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Abstract—Understandingmobile data traffic and forecasting future traffic trend is beneficial to wireless carriers and service providerswho
need to perform resource allocation and energy savingmanagement. However, predictingwireless traffic accurately at large-scale and fine-
granularity is particularly challenging due to the following two factors: the spatial correlations between the network units (i.e., a cell tower or
an access point) introduced by user arbitrarymovements, and the time-evolving nature of user movementswhich frequently changeswith
time. In this paper, we use a time-evolving graph to formulate the time-evolving nature of user movements, and propose amodel Graph-
based Temporal Convolutional Network (GTCN) to predict the future traffic of each network unit in a wireless network.GTCN can bring
significant benefits to two aspects. (1) GTCN can effectively learn intra- and inter-time spatial correlations between network units in a time-
evolving graph through a node aggregationmethod. (2) GTCN can efficientlymodel the temporal dynamics of themobile traffic trend from
different network units through a temporal convolutional layer. Experimental results on two real-world datasets demonstrate the efficiency
and efficacy of our method. Compared with state-of-the-art methods, the improvement of the prediction performance of our GTCN is 3.2 to
10.2 percent for different prediction horizons. GTCNalso achieves 8.4! faster on prediction time.

Index Terms—User mobility, graph convolution, mobile computing, time series analysis
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1 INTRODUCTION

WITH the popularity of smart mobile devices and the
Internet of Things (IoT), mobile data traffic has sky-

rocketed over the past few years. According to the technical
report from Cisco [1], there will be more than 12 billion
mobile devices and IoT connections, and the monthly
global mobile data traffic will reach 77.5 exabytes (1 exabyte
= 1018 bytes) per month by 2022. Globally, public WiFi

hotspots (including public WiFi commercial hotspots and
homespots) will grow four-fold from 124 million in 2017 to
549 million in 2022, and 59 percent of mobile data traffic
will be offloaded to WiFi (compared to 54 percent in 2017).
This trend will continue and create a huge market for com-
mercial WiFi soon. However, the explosive growth of
mobile data traffic and mobile users bring challenges to
carry out network resource allocation and further impacts
quality of service (QoS) while keeping high QoS for mobile
network users is a significant issue for commercial WiFi
services. To address these challenges, it is fundamental to
model and understand traffic patterns of wireless net-
works [2], [3].

Predicting the future traffic of basic network units (e.g.,
wireless access points in WiFi networks and cell towers
in cellular networks) is beneficial to mobile users, wireless
carriers, and service providers who need to perform
resource allocation, emergency events detection, and
energy-saving management [3]. For example, network con-
trollers can take preemptive actions for sudden increasings
of traffic to avoid network congestion. It also reduces
unnecessary operation cost by allocating energy and band-
width based on future traffic demands. It has been studied
and tested in deploying WiFi networks by Huawei and in
deploying 5G networks by some companies like China
Unicom [4]. Besides, precise mobile data traffic prediction
is also beneficial for various applications. For instance, it
can assist network administers to detect abnormal user
behaviors and discover social events that may generate
unexpectedly large data traffic [5]. Service providers can
also set tiered pricing in time based on predicted traffic
demands to ease network congestion and to achieve higher
rewards [1], [6].
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There has been a significant amount of effort by research-
ers on mobile data traffic prediction [7], [8], [9], [10], [11],
[12], [13], [14], [15]. Besides time series prediction methods
such as Seasonal AutoRegression Integrated Moving Aver-
age (SARIMA) [7] and Support Vector Regression (SVR) [8],
recently, several works [10], [11], [13] adapt recurrent neu-
ral networks (RNNs) [16] and their variants to capture the
temporal dynamics within the traffic series, which improves
the accuracy of traffic prediction. For WiFi networks and
cellular networks, mobile users typically share the same net-
work interests and behaviors as others in nearby areas, so
spatially close network units usually exhibit similar traffic
trends. To capture such spatial correlation, several
works [12], [15] formulate the network units as grid maps
and propose models based on convolutional neural network
(CNN) [17] to learn the spatial relations between the net-
work units. Meanwhile, mobile users in areas with the same
function share similar network behaviors, e.g., users often
surf the Internet while waiting for the bus at bus stations.
To capture such semantic correlation, several studies [13],
[14], [18] introduce graph-based neural networks into wire-
less network modeling. They formulate the wireless net-
work as a graph, where each node denotes a network unit
and edges connect nodes that have the same function.

