12 4408.2
n = 10 3 3225.08 5 2826.93 4 3665.38 5 5549.33
n = 11 4 4324.48 3 4641.06 4 4152.11 5 6196.5
n = 12 2 6876.71 1 5038.65 1 5979.84 1 6942.78

CP-SAT
(Auto)

n = 9 20 1.84 20 5.39 20 186.04 20 2976.83
n = 10 20 4.91 20 8.82 20 80.4 20 1805.78
n = 11 20 7.36 20 13.81 20 127.28 19 3327.48
n = 12 20 16.21 20 27.1 20 258.17 19 3810.54

Table 5: Comparison of different methods in the team assignment problem

Chuffed(User), Chuffed(VSIDS) and CP-SAT(User) configurations compared to the basic
method. However, the best method varies for different instance groups and configurations.
For the CP-SAT(Auto) configuration, we notice that the addition of dominance breaking
nogoods may not enhance the performance of the CP-SAT solver. This is due to the
efficiency of the basicmethod across all instance groups. We also observe that the generated
nogoods encode a class of symmetry-breaking constraints. In Section 6, we will discuss how
to identify dominance and symmetry relations.

5.4 Budgeted Maximum Coverage Problem

The Budgeted Maximum Coverage Problem (Khuller et al., 1999) is a variant of the classical
set cover problem. There is a ground set U and a collection T consisting of n subsets of
U , where each subset is associated with a cost ci. The goal is to find a subset of T such
that their union covers the maximum number of elements subject to the constraint that the
total cost does not exceed a given budget. We use one Boolean variable for each set in T
to indicate whether the set is selected or not. The objective is a weighted sum with nested
disjunctions to represent whether an element in U is covered or not. The search strategy is
to select the unfixed subset in T with the smallest cost first.

Table 6 shows the results for instances with |U | = n ∈ 50, 60, 70, 80. The basic method
can only solve easy instances in the Chuffed(User), CP-SAT(User), and Gecode(User) con-
figurations, while it can solve most instances in the Chuffed(VSIDS) and CP-SAT(Auto)
configurations. However, adding dominance breaking nogoods can solve more instances
within the time limit, with 4-dom achieving the most solved instances among all four
methods in all configurations. When considering the geometric mean of total time, the
performance of different methods varies for different instance groups and configurations. In
general, the effectiveness of dominance breaking nogoods of different lengths depends on
the difficulty of instances, which can be estimated by the baseline performance of the basic
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Config. Group
basic 2-dom 3-dom 4-dom

#s #t #s #t #s #t #s #t

Chuffed
(User)

n = 50 20 413.68 20 63.95 20 19.87 20 96.45
n = 60 4 6403.32 12 3688.21 20 758.63 20 321.28
n = 70 0 – 0 – 1 6552.69 14 2959.77
n = 80 0 – 0 – 0 – 2 6459.30

Chuffed
(VSIDS)

n = 50 20 0.90 20 0.72 20 4.93 20 95.78
n = 60 20 9.79 20 7.12 20 14.59 20 224.81
n = 70 20 126.46 20 97.17 20 85.55 20 470.03
n = 80 20 682.88 20 564.47 20 376.92 20 1071.38

CP-SAT
(User)

n = 50 20 513.05 20 38.03 20 5.72 20 77.68
n = 60 0 – 11 3492.75 19 303.03 20 257.52
n = 70 0 – 1 4777.46 2 4891.23 12 2810.73
n = 80 0 – 0 – 0 – 2 6187.46

CP-SAT
(Auto)

n = 50 20 0.76 20 0.53 20 3.93 20 80.70
n = 60 20 6.34 20 4.48 20 8.63 20 180.72
n = 70 20 122.71 20 69.92 20 45.57 20 382.62
n = 80 16 994.28 19 703.44 20 337.13 20 756.08

Gecode
(User)

n = 50 20 548.31 20 114.80 20 40.1 20 79.60
n = 60 0 – 10 4685.98 18 1773.96 20 511.63
n = 70 0 – 0 – 0 – 4 5315.13
n = 80 0 – 0 – 0 – 0 –

Table 6: Comparison of different methods in the budgeted maximum coverage problem

method. As instances become more challenging, generating longer nogoods becomes more
beneficial for this problem.

