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Abstract—As mobile shopping has gradually become the main-
stream shopping mode, recommendation systems are gaining an
increasingly wide adoption. Existing recommendation systems are
mainly based on explicit and implicit user behaviors. However,
these user behaviors may not directly indicate users’ inner feel-
ings, causing erroneous user preference estimation and thus
leading to inaccurate recommendations. Inspired by our key
observation on the correlation between pupil size and users’
inner feelings, we consider using the change of pupil size when
browsing to model users’ preferences, so as to achieve tar-
geted recommendations. To this end, we propose PupilRec as
a computer-vision-based recommendation framework involving
a mobile terminal and a server side. On the mobile terminal,
PupilRec collects users’ pupil size change information through
the front camera of smartphones; it then preprocesses the raw
pupil size data before transmitting them to the server. On the
server side, PupilRec utilizes the Tsfresh package and Random
Forest algorithm to figure out the key time-series features directly
implying user preferences. PupilRec then trains a neural network
to fit a user preference model. Using this model, PupilRec predicts
user preference to obtain a user–product matrix and further sim-
plifies it by singular value decomposition. Finally, the real-time
recommendation is achieved by a collaborative filtering module
that retrieves recommended contents to users smartphones. We
prototype PupilRec and conduct both experiments and field stud-
ies to comprehensively evaluate the effectiveness of PupilRec by
recruiting 67 volunteers. The overall results show that PupilRec
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can accurately estimate users’ preference and can recommend
products users interested in.

Index Terms—Energy optimization, multilayer perceptron
(MLP), pupillary response, random forest, recommendation, user
preference model.

I. INTRODUCTION

SHOOPING on mobile phones has been a trend nowa-
days [1], [2], in which recommendation systems [3] play

a vital role. According to a survey of [4], during the Double
Eleven festival in 2020, Tmall’s order volume was 498.2 bil-
lion yuan and the total trading volume of JD was 271.5
billion yuan. During festivals, mobile shoppers may account
for 69.31% of total consumers. Facing such a keen competi-
tion in the mobile shopping market, the effectiveness of the
recommendation system predicting user preference for a shop-
ping app has become a key factor to outbid others in revenue.
In addition, with the rise of short video platforms, the demand
for accurate recommendations becomes urgent. For example,
in the largest Chinese short video platform Douyin, recom-
mendation systems directly affect the traffic of the platform
as well as the revenue of live-streaming sales [5].

Unfortunately, traditional recommendation systems mostly
achieve their goals by simply following users’ online behav-
iors. This seemingly plausible method often causes users to
get recommendation about what they have just browsed and/or
purchased, which can be highly inaccurate and in turn lead to
user dissatisfaction. Consequently, it is imperative for a mobile
shopping app to come up with effective recommendation
schemes.

Specifically, existing recommendation systems mainly
exploit explicit and implicit activities, such as Web brows-
ing, commodity purchases, content-clicks, ratings, and com-
ments [6], to model user preference. However, these complex
behavioral activities may not be directly relevant to users’
inner feelings: for example, users may click a product after
being attracted by its title or Web picture, but may not be
satisfied with its content after accessing the webpage; this
potentially raises model uncertainty and brings about erro-
neous prediction [7]. In general, it is extremely challenging
to build an accurate user preference model simply based on
user activities. This can be attributed to the fact that peo-
ple’s inner feelings are usually not directly expressed through
external behaviors, let alone online activities. In accordance
with recent report of He et al. [8], due to the inadequacy of
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the user preference model, the effectiveness of content deliv-
ery, though widely adopted by mobile shopping platforms
and content pushing systems, is still far from satisfactory.
Therefore, further research is necessary to break the limitations
of indirect inferences from explicit and implicit behavioral
activities by deeply mining more accurate and reliable user-
related information that directly reflects users’ inner feelings,
and then better modeling users’ preferences.

Given this situation, we raise a question: can users’
inner feelings be exploited to model user preference, thus to
improve recommendation performance? According to recent
research [9], pupil is a human mind’s window under con-
trol of the automatic nervous system. The change in pupil
size when viewing particular content is closely correlated with
users’ mind [10]. In other words, physiological processes of
pupillary response can potentially be employed to indicate
the user’s degree of interest in the viewed content. In addi-
tion, with the rapidly advancing mobile Internet technology
and widespread use of smartphones with built-in front-facing
camera and enhanced computing capability, people are now
increasingly turning to mobile shopping, education, and enter-
tainment. Consequently, it has become feasible to capture the
user’s pupillary response in real time on the mobile phones,
while subjecting to the privacy protection policy.

In our study, we specifically investigate correlation between
user preference and physiological process of pupillary
response captured by built-in front-facing camera of mobile
phones. On this basis, we do a further job of expressing
user expectations more comprehensively and accurately, and
then combine it with the traditional recommendation algo-
rithm to achieve better recommendation. Achieving this goal
requires several key technical challenges. First, the physiologi-
cal process of pupillary response is intricate and complex: it is
possible to extract some features from this process, but is dif-
ficult to identify the key features completely relevant to users’
preferences. In addition, the diversity of pupillary responses
caused by inherent individual differences imposes another
challenge to the generality of a one-fit-all model. Therefore,
users’ preference model is required to be customized online.

Last but not least, mobile scenarios pose certain specific
challenges, such as the changes in light intensity may heavily
affect the quality of face images recorded by front-facing cam-
era. Also, as PupilRec is implemented on a smartphone, energy
consumption directly affects user experience, demanding a
careful energy optimization.

Aiming to address these challenges, we hereby propose
PupilRec as the first mobile recommendation system exploit-
ing pupillary response (i.e., the change of pupil size in the
time domain). As shown in Fig. 1, PupilRec leverages the
relationship between pupillary responses and user’s impres-
sion to the viewed contents in order to make meaningful
recommendations. First, we perform extensive research to
uncover the generic physiological process that underlies the
pupillary response when watching certain content on mobile
phones. This enables us to identify six key time-series features
associated with the degree of user preference by using the
Random Forest. In addition, to deal with pupillary responses’
diversity due to intrinsic personal differences, we use a

Fig. 1. PupilRec: a novel recommendation system observing your eyes, rather
than your behaviors.

deep-learning-based approach to automatically train and adjust
the importance of key features for each user; the generated
personalized user preference model can then be correlated
with the pupillary response of the user. Finally, to handle
the mobile-specific challenges, we adopt a light-related model
to achieve environment independence, and we also propose
an optimization module for energy conservation in PupilRec.
We prototype PupilRec on mobile phones and conduct exten-
sive experiments to evaluate its performance in user preference
identification and recommendation.

Experimental results show that PupilRec is able to accu-
rately identify users’ preferences and recommend products of
interest to them. To conclude, our main contributions are as
follows.

1) We conduct an insightful investigation of pupillary
response when watching contents of different interest
degrees. As far as we know, this is the first work
exploring the quantitative correlation between users’
pupillary responses and preferences. Meanwhile, it is
also the first attempt to apply this relationship to mobile
recommendation systems.

2) By using Random Forest to mine the general phys-
iological process of pupillary response, a set of key
time-series features is identified to characterize the
user-preference-related pupillary response.

3) We suggest using neural networks to customize our user
preference models to train and adjust the weight of key
features individually.