Despite the progressmade, there remain some limitations:

" (l1) Mobile users’ mobility patterns are not exploited.
Existing works focus on exploiting explicit spatial
relations such as distance between network units,
but neglect implicit relations introduced by users’
spatial-temporal mobility patterns. For instance, two
cellular base stations that are far away from each
other may have closely related traffic trends. The rea-
son is that the base stations are located in two places
connected by the subway and many people com-
mute between these two places [19].

" (l2) The variability of the wireless network units is not
considered.Existing works assume the network units
of the wireless network are unchanging over time.
However, many events can change it, e.g., regular
maintenance of network facilities may turn off some
nodes. Previous methods are unable to learn new
features from the changed network unless they train
the model on the entire network each time the net-
work topology changes.

To develop an effective model that overcomes all
the above limitations, the key challenges are three-
fold:

" How to model user mobility considering its evolution over
time?The traditional way that formulates user trajec-
tories as a series lacks expression for modeling spa-
tial information. The proposed formulation should
explicitly represent how user mobility changes over
time.

" How to jointly exploit user mobility patterns and the histor-
ical temporal traffic trend to forecast future traffic volumes?
The spatial information and temporal traffic are het-
erogeneous. The spatial information is usually formu-
lated as grid maps or graphs, while the temporal
traffic is naturally represented as time series. The
desiredmethod should integrate them into onemodel.

" How to capture longer-term temporal dynamics of traffic
sequences from various network units?Accepting large-
range input sequences helps us to capture more tem-
poral features, which is beneficial to achieve better
prediction performance. However, a larger input lin-
early increases the computational burden.

In this paper, we propose a traffic forecast model Graph-
based Temporal Convolutional Network (GTCN) to address the
above challenges. Specifically, to address the c1 challenge,
we formulate the user mobility as an evolving graph as
shown in Fig. 1, where each node represents a network unit
and each edge describes a transfer behavior of users
between network units at each time step. We propose a
node aggregation scheme, which leverages user mobility
trajectories to dynamically update node embeddings over
time. To address the c2 challenge, we regard a node’s histor-
ical traffic loads as its embedding in the time-evolving
graph at the first aggregation step. Then, the node aggrega-
tion scheme adjusts the embedding to each node by aggre-
gating both intra-time relations and inter-time relations among
nodes (see Section 4.2). At last, the adjusted embeddings are
used for temporal traffic trend prediction. To address the c3
challenge, we use temporal convolutional layers [20], which
maintains exponential information by linearly stacking mul-
tiple layers and has reported better performance on many
time series prediction tasks than RNN models [21]. We
modify the temporal convolutional layer and use two types
of convolution operations to distinguish the individual traffic
trend of each node and the common traffic trend of all nodes
(see Section 4.3). At the last regression layer, we compute
the future traffic of each node. Because of the privacy and
business issues, so far as we know, there is no large-scale
mobile data traffic dataset publicly available. We collect
mobile traffic datasets from WiFi networks in two univer-
sity campuses and conduct our experiments on these large-
scale real-world datasets.

Our contributions are summarized as follows:

1) We propose a deep learning model GTCN to predict
mobile data traffic. To the best of our knowledge,

Fig. 1. An example of a user mobility graph. User mobility graph is a
time-evolving graph, where each node denotes a network unit, i.e., a
wireless access point (AP) or a cellular tower, and a directed edge vi !
vj indicates that users are moving from vi to vj during the time step of
interest. At each time step, we observe an r-length traffic volume
sequence for each network unit. Given the observed traffic sequences
and graph snapshots in the past few time steps, we aim to forecast the
traffic trend of each network unit in future time steps. The network units
provide data as inputs, and we do not require users to provide any addi-
tional information.
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GTCN is the first model that considers user mobility
as evolving spatial information for temporal mobile
traffic forecast.