5.5 Partial Set Cover Problem

The Partial Set Cover Problem (Kearns, 1990) is another variant of the set cover problem.
Given a ground set U and a collection T consisting of n subsets of U , the goal is to find
a subset of T with the minimum total cost, whose union covers at least K elements in U .
Similar to the budgeted maximum coverage problem, we define one Boolean variable for
each set. The constraint of partial coverage is modelled as an inequality where we require
a sum of nested disjunctions representing whether an element is covered to be larger than
K. The search strategy is to select the subset with the smallest cost first.

Table 7 shows the result for standard benchmark with |U | = n ∈ {50, 60, 70, 80}. The
baseline basic method can solve a relatively small number of instances using the user spec-
ified search heuristic, and can solve more than half of all instances in CP-SAT(User) and
CP-SAT(Auto). The 4-dom method has the largest number of solved instances in all con-
figurations. Similar to that in the partial set cover problem, the benefit of using dominance
breaking nogoods depends on the hardness of an instance in terms of the geometric mean of
total time. If the basic method can efficiently solve an instance, then 2-dom or 3-dom can
achieve the best trade-off between overhead of nogood generation and search space pruning.
Otherwise, 4-dom can achieve the smallest total time for hard instances.
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Config. Group
basic 2-dom 3-dom 4-dom

#s #t #s #t #s #t #s #t

Chuffed
(User)

n = 50 3 6009.59 17 575.79 20 43.13 20 113.93
n = 60 0 – 1 6545.73 15 2214.59 20 462.81
n = 70 0 – 0 – 0 – 9 4165.95
n = 80 0 – 0 – 0 – 2 6663.94

Chuffed
(VSIDS)

n = 50 20 34.89 20 8.59 20 8.69 20 113.10
n = 60 20 293.73 20 135.47 20 64.6 20 291.75
n = 70 16 1469.41 19 1104.00 20 564.86 20 625.60
n = 80 12 3444.99 14 3126.72 13 2060.37 19 2115.91

CP-SAT
(User)

n = 50 3 6509.45 18 135.46 20 5.68 20 85.16
n = 60 0 – 2 5944.92 18 417.35 20 276.08
n = 70 0 – 0 – 0 – 11 4508.02
n = 80 0 – 0 – 0 – 1 6607.88

CP-SAT
(Auto)

n = 50 20 17.07 20 1.32 20 4.34 20 87.04
n = 60 20 98.41 20 66.20 20 11.81 20 213.81
n = 70 10 2218.60 15 1157.88 16 462.1 20 608.83
n = 80 6 3188.85 11 1710.74 11 1407.16 14 1820.51

Gecode
(User)

n = 50 3 6157.5 17 888.69 20 94.76 20 97.49
n = 60 0 – 1 6682.94 9 3810.94 20 776.86
n = 70 0 – 0 – 0 – 3 6877.89
n = 80 0 – 0 – 0 – 0 –

Table 7: Comparison of different methods in the partial set cover problem

5.6 Sensor Placement Problem

The Sensor Placement Problem (Krause et al., 2008) is a variant of the facility location
problem (Cornuéjols, Nemhauser, & Wolsey, 1983), where we need to select a fixed cardi-
nality subset of n locations to place sensors in order to provide service for customers. If we
place a sensor at location i, then it provides service to a subset of reachable customers, and
the service value for customer j is Mij . Each customer chooses the facility with the highest
service value from the opened sensors, and the goal is to maximize the total service value
for all customers. We model the problem using one Boolean variable for each sensor to
indicate whether it is selected or not. The objective is a sum of nested max/min functions.
The search strategy is to select the unfixed location with the highest service value to the
set of customers that are reachable by the sensor placed at the location.

Table 8 shows the result for instances with n ∈ {50, 60, 70, 80}. All methods can solve
most of all instances in this problem under all configurations. Without generated nogoods,
the basicmethod can achieve the best performance in Gecode(User). Compared with basic,
the 2-dom method can still slightly reduce the geometric mean of total time in CP-SAT
and Gecode(User). In other configurations, 3-dom usually achieves the smallest mean total
time in most instance groups. The 4-dom method uses longer dominance breaking nogoods
for problem-solving, but the overhead of nogood generation makes the overall performance
non-competitive compared with basic.