4) We construct the mobile recommendation system
PupilRec by combining the pupillary-response-based
user preference model with the collaborative filtering
(CF) algorithm widely used in traditional recommen-
dation systems. In addition, we adopt a singular value
decomposition (SVD) algorithm to improve the recom-
mending efficiency.

5) To suppress the energy consumption on mobile phones,
PupilRec conducts data collection and preprocessing on
mobile clients, but it offloads computationally inten-
sive module of preference model training to a server.
PupilRec is also equipped with an energy optimization
module to govern the operation time of the front-facing
camera.
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6) We tackle the influence of light intensity variation resort-
ing to the relationship amongst pupil diameter, mental
workload, and lighting conditions, so as to fully model
the light intensity impact.

7) We verify the efficacy of PupilRec through extensively
conducted experiments by recruiting 67 volunteers in
total.1 The results demonstrate that PupilRec achieves
up to 83.58% accuracy on average and outperforms tra-
ditional recommendation systems relying on user active
scoring.

The remaining part of this article is organized as follows.
In Section II, we first review the related works of PupilRec.
Then, we explore the relationship between pupil diameter and
user preference in Section III. We describe PupilRec’s tech-
nical details in Section IV, then we introduce the energy
optimization module in Section V. The performance evalua-
tions of PupilRec are reported in Section VI. Having discussed
the limitations of this works in Section VII, we conclude with
a summary of this work in Section VIII.

II. RELATED WORK

In this section, we review the efforts of researchers
in modeling user preference and provide a comprehensive
overview of PupilRec’s advantages compared to the state-of-
the-art works.

A. Diverse Preference Modeling

In recent years, researchers have paid more attention to
modeling the varying preferences toward different items and
proposed several methods. We roughly categorize those meth-
ods into two groups.

Methods in the first group exploit reviews to analyze each
user’s attention on different aspects of the target item and
then integrate the attention weights into the matrix factoriza-
tion for recommendation [11]–[14]. In particular, ALFM [13]
applies a topic model on reviews to detect the user atten-
tion, and A3NCF [12] uses a neural attention network to
learn user attention from reviews. Following the same idea,
Chin et al. [14] have developed an end-to-end attentive neural
network-based recommendation model, leveraging reviews and
ratings to learn users’ diverse preferences on different aspects
of items. The AFM method [15] adopts a similar strategy and
exploits other types of side information (e.g., item category)
instead of reviews.

As to the methods in the second group, they model user
preferences by analyzing the user’s inherent attributes or exter-
nal connections. For example, YouTubeNet [16] discretizes
and splices users’ demographic information, including gender,
age, region, education, etc., and uses them the original input
of the neural network. Given a social network, Mohsen [17]
proposes to leverage a user’s neighbor attributes to infer the
user’s preference. Different from [16] and [17], DREAM [18]
relies on RNN to model users’ preferences by portraying their
changes over time.

1Our study was IRB approved by our university. It does not raise any ethical
issues.

All of the above methods are on the basis of users’ prop-
erties or online activities. In this work, we use a different
strategy to build a new model of user preference according
to key features of pupillary responses, which breaks the lim-
itations of indirectly inferring user preferences from explicit
and implicit behavioral activities. To the best of our knowl-
edge, this is the first work to probe relationship between users’
pupillary responses and their preferences in quantitative terms.

B. Connecting Pupil With Human Psychology

In prior investigations of pupillary response, many
researchers have probed the relevance of this physiological
response to user’s psychology. Pfleging et al. [19] explored the
correlation between users’ mental workload and their pupil-
lary responses, requiring users to complete tasks of various
difficulty levels. Foroughi et al. [20] tentatively proved pupil-
lary response could be used to capture within-task learning
changes.

None of these two proposals consider external factors.
However, different kinds of interference may exist in an actual
scenario, like abrupt changes in lighting conditions and mood
status, etc. Wang et al. [21] investigated pupillary response as
a cognitive workload under the influence of changing lumi-
nance condition and emotional arousal. The above works
explored the pupillary response when completing static tasks.
In addition, there are also works involving dynamic tasks, for
example, Jiang et al. [22] studied the pupillary response during
aiming in a teleoperation setting.

In this article, we consider the relationship between pupil-
lary response and users’ psychology from a distinct perspec-
tive. Specifically, we explore how changes in pupil diameter
reflect users’ preferences in mobile conditions, hence sup-
plementing and promoting nowadays mobile recommendation
systems.

III. EMPIRICAL STUDY

In this section, we start by exploring the feasibility of
pupillary response to effectively indicate user preferences, and
conduct extensive empirical studies in Section III-A; this helps
motivating our study. By mining the change processes of
pupillary response over time, we further use Random Forest
to weigh the importance of a large amount of time-series fea-
tures in Section III-B. These importance measurements finally
enable us to identify a group of key features, revealing the
possibility of modeling user preference by pupillary response.

A. Correlating Pupillary Response and Preference

Researches reported that people’s pupils are prone to uncon-
sciously 1) dilate when watching something interesting, aiming
to acquire more information and 2) not dilate or even shrink
when viewing unattractive contents, tending to impede the
access to information [23], [24]. This physiological phe-
nomenon prompts us to completely investigate the relationship
between pupillary response and user preference.

In particular, we use relative pupil size (RPS) as a metric of
pupillary response, where RPS denotes the pupil to iris ratio.
The reason is that the human eye is at full size by the time the
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(a) (b)

Fig. 2. Randomly selected six volunteers’ RPS sequences in time domain while, respectively, viewing (a) interested and (b) uninterested contents.

person is 13 years old [25]. Therefore, we can consider the iris
diameter as a constant and thus use it as a reference in a frame
of recorded videos [25]. As a result, our RPS is invariant no
matter what distance and angle the video is recorded at.

To illustrate how the pupil response is associated with user
preferences, 30 volunteers are recruited to measure their RPS
changes when viewing various kinds of contents like pictures
and short videos on scenery, food, celebrity, goods, and so on.
We let volunteers label each piece of content based on their
respective degrees of preference for it. In this study, we utilize
front-facing camera on mobile phones to capture volunteers’
RPS in the time domain when viewing the contents. To ensure
the reliable conduct of investigations and evidence-based tests,
the lighting intensity is kept relatively stable between 220 and
260lux, and the distances between volunteers and their mobile
phones remain largely constant at 30 cm.

For the sake of simplicity and with no generalization lost,
six volunteers are randomly selected (three males and three
females, aged from 20 to 29) and the representational process
of pupillary response when viewing the content of varying
interest/disinterest is plotted in Fig. 2. As illustrated in the
figure, the RPS time-domain variation of the selected six
volunteers viewing interested and uninterested contents are,
respectively, plotted in Fig. 2(a) and (b). It can be clearly
observed in Fig. 2 that RPS keeps changing over time when
volunteers watch diverse content, regardless of whether they
are watching the content of interest or disinterest. However,
the changing patterns are evidently different when viewing
interested contents and uninterested contents, if one com-
pares Fig. 2(a) with (b). In particular, the overall “increasing”
trend of RPS demonstrated in Fig. 2 is much more con-
spicuous. Intuitively, this phenomenon can be attributed to
the fact that people intentionally dilate their pupils to obtain
more information about the interested content. In contrast,
pupils may shrink to protect against uninterested (or irrelevant)
information entering their eyes (hence their mind).

Specifically, for each volunteer in Fig. 2, the changing pat-
terns of interested and uninterested RPS sequences are diverse.