2) We propose a node aggregation scheme, which
learns the mobility patterns and also models how
these patterns evolve over time.

3) We modify the temporal convolutional layer to
enable the sharing of the common temporal trend
from multiple input sequences.

4) We collect real-world large-scale mobile data traffic
datasets and conduct our experiments on them. We
will release the datasets to the public to foster repro-
ducibility and research on this topic.

The rest of this paper is organized as follows. Section 2
summarizes related work. Section 3 describes our dataset
and deployment and then defines our problem, and then
Section 4 presents our GTCN model that exploits users’
movement patterns for predicting network traffic. Section 5
makes some measurements and then presents the perfor-
mance evaluation and testing results. Concluding remarks
then follow in Section 6.

2 RELATED WORK

Mobile Data Traffic Forecast. Considerable efforts have been
devoted to model traffic in communication networks. [7],
[8] show that traditional time series modeling algorithms
such as seasonal ARIMA models and SVR models can be
easily adapted to model and predict short-term wireless
traffic load. [22], [23], [24] focus on predicting traffic load on
each base station of cellular networks using probabilistic
methods. However, as the forecasting window expanding,
the predictive accuracy decreases rapidly. In recent years,
with the popularity of location-based applications, explor-
ing the correlation between traffic load and spatial charac-
ters attracts a lot of attention. Several spatial modeling
methods have been proposed for traffic load in wireless net-
works [9]. Wang et al. [10] propose a deep learning model
for traffic prediction in cellular networks. They use AutoEn-
coders [25] to learn spatial features between cellular towers
and make predictions through Long Short-Term Memory
(LSTM) [26]. Feng et al. [11] propose an end-to-end method
DeepTP, which models spatial and temporal dependencies
using a seq2seq model with an attention mechanism. These
methods use a grid-based region partition, which is not suit-
able for most WiFi network management. The reason is that
the grid-based partition considers each grid cell equally and
unable to distinguish between different wireless access
points (APs) in one grid cell, while APs are usually concen-
trated in a few grid cells (e.g., buildings). Wang et al. [14]
study people transferring between regions and analyze their
consumed network traffic. Wang et al. split the mobile traffic
into inter-tower and intra-tower traffic, and then predict the
future traffic of a cellular tower by aggregating the inter-
tower traffic of its neighbors. They propose a graph neural
network (GNN) method to capture such traffic patterns.
However, their method has several limitations. First, they
lack to consider the movement patterns of mobile users,
which is important to explain why two distant places have
similar traffic trends [19]. Second, they ignore that the wire-
less network structure can change over time because of the

regular maintenance of groups of network facilities. Once
the network structure changes, their model has to be
retrained. In our work, we use a time-evolving graph, which
dynamically records users’ spatial-temporal movement, to
capture the spatial correlations and temporal evolving
dynamics between network units, which are exploited to
improve the accuracy of network traffic prediction.