5.7 Discussion

We conducted extensive experiments on six optimization problems using different solvers
to demonstrate the benefits of augmenting the problem model with dominance breaking
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Config. Group
basic 2-dom 3-dom 4-dom

#s #t #s #t #s #t #s #t

Chuffed
(User)

n = 50 20 55.78 20 46.26 20 45.00 20 195.95
n = 60 20 147.30 20 124.55 20 114.42 20 454.29
n = 70 20 478.16 20 356.00 20 291.67 20 974.88
n = 80 20 1356.97 20 1065.48 20 860.06 20 2077.84

Chuffed
(VSIDS)

n = 50 20 108.63 20 86.92 20 75.10 20 215.75
n = 60 20 422.12 20 299.38 20 223.46 20 567.77
n = 70 20 1021.77 20 757.43 20 609.66 20 1263.13
n = 80 20 2908.40 20 2051.19 20 1705.65 20 3153.15

CP-SAT
(User)

n = 50 20 51.23 20 46.15 20 49.4 20 169.02
n = 60 20 120.34 20 102.55 20 107.14 20 382.18
n = 70 20 311.09 20 253.50 20 244.04 20 753.75
n = 80 20 801.01 20 646.39 20 603.78 20 1534.20

CP-SAT
(Auto)

n = 50 20 129.5 20 87.56 20 74.9 20 195.05
n = 60 20 688.88 20 512.81 20 423.21 20 577.04
n = 70 17 3808.58 17 1914.38 19 1623.73 20 2035.21
n = 80 1 6833.14 5 6259.22 6 5842.2 7 5980.07

Gecode
(User)

n = 50 20 30.75 20 28.44 20 33.08 20 156.71
n = 60 20 74.25 20 61.99 20 71.92 20 356.40
n = 70 20 180.93 20 150.64 20 158.01 20 733.12
n = 80 20 475.98 20 378.69 20 388.35 20 1510.43

Table 8: Comparison of different methods in the sensor placement problem

nogoods generated by our proposed method. The experimental results show that the best
configuration varies from problem to problem, but our method can improve the performance
in terms of the number of solved instances and the total time with nogoods of appropriate
length in most cases. However, our method introduces additional overheads in nogood
generation and the handling of a large number of nogood constraints. The usefulness of
automatic dominance breaking depends on whether the overhead is less than the reduced
time for problem-solving.

Determining the optimal length of generated nogoods in advance is non-trivial. Fur-
thermore, we observe in the team assignment problem that additional dominance breaking
nogoods may not improve the performance of a solver. Therefore, it is worthwhile to un-
derstand the semantics of generated nogoods and apply more advanced methods to exploit
the discovered dominance and symmetry relations. In Section 6, we will demonstrate how
to manually examine the pattern of nogoods and generalize them to compact dominance
breaking constraints for all instances of a problem.

6. Discovering Dominance Relations by Inspection

Our method, which follows the framework of automatic dominance breaking (Lee & Zhong,
2020, 2023, 2021), attempts to generate all dominance breaking nogoods before problem-
solving, and sometimes the number of nogoods is so large that generating all nogoods will
cost too much time for each problem instance. Note that nogoods are the most basic units
of constraints. Every high-level constraint can be decomposed into a set of nogoods, and
conversely, it is possible to combine a group of nogoods into a high-level constraint. In this
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section, we give several case studies on how to discover the high-level dominance breaking
constraints by examining the patterns of the generated nogoods by our method.

6.1 Still Mill Slab Design Problem

The first case study is the Still Mill Slab Design Problem (Kalagnanam, Dawande, Trumbo,
& Lee, 1998), which is problem 039 in CSPLib (Gent & Walsh, 1999). The problem is
to assign n colored orders with different weights to m slabs which has several possible
sizes. The total weight of orders assigned to a slab cannot exceed the chosen slab size,
and each slab cannot contain orders with more than 2 colors. The loss of each slab is the
difference between the chosen slab size and the total weight of orders assigned to the slab.
The objective is to minimize the total loss of all slabs. In this problem, we can model the
problem using one integer variable xi for each order i to represent which slab it is assigned
to. To minimize the loss, the best size choice for a slab s is the smallest size that is larger
than the total weight of all orders that are assigned to the slab. The objective is modelled
as follows: ∑

j=1,...,m

element(Loss,
∑

i=1,...,n

wi · bool2int(xi = j))

where wi is the weight for order i. The array Loss maps different total weights of orders
in a slab to its corresponding loss, and element(Loss,W ) is the W th element of the array
Loss. For example, if a slab size can be either 2, 5 and 7, then Loss = [0, 1, 0, 2, 1, 0, 1, 0] is
an array with index starting from 0.