For instance, the overall trend of volunteer1’s RPS sequence
is increasing or fluctuating within a small range of 0.01 when
viewing interested contents, while when viewing uninterested
contents, the general trend is decreasing and the sequences
fluctuations are relatively larger within a range of around 0.03.
Another example is volunteer2, the RPS sequence trend of
viewing interested contents is increasing as well, however,
when watching uninterested contents, the RPS sequences show
two forms of changing patterns: one kind of pattern is that
the RPS sequences are constantly decreasing, such as the
RPS sequences of content1 and content2. The other pattern
is that the RPS sequence initially shows a decreasing trend
and then slowly increases, such as the RPS sequence of con-
tent3. The rest of the volunteers’ RPS sequences also present
different patterns of change when viewing the interested and
uninterested contents according to Fig. 2.

Unfortunately, even for the same volunteer, individual RPS
changing processes can vary drastically, such as volunteer2 and
volunteer5. Moreover, due to inherent individual differences,
these change processes are poorly consistent across individu-
als. Therefore, it is difficult to straightforwardly determine a
user’s interest in what he/she is viewing based on a specific
pattern of RPS change process. In order to precisely relate
pupillary responses to user preferences, we must further clar-
ify the key features of pupillary responses which are closely
related to user preferences.

B. Key Features Relevant to User Preference

On the basis of the analysis in Section III-A, the chang-
ing process of RPS is considered as a time-domain sequential
response, and a large number of time-series features which
might be related to user preferences are extracted. Through
segmentation and preprocessing of pupillary responses pro-
duced by watching diverse content, we extract features from
the time series using a widely adopted Python module—
Tsfresh [26]. The extracted features can be usable for describ-
ing or clustering time series. Furthermore, they also can be

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on September 04,2022 at 09:10:40 UTC from IEEE Xplore.  Restrictions apply. 



15542 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 17, 1 SEPTEMBER 2022

TABLE I
DESCRIPTION ON PART OF THE USEFUL FEATURES

Fig. 3. Weighted importance of features by Random Forest.

utilized to build models that perform classifying or regress-
ing tasks on time series. In general, these features offer an
opportunity to gain new insights into the time series and their
attributes of dynamics.

To find the key features that effectively distinguish differ-
ent RPS sequences, we employ the feature extraction tool of
the Tsfresh module to extract and initially filter out potential
useful features. We list the descriptions of some of the useful
features as shown in Table I, for example, the front and back
trend (Front Trend and Back Trend) of the pupillary response,
the mean, the variance of RPS during the response process,
and the sample entropy (SampEn), the complexity (CE) of this
process, and so forth. Generally, in this empirical study, we
investigate and measure over hundreds features of the time
series.

In order to identify key features from the large num-
ber of features, we employ the ensemble learning—Random
Forest [27] to measure the importance of each feature associ-
ated with user preference. The top 12 time-series features that
have the maximum importance weight are plotted in Fig. 3.
As shown in the figure, it is obvious that the first six fea-
tures have significantly more weight than the other features.
In general, the top six time-series features have over 82.9%
of the total weight, with each feature exceeding 10%. In com-
parison, the remaining features each contribute less than 5%
of the total weight. Therefore, we draw the conclusion that
the top six time-series features are suitable for representing
the inherent properties of pupillary responses that are closely
related to user preferences. In particular, we briefly interpret
the physical significance of the top six time-series features on
the RPS changing process as follows.

1) Mean Value of RPS Sequence: We calculate the mean
value of the RPS sequence during gaze. When viewing
something attractive, people’s pupils are prone to uncon-
sciously dilate, aiming to acquire more information.
Generally, for most volunteers in Fig. 2, the RPS of
viewing the content of interest is larger than that of

disinterest. However, there is also the opposite situa-
tion caused by pupil oscillation [28]. For instance, for
volunteer 3, the mean RPS for viewing interesting con-
tent is clearly smaller than that for viewing uninterested
content.

2) Slope: Slope refers to the sudden change of pupil-
lary response at the beginning or the end of gaze.
Accordingly, we refer to the pupillary response’s begin-
ning slope and ending slope as Front Trend and Back
Trend, respectively. To be specific, Front Trend and Back
Trend, respectively, stand for the slopes of the first and
last third of RPS sequence. As visualized in Fig. 2,
the RPS sequences of interest increase steeply at the
beginning and remain constant or decrease marginally at
their end. Conversely, the RPS sequences in the case of
viewing uninterested contents increase modestly at the
start, then decrease, and end with a noticeable decrease,
which is meant to impede the acquisition of information.
Therefore, the slopes of RPS sequences can be used as
a potentially valid indicator to distinguish between RPS
sequences in the cases of interest and disinterest.

3) Variance: Variance represents the expected value of the
deviation of the RPS series. When people are unin-
terested in what they are watching, their eyes wander
around instead of fixating on the mobile phone’s screen,
resulting in a more rapid change in pupil diameter than
in a gaze situation. The variance is derived with the
middle third of the RPS sequence.

4) Complexity Estimate (CE): Time-series complexity esti-
mation (CE) serves to express the crests and troughs’
complexity. A larger CE indicates more crests and
troughs in the RPS sequence and vice versa. CE is
derived by the middle third of RPS sequence.

5) Sample Entropy (SampEn): Entropy is often adopted to
represent the partial fluctuation of a time series [29].
Here, we use SampEn to represent the complexity of
time series in terms of the probability of yielding a new
pattern within it. The larger the SampEn, the greater the
RPS sequence’s complexity is. The middle third of the
RPS sequence is used to compute the SampEn.

As shown above, we can model the relationship between
pupillary responses and user preferences using the six key
time-series features identified. Nevertheless, because of inher-
ent individual differences, the RPS sequences vary from person
to person, signifying that the importance weights of these key
features are varied in people. This prevents us from building a
one-fit-all model on all users. To address this issue, the impor-
tance of each user’s key time-series features must be trained
online individually so that the user’s preference model will be
fine-tuned correspondingly. In the following section, we elab-
orate on building a user preference model based on pupillary
responses.

IV. PUPILREC DESIGN

In this section, we will present the details of PupilRec’s
designing. We start with an overview of PupilRec in
Section IV-A. PupilRec uploads the videos recorded with
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Fig. 4. System architecture of PupilRec.

smartphones to the server for preprocessing in Section IV-B,
including data collection and data preprocessing, Then, the
labeled RPS sequences are utilized for training preference
model in Section IV-C. On that basis, key time-series fea-
tures are extracted from RPS sequences in Section IV-C1,
and multilayer perceptron (MLP) is adopted to automatically
weight the importance of key features and then PupilRec intro-
duces user preference model customization in Section IV-C2.
Based on the customized preference model, PupilRec deploys
SVD and CF to construct a mobile recommendation system
in Section IV-D.

A. Design Overview

The system overview of PupilRec is shown in Fig. 4.
PupilRec is composed of three modules: 1) Preprocessing;
2) Training Preference Model; and 3) Applications. The
Preprocessing module includes two submodules, Data
Collection and Data Preprocessing. In Data Collection,
PupilRec uses a front-facing camera on mobile phone to col-
lect information about the RPS of users while viewing content
with different levels of interest on the phone screen. Then,
PupilRec uploads the recorded videos to the server. On the
server side, the dispersion-threshold identification (referred to
as I-DT) method [30] is utilized to obtain RPS sequences
within the gaze time for initial filtering. Building on this, in the
Data Preprocessing module, the collected RPS sequences are
normalized by, respectively, signal denoising, segmentation,
environment-independent processing, and elaborate labeling.