Spatio-Temporal Traffic Forecast. To some extent, mobile
data traffic prediction tasks and road traffic prediction tasks
have the same formulation. Specifically, existing mobile
data traffic prediction studies [13], [14] (resp. road traffic
prediction researches [27], [28], [29], [30]) formulate the
wireless network (resp. road network) as a graph, where
each node represents a cellular tower (resp. a monitor on a
road section), each edge represents spatial relations between
cellular towers (resp. intersections between road sections),
and aiming to predict the future value of the mobile data
traffic (resp. average traffic speed, or traffic flow) on each
node. Therefore, we reference several state-of-the-art road
traffic prediction methods. We also apply some of these
methods to our dataset and compare them with our method.
Yu et al. [27] propose a novel deep learning framework
STGCN for traffic prediction. STGCN leverages graph con-
volution and gated temporal convolution, and combine
them into a spatio-temporal convolutional block. STGCN
stacks two such blocks to capture both spatial and temporal
features. Guo et al. [28] propose ASTGCN which combines
the attention mechanism and the spatial-temporal convolu-
tion. To capture both the spatial and temporal characteris-
tics of traffic data, ASTGCN applies graph convolutions in
the spatial dimension and standard convolutions in the tem-
poral dimension. Zhao et al. [29] combine the GCN [31] and
the GRU [32]. They use a GCN layer to capture the graph’s
topological structure to obtain the spatial dependence.
Behind the GCN layer is a GRU model, which is used to
capture the temporal change of node attributes (e.g., a time
series of traffic) in the graph. Wu et al. [30] propose Graph-
WaveNet for spatial-temporal graph modeling. GraphWa-
veNet captures the spatial dependency between nodes by
performing graph convolution in an adaptive adjacency
matrix. To be able to handle long temporal sequences,
GraphWaveNet uses stacked dilated convolution opera-
tions to increase its receptive field. However, all these meth-
ods learn spatial relations through a static graph, where the
graph structure does not change over time. There are some
works aiming to capture features from time-evolving
graphs [33], where the graph structure changes with time.
Diao et al. [33] propose a model DGCNN which utilizes ten-
sor decomposition for Laplacian matrix estimation in graph
convolutional layers. DGCNN is designed for minor
changes in the graph structure. One weakness of DGCNN is
that when most nodes and edges change at a time step, it
may not obtain an accurate estimation of the Laplacian
matrix. There are also some influential works [34], [35], [36],
and all of them introduce new deep neural network archi-
tectures for traffic prediction. Zhang et al. [34] first design a
branch of residual convolutional units to model complex
factors, such as inter-region traffic, events, and weather. Pan
et al. [35] employ a sequence-to-sequence architecture,
which contains a meta graph attention network and a meta
RNN to capture both spatial and temporal correlations. Li
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et al. [36] make the first try to design an effective Neural
Architecture Search (NAS) for spatio-temporal prediction
task. In our work, the proposed method captures the vari-
ance of the correlations between nodes in a time-evolving
graph at each time step, and so achieves better prediction
performance.

3 PRELIMINARIES

In this section, we describe our dataset, introduce the
deployment of a WiFi network monitoring system, and for-
mally formulate the mobile traffic forecast problem.

3.1 Dataset Description
Now, we introduce the datasets used in this work. Our
work strictly follows ethical guidelines, and users’ identity
information such as mobile devices’ MAC (Media Access
Control) addresses has been anonymized to avoid privacy
concerns.

From May 3, 2015, to April 18, 2016, we polled all wire-
less access points (APs) in two campuses located in a suburb
or in urban of a city in China regularly (every 15 minutes)
and collected information (e.g., MAC addresses, traffic vol-
umes by each MAC address) of their connected mobile devi-
ces via SNMP (Simple Network Management Protocol) [37],
[38]. Then, we can generate two Mobile Data Traffic data-
sets, denoted as MDT-sub and MDT-urb, from these two
campuses, respectively. Based on this dataset, we know two
kinds of information: 1) whether a mobile device is con-
nected to an AP during a time interval; 2) how many traffic
volumes a mobile device generates during a time interval.

Time Interval Setting. Our dataset is collected at 15-minute
intervals. In practical applications, the best time interval is
the time for the user to walk through a network unit because
it can generate the finest trajectories without too much
redundancy. For instance, each AP in a WiFi network covers
an area of around 100 m2. The time interval can be set at
around 15 seconds. For cellular base stations that cover an
area of 1 km2, we can set the time interval as around 25
minutes. A larger time interval will reduce the model per-
formance because it models user movement roughly, but a
smaller time interval brings a computational burden.

Statistics.MDT-sub and MDT-urb were collected on 2,879
and 7,513 wireless access points (APs), respectively. We
aggregated the traffic every 15 minutes, so each AP contains
96 data points per day, and there are 33,792 data points for
the entire collection time. For the suburb campus with a
gross floor area of 0.07 km2 and the urban campus with a

gross floor area of 0.4 km2, each AP covers an area of about
100 m2 in buildings. During the one year, there exist 60,297
and 111,676 active mobile devices on the Internet for the
suburb and the urban campuses respectively. On average, a
mobile device was 196 (resp. 189) days active and connected
to 76 (resp. 113) APs in the suburb campus (resp. the urban
campus), respectively. Table 1 shows more details about
our datasets. Some measurements and illustrations can be
found in Section 5.5 and Fig. 9.