Previous works study different classes of symmetries, one of which is order symme-
tries (Frisch, Miguel, & Walsh, 2001b). Two orders with identical sizes and colors are
equivalent so that their assigned slab can be exchanged. We apply our method to generate
nogood of length 2 for the model from MiniZinc Challenge 2017 (Stuckey et al., 2010).
The generation always times out in 3600 seconds, and the overhead always outweighs the
benefit in problem-solving. Although a single nogood means relatively little, a bunch of
them together can derive a meaningful constraint collectively. By generating nogoods of
length 2, we observe that when there are nogoods for some pairs of variables xi and xj , the
set of generated nogoods is always {xi ̸= vi ∨ xj ̸= vj | vi, vj ∈ {1, . . . ,m} ∧ vi > vj}. For
example, in the instance2 from CSPLib where there are n = 111 orders and m = n slabs,
we can generate a set of nogoods as follows:

x2 ̸= 2 ∨ x26 ̸= 1,
x2 ̸= 3 ∨ x26 ̸= 1, x2 ̸= 3 ∨ x26 ̸= 2
x2 ̸= 4 ∨ x26 ̸= 1, x2 ̸= 4 ∨ x26 ̸= 2, x1 ̸= 4 ∨ x26 ̸= 3
x2 ̸= 5 ∨ x26 ̸= 1, x2 ̸= 5 ∨ x26 ̸= 2, x2 ̸= 5 ∨ x26 ̸= 3, x2 ̸= 5 ∨ x26 ̸= 4,
. . . . . . . . . . . .
x2 ̸= 111 ∨ x26 ̸= 1, . . . x2 ̸= 111 ∨ x26 ̸= 109, x2 ̸= 111 ∨ x26 ̸= 110

We observe that such a set of nogoods implies that x1 can never be larger than x2, and
therefore they can be combined into one single inequality constraint x1 ≤ x2. Note that
these constraints are designed to ensure that the order i is placed on a slab with an index

2. https://www.csplib.org/Problems/prob038/data/111Orders.txt.html
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Figure 1: Solving time comparison of Steel Mill Slab Design Problem

less than or equal to the slab index of order j when orders i and j are equivalent. It is
surprising to find that two orders are deemed equivalent when

• they have the same size and color, or

• they have the same size, and each order has a colour that is used nowhere else.

While the first case is known in the literature (Frisch et al., 2001b), the second condition
has never been revealed and exploited to the best of our knowledge.

We augment the model from MiniZinc Challenge 20173 with constraints to break the
newly discovered symmetry relationship. Blue dots in Figure 1 represent the solving time
with/without symmetry breaking constraints of the new discovered symmetries for all 380
instances from the steel mill slab library4, and the dots below the diagonal line represent the
instance benefiting from the newly discovered constraints. We observe that the solving time
is reduced in the majority of cases, especially more so when the solving time of the original
model requires more than 10 seconds. The hard instances are represented by dots in the
shaded region in Figure 1. Note that both axes are in log scale, and the speed-up of new
constraints is up to two orders of magnitude. However, we also observe that several outliers
on the top-left part require substantially more solving time after adding the new symmetry
breaking constraints. This is due to the conflict between the search heuristic and the static
symmetry breaking constraints (Gargani & Refalo, 2007). We also conduct experiments
by adopting the SBDS-1UIP method (Chu, Garcia De La Banda, Mears, & Stuckey, 2014)
implemented in the Chuffed solver, a dynamic symmetry breaking method combined with
lazy clause generation, in order to avoid conflict. Red dots in Figure 1 represents the
solving time with/without applying the SBDS-1UIP method using the newly discovered
symmetries. Even though the dynamic method can avoid substantially deteriorating the

3. https://github.com/MiniZinc/minizinc-benchmarks/tree/master/steelmillslab
4. http://becool.info.ucl.ac.be/steelmillslab
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performance, the overall improvement in solving efficiency is also less than that of the static
symmetry breaking constraints.