In Feature Extraction, the feature extractor tool of Tsfresh
package is adopted by PupilRec to extract key time-series fea-
tures of pupillary response presented in Section III. In order to
overcome the inherent diversity of feature weight due to indi-
vidual differences, in the Customized User Preference Model,
PupilRec employs the MLP to automatically train and assign

Fig. 5. General process of RPS data collection.

(a) (b)

Fig. 6. (a) Abnormal values in RPS sequences and (b) box plot for outlier
detection.

weights to the importance of each individual’s key features,
and then yields a customized user preference model that is
correlated with users’ pupillary response. Based on the person-
alized user preference model, PupilRec recommends to users
by virtue of SVD and CF in Application.

B. Preprocessing

In this section, we introduce the procedures of collecting
and preprocessing RPS sequences.

1) Data Collection: Fig. 5 depicts the general process of
RPS data collection. When people browsing on mobile phones,
PupilRec uses the front-facing camera and OpenCV’s Haar
Cascade classifier [31] to capture RPS sequences. Note that
the captured video relating to the pupil can be segmented
into individual frames, each of which can be regarded as a
picture containing pupil profiles. For each frame, a deep learn-
ing approach—U-net [32] is used to split the pupil and iris.
Specifically, the U-net architecture allows the training of a
deep learning network and the resulting model efficiently cov-
ers the eye region into a segmented image. Finally, the RPS
value is derived by an algorithm that fits circles around the
iris and pupil. The algorithm finds the circle with the smallest
area of the iris and pupil, enclosing a 2-D point set.

2) Data Preprocessing: After capturing the RPS sequences,
PupilRec further performs data preprocessing, consisting of
denoising, segmentation, environment-independent processing,
and the labeling of RPS sequences.

There are still abnormal values in the captured RPS
sequences from the Data Collection module, owing to the
influence of changing light condition and human dynamic
movement. As shown in Fig. 6(a), some outliers in the RPS
sequence are close to 0 or 1, violating the pupillary response’s
physiological phenomenon. Therefore, PupilRec implements a
denoising process. Specifically, PupilRec utilizes Boxplots to
find these outliers. The principles used to determine outliers by
Boxplots are quartiles and interquartile ranges. There is a cer-
tain degree of resistance for quartiles. As shown in Fig. 6(b),
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Algorithm 1: I-DT
Input : dispersion threshold DT , duration threshold T ,

eye center coordinate series
ECCS = {(x1, y1), (x2, y2), . . . (xn, yn)}
Output: Gazes GZ
while there are still points in ECCS do

Initialize window over first points within time T
Dispersion of windows points
D = [ max(x) − min(x)] + [ max(y) − min(y)]
if D <= DT then

Add additional coordinate (x, y) to the window until
D > DT:
GZ+ = window

{
(xi, yi),

(
xi+1, yi+1

)
, . . . (xw, yw)

}

Remove window points from ECCS

else
Remove first points from ECCS

return GZ.

up to 25% of the data can be arbitrarily far from median
without much disturbance to the quartiles. Consequently, out-
liers do not affect the shape of Boxplot, and can be identified
precisely. In conclusion, Boxplot has an advantage in recog-
nizing outliers. Then, the average of two points around the
outlier is used to correct it.

Evidently, when browsing on mobile phones, people must
spend different time periods gazing at individual contents [33].
Therefore, the gaze period can be used as a valid pupil-
lary response. As gaze points generally cluster at a specific
position, PupilRec identifies gaze as groups of consecutive
points within a particular dispersion, or maximum separa-
tion. Based on this, PupilRec conducts the segmentation to
identify the RPS sequence during gaze periods. Specifically,
a moving window spanning consecutive eye center coordi-
nates [represented as (x, y)] is utilized to examine possible
gazes. The moving window starts from the beginning of
the eye center coordinates series and initially spans a min-
imum number of points, which is determined by a given
duration threshold and sampling frequency. Then, PupilRec
checks the dispersion of the coordinates in the window by
summing the difference between the maximum and mini-
mum x and y values of the coordinates, namely, dispersion
D = [ max(x)−min(x)]+[ max(y)−min(y)]. When the disper-
sion exceeds the dispersion threshold calculated by the I-DT
tool [30], the window does not stand for a gaze, and then it
moves one point to the next coordinate. Otherwise, the win-
dow is recognized as a gaze and will be extended to the next
coordinate until the window’s dispersion surpasses the given
threshold. For a given start time and duration, the final window
is recognized as the gaze at the window coordinates center. The
window will keep moving until it reaches the ending of the
coordinates series. Specifically, the detailed I-DT algorithm is
as Algorithm 1 shows.

The surrounding environment also poses impact on RPS
data, and the most influential factor is light. For example, the
change of ambient light intensity will affect instant pupil diam-
eter, resulting in misleading saltation of RPS in time domain.
Therefore, PupilRec implements the environment-independent
processing to suppress the influence of changing light intensity.

Fig. 7. Experimental setup and graphical user interface. (a) Capturing a
users’ RPS with the front-facing camera on a smartphone. (b) Graphic user
interface of PupilRec.

Learning from a model of the relationship [19] among pupil
diameter, mental workload, and lighting conditions, as (1)
shows

PD = PDlight + PDtask (1)

where PD stands for pupil diameter directly measured by
PupilRec, PDlight is the average pupil diameter for a certain
light condition, and PDtask is the normalized pupil diameter
induced by a specific task. Specifically, in our study, PDlight
is the average RPS under the light intensity when users use
smartphone, and the light intensity is recorded by the light sen-
sor of the phone’s front camera. PDlight is also automatically
adjusted when lighting conditions change. In other words,
users do not need to provide PDlight data. In this study, the
PDtask is the task-evoked pupil diameter when browsing on a
mobile phone and PDtask = PD − PDlight.

Under conditions where the light intensity (recorded by
built-in light sensor on mobile phones) remains constant dur-
ing gaze, PupilRec simply subtracts the average pupil diameter
PDlight under current illumination condition from the measured
pupil diameter PD, and then PupilRec obtains the PDtask. In
addition, when light intensity varies dynamically during gaze,
PupilRec will efficiently locate moments of abrupt changes in
light intensity and record them in order to split the gaze period
into several shorter phrases. The above procedure will be
repeated for each phrase to eliminate the influence of changing
light intensity during gazing period.

To evaluate the PupilRec system, we ask all volunteers to
carefully label the degree of interest for each content they
view. We ensure the labels’ accuracy by users labeling the
same content repeatedly. Specifically, the contents are repeat-
edly viewed at regular intervals and in a different order each
time. In this way, each content can be repeatedly labeled to
ensure the accuracy of the labels. Note that this labeling pro-
cess is only needed for research evaluations; PupilRec simply
relies on the analysis of users’ spontaneous pupillary response
to derive the degree of interest in practice. To guarantee objec-
tivity and precision, we have repeated this process a number of
times, with a minimum of two days between the experiments.
As demonstrated in Fig. 7, a volunteer rates degree of interest
in each content she viewed. The interest degree is ranked as 1
(Uninterested), 2 (Possible uninterested), 3 (Fair), 4 (Possible
interested), and 5 (Very interested). PupilRec further mines
key time-series features from these well-labeled RPS data in
the next section.
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C. Training Preference Model

In this section, we elaborate the procedure of training a user
preference model by extracting features from RPS sequences
and tuning the model with a neural network.