Normalization. Mobile data traffic volumes have a wide
range from 0 packets to 108 packets and approximately fol-
low a power-law distribution, where large traffic only
accounts for a very small fraction. It is important to normalize
the traffic volumes [39] because large data will lead to a great
leap in the gradient landscape in the backpropagation of neu-
ral networks, which reduces the stability of the training pro-
cess. Therefore, we normalize the traffic into a small interval.
Specifically, we use a log 10 function to zoom the traffic vol-
umesY to a small scale, as follows:Ynorm ¼ log 10Y.

3.2 Deployment
Before we introduce the problem we focus on, let us discuss
how to deploy our model and what benefits this model
brings.

Deployment. Beyond a WiFi network, we deploy a Data
Detector to collect the traffic volumes and devices’ connec-
tion records via SNMP (see Fig. 2). The Detector outputs the
users’ movement matrix and APs’ historical traffic volumes
(which will be detailed in the next subsection) as the inputs
of our prediction model. To generate the users’ movement
matrix, the Detector needs to record the APs that a user (i.e.,
MAC address) connected to at the previous time interval.
To avoid privacy concerns in practical applications, we can
anonymize the MAC addresses via hash techniques like
SHA-3 (Secure Hash Algorithm 3) [40], which turns a text
into a short hash value. SHA-3 provides a secure one-way
function which means we can not reconstruct the input
MAC from the hash output. Then, the Central server is used
to deploy our model that is detailed in Section 4. The Cen-
tral server predicts the future traffic and delivers control
commands to the network units.

Incentive. Traffic prediction is beneficial for many appli-
cations, such as resource allocation, emergency events
detection, and energy-saving management. We provide an
experimental example in Section 5.6. The result shows sig-
nificant improvement in energy-saving while the deploy-
ment cost is minor.

Apply to Other Types of Wireless Networks. Consider that
the mobility pattern of 4G/5G users may differ from Wi-Fi
users because both their average movement speeds and

TABLE 1
Statistics of the Datasets Used in Our Experiments

Dataset MDT-sub MDT-urb

Collection Duration May 3, 2015 – April 18, 2016
Time Interval 15 minutes
Covered Users 60,297 111,676
Covered APs 2,879 7,513
Covered Area 0.07 km2 0.4 km2

Flow Records (APs) 4:7! 106 7:7! 106

Sparseness 0.9513 0.9208

The sparseness refers to the ratio of zero values in the corresponding entire
dataset.

Fig. 2. Deployment in a WiFi network.
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their average distances between network units are different.
We should adjust the time interval in our model according
to the application scenario.

3.3 Problem Formulation
Now, we formally describe the mobile traffic forecast prob-
lem. In a wireless network, given the mobile data traffic his-
tories of network units and mobile users’ mobility
trajectories, our goal is to predict the mobile data traffic of
network units in future time steps. Before we formally
define the problem, we first introduce some notations.

We denote a set of nodes as V , fv1; v2; . . . ; vNg, where
each node represents a network unit (e.g., an AP) in the
wireless network of interest. At any time step t, we use an
adjacency matrix AðtÞ 2 f0; 1gN!N to describe the node con-
nections. The ði; jÞ-th entry AðtÞ

ij ¼ 1 if there is a directed
edge from node vj to node vi at time step t, e.g., a user
moves from node vj to node vi at t. Let a

ðtÞ
i denote the traffic

volume of node vi at time step t, and let
sðtÞi , ½aðt'rþ1Þ

i ; aðt'rþ2Þ
i ; . . . ; aðtÞi )> 2 Rr be an r-dimensional

vector of the historical traffic volumes of node vi in the past
r time steps. Let SðtÞ , ½sðtÞ1 ; . . . ; sðtÞN ) 2 Rr!N be the historical
traffic volume matrix of all nodes. The graph snapshot
observed at time step t is denoted by GðtÞ , ðAðtÞ; SðtÞÞ, which
includes the information of both node connections and
node traffic volumes. Let SðtÞ

L 2 R1!N denote the last row
(i.e., the rth row) of SðtÞ, i.e., the traffic volume of all N
nodes at time step t.