6.2 Balanced Academic Curriculum Problem

The Balanced Academic Curriculum Problem (Castro & Manzano, 2001) is problem 030 in
CSPLib (Gent & Walsh, 1999). There are n courses each associated with several credits
representing the effort required to complete the course, and courses need to be assigned to
m academic periods subject to the course prerequisite constraints. The workload of each
period is the sum of all credits of courses that are assigned to the period. The objective
is to minimize the maximum academic load for all periods to balance the loads among
academic periods. We use one integer variable xi for each course to represent its assigned
academic period. To balance the workloads, the objective function is a maximum function
with nested summation functions as follows:

max
j=1,...,m

(

n∑
i=1

ci · bool2int(xi = j)),

where ci is the credits for course i. A prerequisite constraint between course i and j can be
modelled as xi < xj .

By analyzing the nogoods of a small instance, we find that the set of generated nogoods
of length 2 involving two variables xi and xj is always of the form {xi ̸= vi ∨ xj ̸= vj |
vi, vj ∈ {1, . . . , p} ∧ vi > vj}, and can be combined into an inequality constraint xi ≤ xj .
When there are such nogoods involving two variables xi and xj , courses i and j must satisfy
the following conditions:

• their credits are the same, i.e., ci = cj ,

• for any k ∈ {1, . . . , n}, if there is a prerequisite constraint xi < xk , then there must
be a constraint xj < xk, and

• for any k ∈ {1, . . . , n}, if there is a prerequisite constraint xk < xj then there must
be a constraint xk < xi.

These conditions are equivalent to those proposed by Monette, Jean-Noël et al. (Monette,
Schaus, Zampelli, Deville, & Dupont, 2007), which shows that our method can also reveal
dominance breaking constraints written by experts in the literature. Note that the in-
equality constraints for the balanced academic curriculum problem are dominance breaking
constraints, while those of the steel mill slab design problem is for symmetry breaking.

7. Concluding Remarks

In this paper, we generalize the framework of automatic dominance breaking to constraint
optimization problems with nested functions, where the derivation of sufficient conditions in
a generation CSP is formulated formally. We identify that common function properties such
as monotonicity, commutativity and associativity are useful in deriving weaker sufficient
conditions such that more dominance breaking nogoods can be generated. We implement the
tool for automatic dominance breaking using the MiniZinc compiler. The experimentation
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shows that the tool can discover dominance breaking nogoods for COPs with more varying
objectives and constraints, and the generated nogoods are effective in pruning the search
space and reducing the time for problem-solving.

Our tool is capable of compiling and synthesizing generation CSPs for problems in the
MiniZinc benchmarks5. However, whether a benchmark can benefit from our method can-
not be guaranteed, as solving the generation CSP may sometimes incur significant overhead,
or the generated nogoods may not improve problem-solving. In this paper, we only exploit
the discovered dominance relations by adding additional constraints to the original opti-
mization problem. It is known that static dominance breaking may not improve solving
performance in various problems (Chu & Stuckey, 2015; Monette et al., 2007). In the liter-
ature, several advanced methods have been proposed to exploit dominance relations in the
Branch and Bound algorithm. For example, Chu and Stuckey (2013) propose dominance
jumping, which avoids the potential conflicts between static dominance breaking constraints
and user-specified search heuristics. Isoart and Régin (2021) proposed utilizing k-opt heuris-
tics, which can be interpreted as exploiting dominance rules, to propagate the mandatory
Hamiltonian path constraint in the context of the traveling salesman problem. Exploit-
ing the dominance relations from the generated nogoods to improve search performance in
general is an interesting direction for future research.

Our method requires a complete constraint instance to synthesize generation CSPs. Au-
tomatic detection of dominance relations from constraint models alone is an interesting area
for future research. As demonstrated in the case studies in Section 6, nogoods with rele-
vant semantics can be combined into high-level constraints that can be handled efficiently.
One direction for future work is to automate the process of deriving high-level constraints
and transferring the constraints from small instances to larger instances of the same prob-
lem type. The acquired constraints can help users better understand the target COP and
improve the efficiency of existing models.

Our method is also related to lazy clause generation (Ohrimenko et al., 2009), which
learns nogoods upon detecting a conflict during constraint propagation and can be thought
of as dynamic dominance breaking (Chu & Stuckey, 2015). We anticipate that the nogoods
generated by our approach may overlap with those generated by lazy clause generation
solvers like Chuffed and CP-SAT, but the extent of this overlap would depend on the
specific problems and configurations. A formal analysis on the performance gains of our
method in solvers with or without lazy clause generation would be an interesting direction
for future research.
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