1) RPS Feature Extraction: After data preprocessing,
PupilRec performs feature extraction from labeled RPS
sequence segments. Following the inspirations clarified in
Section III, PupilRec uses the Python module—Tsfresh pack-
age to extract the six predefined key time-series features for
each RPS segment.

For each RPS segment denoted as SRPS = {x0, x1, . . . , xi,
xi+1, . . . , xn}, we, respectively, mark the six key features as
mean m, variance var, sample entropy (SampEn), slope of the
front RPS curve k1, slope of the end RPS curve k2, and the
time-series complexity estimate (CE).

For a given RPS segment SRPS, the mean value m of the
RPS segment is calculated as

m = 1
n

∑

i=0,...,n−1

|xi+1 − xi| (2)

where xi represents the RPS sequence for calculating the
feature, and n denotes the length of RPS sequence.

The variance var of the middle part of RPS sequence SRPS
is calculated as

var =
∑

i=n/3,...,2n/3 (xi − m)2

n/3
. (3)

In consideration of the fact that the real-time collected RPS
sequence is not necessarily equal in length and CE is also
influenced by time-series length, we divide the value of CE
by the length of the RPS sequence to obtain the normalized
CE. CE is denoted as (4), in which xi is an RPS data in SRPS

CE =

√√√√
n−1∑

i=1

(xi − xi−1)
2. (4)

SampEn is represented by (5), where A represents the num-
ber of template vector pairs having d[xm+1(i), xm+1(j)] < r,
and B denotes the number of template vector pairs having
d[xm(i), xm(j)] < r, in which m represents a given embedding
dimension, r is tolerance, and xi corresponds to an RPS data
in the segmented RPS sequence

SampEn = − log
A
B

. (5)

The slope of the front RPS sequence k1 and the slope of
the end RPS sequence k2 are the slopes of the regression line
obtained by the least-square regression of the first and last
third RPS sequence. The least-squares regression function is
calculated by (6), where (x, y) represents a pair of observa-
tions, and x = [x1, x2, . . . , xn]T ∈ Rn denotes the time series,
yi is an RPS data in SRPS, and y = f (x,ω) denotes the theo-
retical function, in which ω = [ω1,ω2, . . . , ωn]T represents a
parameter to be identified. Li(x)(i = 1, 2, . . . , m) denotes the
residual function. In consequence, slope k is calculated as (7)

min f (x) =
m∑

i=1

L2
i (x) =

m∑

i=1

L2
i
[
yi, f (xi,ωi)

]

Fig. 8. MLP with hidden layer containing five hidden units for customization
of the user preference model.

=
m∑

i=1

[
yi − f (xi,ωi)

]2 (6)

k = d min f (x)
dx

. (7)

2) Customized User Preference Model: PupilRec cus-
tomizes a user preference model through utilizing the key
time-series features of each carefully labeled RPS sequence
segment. As mentioned in Section III-A, it is infeasible to
derive a heuristic model to find out users’ complicated and
variable preferences by simply using the quantitative features.

As illustrated in the Data Preprocessing module, in
PupilRec, the interest degree representing user preference can
be classified into five levels: 1) uninterested; 2) possible unin-
terested; 3) fair; 4) possible interested; and 5) very interested.
Therefore, the customization of user preference can be consid-
ered as a representative multiclassification problem. As MLP
is used to solve multiclassification problems and works effec-
tively on nonlinear data [34], PupilRec adopts MLP to classify
the labeled RPS sequence segments.

Specifically, MLP is a neural network composed of fully
connected layers with at least one hidden layer as shown in
Fig. 8. An activation function transforms the output of each
hidden layer. The number of MLP layers and hidden units
in each hidden layer are hyperparameters. Given an exam-
ple of a single hidden layer, MLP calculates the output as
follows:

H = φ(XWh + bh) (8)

O = HWo + bo (9)

where H denotes the hidden layer’s output, and O represents
the MLP’s output. In addition, φ denotes the activation func-
tion, and X ∈ Rn×d refers to samples. The weight and bias
of the hidden layer are Wh ∈ Rd×h and bh ∈ R1×h, respec-
tively. Accordingly, weight and bias of the output layer are
Wo ∈ Rh×q and bo ∈ R1×q, respectively. In this classifica-
tion issue, the softmax operation is done on the output O
and the cross-entropy loss function is used in softmax regres-
sion. PupilRec inputs the labeled RPS sequence segments and
captured key time-series features to the customized MLP for
each user. Then, parameters are adjusted to fit the user’s data.
Finally, the user’s customized preference model is obtained by
MLP’s classification results.
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Fig. 9. Application framework.

Fig. 10. Calculation process of SVD.

After finishing customizing user preference model, PupilRec
runs as a daemon. While a user browsing service platforms
adopting PupilRec to model user’s preference, PupilRec cap-
tures RPS sequences corresponding to each user’s viewed
content through the front-facing camera. Thereafter, by denois-
ing and segmentation, PupilRec extracts the key time-series
features of each segmented RPS sequence. After inputting
these key features into MLP, PupilRec infers the degree of
user’s interest in the counterpart.

D. From Preference to Recommendation

Based on the customized user preference model in
Section IV-C2, PupilRec utilizes SVD and CF to produce
recommendations to users. The application architecture is
illustrated in Fig. 9.

1) Singular Value Decomposition: When people browsing
on mobile phones, through the correlation between user prefer-
ence and instant pupillary response, PupilRec acquires ratings
of the viewed product and establishes a user–product rating
matrix. PupilRec recommends to users based on CF via this
matrix [35]. Moreover, to improve the recommendation effi-
ciency, SVD is used for simplifying the user–product matrix.
SVD is a well-known matrix factorization technique factoring
a matrix X into three matrices as (10) shows

Xm×n = Um×rSr×rVT
r×n (10)

Xm×n ≈ Um×kSk×kVT
k×n, k < r. (11)

In (10), the matrix S is a diagonal matrix containing singular
values of matrix X. According to the optimal truncation prop-
erty of SVD, we can get a refined matrix, if discard all but the
k (k < r) largest singular values and corresponding singular
vectors. Therefore, the original matrix X can be approximated
by (11). Fig. 10 is the schematic of the above calculation
process.

In our study, 30 volunteers are required to watch 100 dif-
ferent food images, forming a user–food matrix. Since the
number of users is smaller than the number of food types,
we choose to transform the food set into a low-dimensional
space, namely, user taste space. Then, PupilRec targets users
based on the similarity of personal tastes. Considering that

there may be extreme data, we use a Pearson correlation coef-
ficient to calculate the similarity among different users’ tastes.
The Pearson correlation coefficient is calculated as (12) shows,
where T1 and T2 represent two vectors of different users in
taste space, µT1 and µT2 are the mean value of T1 and T2,
respectively, and σT1 and σT2 denote the variance of T1 and
T2, respectively

ρT1,T2 = cov(T1, T2)

σT1σT2

= E
[(

T1 − µT1

)(
T2 − µT2

)]

σT1σT2

. (12)

On that basis, PupilRec runs on the server side and
obtains good recommendation results, However, the operating
frequency of the system will be reduced when encountering a
large-scale database. For example, it may run once per day and
can only run offline. Therefore, under this condition, PupilRec
cannot respond quickly to new data added by the user and
timely complete recommendations. Inspired by the updated
SVD method proposed by Brand [36], we realize the timely
recommendation. Specifically, the updated SVD method can
add, modify, or withdraw a single item at any time on the
thin SVD. In fact, the thin SVD is the original SVD being
reduced in dimensionality. Then, the timely recommendation
is achieved. Therefore, the updated SVD method is appropri-
ate for mobile recommendation. The basic principle of the
updated SVD algorithm is as follows.