Given a sequence of graph snapshots fGð1Þ; . . . ;GðtÞg, we
want to predict the future p-step traffic volume matrices
fSðtþ1Þ

L ; . . . ; SðtþpÞ
L g.

Discussions. For traffic prediction tasks, it is significant to
describe traffic changes between different APs (i.e., nodes).
Therefore, we combine historical traffic (as node features)
and binary adjacency matrix (describe node connections) to
describe traffic changes between different APs. Here, we do
not use a weighted adjacency matrix generated through the
number of users in the APs because its performance is not
better than the binary adjacency matrix. The prediction
results using the weighted adjacency matrix or the binary
adjacency matrix are almost the same.

4 GRAPH-BASED TEMPORAL CONVOLUTION

NETWORK (GTCN)

In this section, we first introduce the basic framework of our
proposed GTCN model. Then, we elaborate the two mod-
ules in GTCN to describe how to predict future traffic vol-
ume matrices.

4.1 Overview
The framework of GTCN is illustrated in Fig. 3. GTCN takes
the graph snapshots fGð1Þ; . . . ;GðtÞg as input, and outputs
the predicted future node traffic volumes. There are two
modules in GTCN, namely, the node embedding module and
the traffic prediction module. The node embedding module
leverages the adjacency matrices fAð1Þ; . . . ; AðtÞg to obtain
node embeddings, which could well capture the connec-
tion/mobility relations among nodes. The traffic prediction
module leverages the historical traffic volume matrices

fSð1Þ; . . . ; SðtÞg and the previously obtained node embed-
dings to predict future traffic volume matrices.

4.2 Node Embedding
Recall that an adjacency matrix AðtÞ represents the connec-
tions among nodes (e.g., APs in a wireless network). These
connections actually capture the mobility patterns of users,
as AðtÞ

ij ¼ 1 means that there are users moving from node vj
to vi at time step t. Such mobility relations could reflect traf-
fic volume relevance among nodes. For example, if users
generated large traffic volumes at node vj, then after the
users moved to node vi, they are also likely to generate large
traffic volumes at node vi. Therefore, traffic volume infor-
mation of nodes are correlated via adjacency matrix AðtÞ.

In addition, the adjacency matrix is evolving, from Að1Þ at
time step 1 to AðtÞ at time step t. Each element AðtÞ

ij may
change to 1 (or 0) at the next time step if there are users (or
no users) moving from node vj to vi at the next time step, as
users at node vj can choose to stay or leave. Such mobility
patterns could reflect nodes’ traffic trends. For example, if
most users pass through node vj, vj’s traffic volume will
change frequently. If users tend to stay at vj, vj’s traffic vol-
ume will be relatively stable. Therefore, modeling how
users’ mobility patterns (staying or leaving) evolve is also
useful for traffic prediction.

In this subsection, we study above two mobility relations.
We call the previous one as intra-time relations, as it models
user movements between nodes at each time step. We call
the later one as inter-time relations, as it models how user
mobility patterns at different nodes change with time.

4.2.1 Modeling Intra-Time Relations

At a particular time step, we aggregate traffic volume infor-
mation of each node’s neighbors in order to capture intra-
time relations among nodes.

Consider the user mobility graph at time t, i.e., Gt ¼
ðAðtÞ; SðtÞÞ. Note that AðtÞ

ij ¼ 1 if a user moves from node vj to
node vi at t. Let N ðviÞ denote the set of in-neighbors of node
vi in Gt. We use a vector (or, embedding) hvi 2 Rr to repre-
sent the traffic volume information of node vi. Neighboring
nodes’ traffic volume information can be aggregated by

hN ðviÞ ¼ A
!"

vj : vj 2 N ðviÞ
#$

; (1)

where Að*Þ denotes an aggregation function. We consider to
use different aggregation functions as follows:

" Mean function. The mean function simply averages
embeddings of the node’s neighbors, i.e.,

Amean
%
N ðviÞ

&
,

1

jN ðviÞj
X

vj2N ðviÞ
hvj :

" Spectral convolution function. We can use the spectral
convolution to capture more information by

Aconv
%
N ðviÞ

&
, s

!
Wc *Amean

%
fvig [ N ðviÞ

&
þ bc

$
;

where Wc, bc are trainable parameters and sð*Þ is the
sigmoid activation function. The traffic volumes of
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node vi and its neighbors are gathered by a mean
operation, and then filtered by a parameter matrix.
Such operation is a linear approximation of a local-
ized spectral convolution [31], i.e., a convolutional
kernel Wc is performed on each node vi 2 V and its
neighborhoodN ðviÞ to generate a new embedding.

" Pooling function. The spectral convolution function
aggregates information of all neighbors’ traffic vol-
umes into the new embedding. Sometimes a node
may be only relevant to a few neighbors. To avoid
influence from the irrelevant nodes, a pooling opera-
tion is applied to capture which features contribute
more to the new embedding. In the pooling opera-
tion, we input node vi’s neighbors into a fully-con-
nected neural layer, and then apply an element-wise
max-pooling, i.e.,

Apool
%
N ðviÞ

&
, max

"
sðWphvj þ bpÞ : vj 2 N ðviÞ

#
;

where maxf*g denotes the element-wise max opera-
tion, Wp and bp are the trainable parameters of this
function.

In our experiments, we choose both convolutional and
pooling functions to calculate N ðviÞ’s embedding and then
concatenate them together as the final embedding hN ðviÞ 2
R2ra , where ra is the output dimension of the aggregation
functions.

4.2.2 Modeling Inter-Time Relations

Now we describe how to aggregate and update nodes’
inter-time relations at different time steps. We propose K-
depth aggregation scheme that uses K layers to aggregate traf-
fic volumes over previous K time steps from snapshots
Gt'Kþ1; . . . ;Gt. It explicitly models the evolving patterns of
user mobility by imitating how users move between nodes.
The scheme is illustrated in Fig. 4.

We denote the aggregated embedding of a node vi in the
kth layer at time t as hk;t

vi
2 Rrk , where rk is the output

dimension of the kth layer. The aggregation scheme is pre-
sented by

hk;t
vi|{z}

output

¼ s
!
Wk *

%
hk'1;t'1
vi|fflfflfflffl{zfflfflfflffl}

inter-time

jj hk;t
N ðviÞ|fflffl{zfflffl}

intra-time

jj sðtÞi|{z}
traffic

&
þ bk

$
;

(2)

where jj denotes the concatenation operation. The first input
element hk'1;t'1

vi
2 Rrk'1 denotes the embedding of vi calcu-

lated by the ðk' 1Þ-th layer using the ðt' 1Þ-th snapshot. It
models nodes’ inter-time relations between two adjacent
time steps. The second input element hk;t

N ðviÞ
2 R2ra , which is

obtained by the Eq. (1), models the intra-time relation
between vi and its neighbors at time t. The third input ele-
ment is the initial embedding, i.e., the observed traffic
sequence sðtÞi 2 SðtÞ of vi at time t. Specifically, for the first
layer, i.e., k ¼ 1, the first input element is replaced by the
initial embedding of each node. To transform the
concatenated vector to hk;t

vi
, we input the concatenated vec-

tor into a fully connected layer, where Wk and bk are train-
able parameter matrices. The L2 normalization is conducted
for hk;t

vi
later, i.e., hk;t

vi
 hk;t

vi
=khk;t

vi
k2. The output of layer K is

the final embedding, e.g., the final embedding of node vi at
time step t is denoted as hK;t

vi
. We combine all nodes’ final

embeddings at time t together and denote it as hK;t
V 2 Rr!N .