Given the SVD of a matrix X, we want to find the SVD
of the matrix X + abT , where a and b are column vectors.
Given the SVD X = USVT , let m = UTa, p = a − Um, p′ =
sqrt(pTp), and P = p/p′. Similarly let n = VTb, q = b − Vn,
q′ = sqrt(qTq), and Q = q/q′. Then, we first find the SVD
U′S′V ′T of the matrix as (13) shows. And finally, the SVD of
our new matrix is given by (14). Since we can use low-rank
approximations of U, S, and V , the algorithm is very efficient.
Specifically, Brand [36] showed that the time complexity of
the updated SVD is O(mnk), where m and n are the dimensions
of the matrix, and k is the reduced rank of the approximation

[
S 0
0 0

]
+

[
m
p

][
n
q

]
(13)

X + ab' =
(
[U, P]U′)S′([V, Q], V ′)'

. (14)

2) Collaborative Filtering: After processing the user–item
matrix of multiple users through SVD, we use the CF algo-
rithm to predict labels of items having no value in user–item
matrix, so as to realize personalized recommendation for each
user.

CF is a method of making automatic predictions (filtering)
about the interests of a user by collecting preferences or taste
information from many users (collaborating). The underlying
assumption of the CF approach is that if a person A has the
same opinion as a person B on an issue, A is more likely to
have B’s opinion on a different issue than that of a randomly
chosen person.

CF includes user-based and product-based CF algorithms.
The selection of these two kinds of algorithms depends on
the number of users and products. Specifically, the calcula-
tion time of product-based and user-based CF will increase
with the increasing number of products and users, respec-
tively. Moreover, in real-life application, the number of users
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Fig. 11. Energy optimization module.

is much larger than products. Therefore, in order to improve
computing efficiency, we choose the product-based CF as the
recommendation algorithm.

Specifically, the product-based CF recommends to users
through finding similarities between pairs of products.
Then, we adopt cosine similarity as similarity measurement.
Accordingly, PupilRec conducts a recommendation process by
listing products most similar to users’ already-rated products
and returning the top N products to users.

V. ENERGY OPTIMIZATION

Since PupilRec is implemented on mobile phones, energy
consumption should be considered as an important way to
improve recommendation performance without affecting user
experience. We mainly optimize energy consumption by gov-
erning the operation time of the front-facing camera on mobile
phones. The specific process is as follows.

1) As shown in Fig. 11, the energy optimization mod-
ule does the page entrance detection at first. If a user
has been detected entering a certain page, the module
will turn on the camera, otherwise, continue the page
entrance detection.

2) The energy optimization module then implements cam-
era duration detection. If a camera turns on for more
than 5 s, the module will turn off it and upload the
recorded video to server; otherwise, the module will
upload the video shorter than 5 s directly to server with-
out switching off camera. The uploaded videos are input
into PupilRec.

3) The module checks whether the user switches the current
page within 2 min. If the page is switched, it will return
to step 1). Otherwise, it will stop the detection and wait
for the user to enter a new page.

To supplement, in step 2), we set the duration threshold as 5 s
in that we only need pupil information for the first impression
generated within 5 s [37]. Moreover, in step 3), we set the
waiting time for page change as 2 min. The reason is that if
a person stays on a same page for over 2 min [38], he/she

must be interested in this page with huge possibility and may
keep watching for a longer time. Therefore, to save the energy,
there is no need to keep monitoring on the same page.

VI. EVALUATION

We prototype the implementation of PupilRec on HUAWEI
P40. Data analysis is performed on a desktop with an Intel i7-
5700 CPU and 16 G RAM running Windows 10 with JetBrains
PyCharm 2019 software. The PupilRec prototype captures an
image of the user’s pupil using the front-facing camera. In this
section, we evaluate the validity of PupilRec. We first present
the experimental setup and evaluation metrics in Section VI-A.
We then justify the use of the key time-series features to model
user preference in Section VI-B. Finally, we perform extensive
experiments to estimate the overall performance, including rec-
ommendation performance of PupilRec, and investigate the
influence of different factors on performance in Section VI-C.

A. Experimental Setup and Metrics

In this section, we introduce the settings and evaluation
metrics of the experiments.

1) Experimental Setting: A sum of 30 volunteers (15
females and 15 males) aged from 18 to 35 participate in the
evaluation. The participants have normal vision or wear glasses
without color. Participants were compensated based on their
participation time in the study ($5 for 2 h) and compliance
rate ($0.5 for each completed task). All collected data were
kept anonymous and the Institutional Review Board of our
university authorized all the study procedures.

The experiments are conducted in a normal quiet office
environment. Participants are sitting and looking at the con-
tent on the mobile phone. The overall brightness of ambient
and screen light to participants’ eyes is about 240 lux. The
distance between participants’ eyes and the front-facing cam-
era on mobile phone is about 32 cm. The participants are
required to view 100 pictures/short videos randomly shown
on the screen, and they could switch to the next picture/video
at will, imitating real-world scenarios where a user browses
on the mobile phone. Meanwhile, they are asked to label each
viewed picture/video with one of the five levels mentioned in
Section IV-B2. The front-facing camera will capture eye area
of participants while viewing the displayed pictures/videos.
Specifically, the videos recorded by the camera have a resolu-
tion of 720 p and a frame rate of 30 frames/s. In addition, the
training set accounts for 70% of total validated data, and the
test set is the remaining 30% .

2) Evaluation Metrics: PupilRec adopts MLP to customize
user’s preference model. Moreover, as MLP is utilized to
resolve the multiclassification problem in PupilRec, we eval-
uate the performance of PupilRec using typical indicators
of multiclassifications. Specifically, the indicators are Kappa
coefficient, Jaccard similarity coefficient, Hamming distance,
and Hinge loss. The indicators are clarified as follows.

1) Kappa Coefficient: The Kappa coefficient is a model
evaluation parameter derived from the calculation of
confusion matrix. The Kappa coefficient is deter-
mined by
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k = P0 − Pe

1 − Pe
(15)

where P0 denotes the result of dividing the number of
correctly classified samples in each category by the total
number of samples, i.e., the overall classification accu-
racy. Suppose the real sample size of each category is
a1, a2, . . . , ac, the predicted sample size of each cate-
gory is b1, b2, . . . , bc, and the total sample size is n,
then

Pe = a1 × b1 + a2 × b2 + · · · + a3 × b3

n × n
. (16)

The range of the Kappa coefficient is [−1, 1]. However,
it usually falls between 0 and 1. On that basis, the range
can be divided into five groups to indicate different lev-
els of consistency: [0.0, 0.20] for slight consistency,
[0.21, 0.40] for fair consistency, [0.41, 0.60] for moder-
ate consistency, [0.61, 0.80] for substantial consistency,
and [0.81, 1] for almost perfect [39].

2) Hamming Distance: The Hamming distance is suit-
able for evaluating multiclassification results. In simple
terms, it measures the distance between the predicted
label and the real label, with a value between 0 and 1.
Specifically, a distance of 0 means the predicted result
is completely identical to the real result. In contrast, a
distance of 1 means the model is the exact opposite of
what we want.

3) Jaccard Similarity Coefficient: The differentiation
between the Jaccard similarity coefficient and Hamming
distance is in the denominator. The coefficient is 1 when
the predicted result is exactly the same as the actual situ-
ation, 0 when the predicted result is exactly the opposite
of the actual situation, and a distance between 0 and
1 when the predicted result is a proper subset or true
superset of the actual situation.

4) Hinge Loss: The goal of Hinge loss is of keeping the
misclassified user preferences far enough away from
the correctly classified user preferences. If this distance
attains a threshold value, then the error in misclassi-
fied user preferences can be recognized as 0. Otherwise,
computational error is accumulated. Therefore, the
Hinge loss value ranges between 0 and 1. In particular,
when the value is 0, it means that the multiclass model
is completely accurate in its classification. In contrast, a
value of 1 means that the model does not work at all.

B. Rationality of Key Time-Series Features

To further justify the six key time-series features described
above, 30 volunteers (15 males and 15 females) aged from 18
to 35 were arranged to join in the experiment. Each participant
consecutively watched 100 pictures/short videos previously
prepared. After watching a content on the mobile phone, the
participants were required to label it as interested or uninter-
ested and then switched to the next one. The light intensity
remained around 240 lux. The experiment was conducted in a
quiet office environment.

As a result of the experiment mentioned above, Fig. 12
shows probability density distribution diagrams of the six key

Fig. 12. Statistics histograms of key time-series features in interested and
uninterested cases.

time-series features for both cases of interest and uninterest.
From Fig. 12, we can see that that in the case of interest, the
peak of the kernel density estimation curve of the mean is to
the right of the uninterest, i.e., the average RPS of interest is
mostly larger than the uninterest. This is in accordance with
the conclusion proposed in Section III-A: when the user is
interested, the pupil will dilate, while when the user is not
interested, the pupil will not dilate or even shrink. Similarly,
Fig. 12 shows that the variance of the RPS sequences for the
interested case is significantly smaller than that of the uninter-
ested one, indicating that the fluctuations of the RPS sequences
in the uninterested case are larger than those in the interested
one. This also agrees with the conclusion in Section III-A
that when users are uninterested in what they are watching,
their eyes will wander around instead of gazing at the content,
resulting in pupil size fluctuations.

The probability density distribution of the front and back
slopes of the RPS sequences are also plotted at the bottom of
Fig. 12. As for the kernel density estimation curve of the front
slope, we can find that the curve in the interested case is to the
right of the uninterested one. Moreover, the horizontal coordi-
nate of the peak of the curve in the case of interest is positive,
while the one in the case of uninterest is negative. This phe-
nomenon suggests that the trend of RPS sequences in the case
of interest is generally increasing at the beginning, and con-
versely, the trend of RPS sequences in the case of uninterest is
monotonically decreasing. This result agrees with the previous
findings presented in Section III-A: the RPS sequences are ini-
tially skewed to increase and decrease when people viewing
interested and uninterested content, respectively.

For the kernel density estimation curve of the back slope,
there is not much difference between the cases of interest and
uninterest. The horizontal coordinate of the curves’ peak val-
ues are very near the origin of coordinates, and their absolute
values are less than the front slope, indicating that most RPS
sequences show only a slight increase at the end in both the
cases of interest and uninterest. Moreover, we can notice that
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TABLE II
RESULTS OF PREDICTION ACCURACY

the back slope of the RPS in the case of interest is smaller
than that of uninterest. The reason is that when people are
gazing at things of interest, they tend to remain in this state
when they are switching to the next content, causing slight
growth of RPS. In contrast, when watching something that
does not interest them, people get more likely to leave cur-
rent content and immediately move to new content, causing a
greater increase in RPS.

In a similar way, we can observe from Fig. 12 that the
kernel density estimation curves about SampEn and CE for
the interested case is to the left of the uninterested one. This
phenomenon indicates that the SampEn and CE of the RPS
sequences in the interested case are smaller than those in the
uninterested case. This is also in agreement with the findings
mentioned in Section III-A that the fluctuations in the middle
part of the RPS sequences in the interested case are smaller
than those in the uninterested ones.

In conclusion, it is reasonable to use the proposed key time-
series features to express the change process of RPS sequences
and correlate it with user preference.

C. System Performance

We first evaluate the overall performance of PupilRec in
different environments and then investigate the impacts of
different factors on the performance.

1) Prediction Accuracy: To estimate the accuracy of
PupilRec’s prediction, we recruit 30 volunteers to participate
in the experiment. Each person views 100 images on a mobile
phone screen and can turn to the next picture whenever he/she
want. The Kappa coefficient, Jaccard similarity coefficient,
Hamming distance, and Hinge loss are calculated. The results
are demonstrated in Table II and Fig. 13. The mean values of
the Kappa coefficient, Jaccard similarity coefficient, Hamming
distance, and Hinge loss are 0.8358, 0.7939, 0.1864, and
0.1179, respectively. The Kappa coefficient, Jaccard similarity
coefficient, Hamming distance, and Hinge loss have median
values of 0.8518, 0.7894, 0.1858, and 0.1143, respectively.
These results indicate that PupilRec predicts user preferences
with a relatively high accuracy after training.

2) Impact of Light Intensity: To investigate the effect of
light intensity on the performance of PupilRec, we config-
ure three different light intensities by tuning the brightness
of the ambient light. Specifically, we vary the light intensity
by adjusting the number of lamps in the office, i.e., weak
light intensity Liw (110–150 lux) of one lamp, medium light
intensity Lim (220–260 lux) of two lamps, and strong light
intensity Lis (280–300lux) of three lamps. There are 30 volun-
teers aged from 18 to 35 participating in this experiment. Each

(a)

(b)

Fig. 13. Overall performance of PupilRec. (a) CDF plot of Jaccard similarity
coefficient and Kappa coefficient. (b) CDF plot of Hamming distance and
Hinge loss.

(a) (b)

Fig. 14. PupilRec’s performance under different lighting conditions.
(a) Kappa coefficient and Jaccard similarity coefficient. (b) Hamming distance
and Hinge loss.

volunteer watches different groups of pictures in a quiet, nor-
mal office under three lighting conditions, with 100 pictures
in each group. We use RPS sequences captured under each
light intensity to train PupilRec and then measure PupilRec’s
performance under these three light intensities.

We measure the Kappa coefficient, Jaccard similarity coef-
ficient, Hamming distance, and Hinge loss for these three
light intensities, and the results are presented in Fig. 14.
As illustrated in Fig. 14, the lighting conditions indeed have
an influence on the PupilRec’s performance. Specifically, the
Kappa coefficient of Liw, Lim, and Lis is 85.18%, 85.48%, and
88.89%, respectively, namely, the Kappa coefficient increases
with increasing light intensity. Conversely, the Hinge loss and
Hamming distance decrease with the increase of light inten-
sity. This implies that the higher light intensity improves the
performance of PupilRec to some extent, due to the fact that
PupilRec detects pupil images with greater clarity at higher
light intensity.

3) Impact of Shooting Distance: The quality of the
recorded video is affected by the distance between the eye
and the front-facing camera on mobile phones. In this section,
we estimate the effect of shooting distance on the accuracy
of PupilRec. A total of 30 volunteers between the ages of
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(a) (b)

Fig. 15. PupilRec’s performance under different shooting distances.
(a) Kappa coefficient and Jaccard similarity coefficient. (b) Hamming distance
and Hinge loss.

Fig. 16. PupilRec’s performance under different deflection angles.

18 and 35 participated in the experiment (15 males and 15
females). Each volunteer watches different groups of pictures
at three different shooting distances in a quiet general office,
with 100 photographs in each group. Furthermore, volunteers
are holding the mobile phone and facing the camera with-
out offset. We maintain the light intensity at a medium level
Lim by leaving two lamps on in the office. Then, we evaluate
the performance of PupilRec at different shooting distances
(20, 30, and 40 cm).

The result is displayed in Fig. 15. We can observe that the
increase of the Kappa coefficient and Jaccard similarity coef-
ficient gradually becomes slow with increasing distance, and
so do the decreases of the Hamming distance and Hinge loss.
Therefore, the distance between the eye and the front-facing
camera has a negligible effect on the PupilRec performance
within a certain range. The reason for this is that in practice,
the distance between the eyes and the screen is usually within
the range of 20 to 40 cm when users are browsing normally
on mobile phones.

4) Impact of Deflection Angle: In order to evaluate the
impact of deflection angle, we recruited 30 volunteers aged
between 18 and 35 (15 males and 15 females). In the experi-
ment, the volunteers were required to watch different groups of
pictures from five different deflection angles in a quiet general
office, with 100 photographs in each group.

The results are presented in Fig. 16. As shown in Fig. 16,
with the increase of deflection angle, the Kappa coefficient
and Jaccard similarity coefficient are decreasing. We can also
observe that the Hinge loss and Hamming distance are increas-
ing, meaning that when a person’s head is deflected in relation
to the mobile phone’s screen, PupilRec’s performance will be

deteriorated. Specifically, in Fig. 16, as the deflection angle
is over 10◦, these four metrics obviously vary greatly. This
phenomenon can be explained that when a user is browsing
normally on the phone, the deflection angle between the eye
and the screen ranges from −10◦ to 10◦. When the deflection
angle exceeds this range, PupilRec will not be able to clearly
recognize the user’s pupil and iris. Therefore, PupilRec is
suited for scenarios where the deflection angle between users’
eyes and the screen is small, namely, the user is facing the
screen.

5) Recommendation Performance: For the sake of evaluat-
ing PupilRec’s recommendation performance, we compare it
with the traditional manual-scoring-based CF algorithm.

In the experiment, we recruited 37 volunteers aged between
18 and 35, including 19 males and 18 females. Each volun-
teer watched 50 pictures randomly selected from the same 100
food pictures. Moreover, the pictures viewed by each volun-
teer may not be exactly the same. Then, volunteers are required
to manually label contents while watching on mobile phones.
Note that the labels are different from the previous labels as
ground truth, and these labels are not necessarily the real feel-
ings of volunteers at that time. At the same time, PupilRec
returns recommended content for each participant based on
their pupillary responses. Meanwhile, recommended contents
based on participants’ manual labeling are also generated by
virtue of CF. Finally, each participant is required to carefully
label these two kinds of recommended contents as ground
truth, one is given by PupilRec, and the other is based on
traditional CF with users’ manual labels.

We calculate the root-mean-square-error (RMSE) value
between the ground truth and these two recommended con-
tents’ labels. RMSE is calculated as (17), where u represents
the user, i represents the item, rui is the actual label of
the user u on i, and r̂ui is the predicted label given by the
recommendation algorithm, and T is the user–item set

RMSE =

√∑
u,i∈T

(
rui − r̂ui

)2

|T| . (17)

The RMSE of the recommendation system based on users’
manual labeling is 0.86, while PupilRec is 0.78. This is in
accordance with the previously mentioned conjecture, that is,
users’ manual labeling sometimes do not reflect users’ true
feelings. Fortunately, the changes in pupils can to some extent
indicate users’ inner thoughts. In conclusion, PupilRec can
recommend accurately based on users’ inner feelings.

VII. DISCUSSION

In this section, we discuss the effects of various environ-
mental conditions on PupilRec.

1) Extreme Light Intensity: In our experiments, we investi-
gate the performance of PupilRec over a range of light
intensities (110–300 lux). When the light intensity is at
extremely high or low levels, for example, when the
user is in the dark or under strong outdoor light, the
images of the user’s pupil collected by PupilRec will
become blurry. In addition, the accuracy of pupil detec-
tion will be reduced in particularly high light conditions.
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Nonetheless, we expect that most users would not use
PupilRec in such a condition.

2) Extreme Shooting Distance: We consider the
performance of PupilRec when the user is view-
ing normally on the mobile phone screen. However,
when users’ eyes are very close to the front-facing
camera, for instance, when the user suffers from
myopia, PupilRec cannot detect the user’s face and
therefore cannot detect the pupil. Furthermore, when
users’ eyes are far from the screen, the front-facing
camera may collect blurred facial images because of
the limited resolution of the camera. Fortunately, as
users always choose the most comfortable way of using
their phones, these scenarios rarely take place in reality.

3) User Wearing Glasses: Volunteers participating in the
experiment wear regular glasses or no glasses. However,
in real life, when users wear tinted glasses, such like
sunglasses, the resolution of the eyes in the pictures will
reduce. Being the first step toward a pupil-driven recom-
mendation system, PulpilRec by far has not taken such
cases into account.

4) Camera Resolution and Frame Rate: To explore the
effect of different camera resolutions, we record videos
using mobile phones with different cameras resolutions
of 360P, 480P, 720P, 1080P and a fixed frame rate of
60 frames/s. The results demonstrate that the videos
recorded by the 360P and 480P cameras are too blurry
and PupilRec cannot segment the user’s pupils and iris
well. Moreover, to determine the effect of different cam-
era frame rates, we use a camera with a fixed resolution
of 720P to record videos at frame rates of 30, 60,
and 120 frames/s, and the results show little difference.
However, we plan to have more in-depth evaluation on
these issues, as well as the issue of phone diversity.

VIII. CONCLUSION

In this article, we have proposed PupilRec as a computer-
vision-based recommendation system, including a mobile
terminal and a server side. On the mobile terminal, PupilRec
has collected pupil-related videos through the front-facing
camera on mobile phones. On the server side, upon prepro-
cessing pupil size information, PupilRec has figured out the
key time-series features and trained a neural network to fit
a user preference model. On that basis, We have prototyped
PupilRec and conducted experimental and field studies to thor-
oughly evaluate the efficacy of PupilRec by recruitment of 67
volunteers. The overall results have shown that PupilRec can
accurately estimate a user’s preference for a certain product,
and can recommend products users interested in. Moreover,
the experimental results show that PupilRec can overcome
the environmental impacts such as changing light intensities
and varying shooting distances. In general, PupilRec provides
us with a prototype for exploring the relationships between
pupil size and user preferences, shedding lights on a viable yet
innovative idea for realizing mobile recommendation systems
based on user inner feelings. In future work, we will expand
the diversity of experiments in terms of devices, subjects,

and environmental conditions to further improve our PupilRec
system.
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