4.2.3 Discussions

Differences From GraphSage [41].Our framework is inspired by
an inductive graph convolutional framework GraphSage. The
main difference is that GraphSage only aggregates information
of connected nodes in the vertex domain (spatial domain),
while our method also captures evolving patterns in the time-
evolving usermobility graph beyond the spatial domain.

Advantages of Aggregation-Based Method Comparing With
Spectral Convolutional Method GCN [31]. GCN uses full-batch
gradient descent, which requires storing all the intermediate
embeddings to compute the full gradient, leading to expen-
sive memory requirements. Storing the intermediate
embeddings for every time step in a time-evolving graph
costs too much space. Our K-depth scheme is trained using
mini-batch gradient [41]. It only stores a few subsets of
nodes in each training batch to reduce the memory require-
ment. Does the Representation hK;t

V Capture Enough Information
for Modeling Temporal Dynamics of Mobile Data Traffic?. The
K-depth scheme regards traffic sequences as the initial
embedding of nodes, and searches through previous K
time steps to aggregate information to update nodes’
embeddings. It implicitly models the temporal trend of
mobile data traffic. We conduct experiment, which sets K ¼
12 for K-depth scheme, puts the hK;t

V into a fully connected
layer, and uses the future traffic Sðtþ1Þ to supervise the train-
ing process. The prediction results do not outperform the

Fig. 3. Overview of our GTCN model.
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comparing methods. Therefore, we still need a more power-
ful tool to model the temporal dynamics of mobile data
traffic.

4.3 Modeling Long-Term Temporal Patterns
Note that the previously obtained node embeddings only
consider inter-time relations between adjacent time steps. In
addition, user mobility also has long-term temporal pat-
terns. Mining such patterns can also help traffic prediction.
For example, in the morning, people move from home to
workplaces, while in the afternoon, people move from
workplaces to home; thus traffic trends at workplace and
home will influence each other. Different nodes have their
own traffic patterns, referred to as the individual trend.
Meanwhile, different nodes also have common traffic pat-
terns, e.g., traffic volume of most nodes increases at rush
hour in the morning, referred to as the common trend.

In order to model both trends, in this traffic prediction
module, we propose the multi-input dilated causal convolution
(mdc-conv), built on the dilated causal convolution [20] and
residual structure [21], [42].

4.3.1 Multi-Input Dilated Causal Convolution

The causal convolution is a special case of one dimensional
convolution, as it only looks back, i.e., an output at time t is
convolved only with elements from time t and earlier in the
previous layer. The dilated causal convolution (dc-
conv) [20] extends the receptive field of causal convolutions
by skipping elements with a certain dilation factor when
strides over inputs. A simple example of the dc-conv is as
follows: given a one dimensional sequence input x 2 Rn

and a filter f : f0; . . . ; w' 1g 7! R, the dc-conv of x with f
at tth element is defined as

dc-convðx; tÞ , ðx +c fÞðtÞ ¼
Xw'1

j¼0

fðjÞ * xðt'd*jÞ; (3)

where +c denotes the dilated causal convolution operation, d is
the dilation factor, and w is the filter size. The filter multiplies
previousw elements by itsw parameters (or parameter vectors,
or parameter matrices, depending on the dimension of input),
and outputs a sequence having the same length as the input.

In order to capture the individual trend of multiple input
sequences generated by different nodes, a general approach
is to train independent dc-conv models for each node. How-
ever, this approach ignores to leverage the common trend
of different nodes, e.g., traffic volume of most nodes
increases at rush hour in the morning. We propose the mdc-
conv operation to address this issue, as illustrated in Fig. 5.

The input of mdc-conv layers is a sequence with time
span T , denoted by X 2 R2r!N!T , where each element XðtÞ ¼
hK;t
V jjS

ðtÞ 2 R2r!N is a concatenation of the learned embed-
ding hK;t

V 2 Rr!N of all nodes V (kVk ¼ N) and traffic vol-
ume matrices SðtÞ 2 Rr!N . XðtÞ is sliced by the time
dimension of X. It can be used to learn the individual trend
of the input. To capture the common trend of different
nodes, we also slice X by the node dimension, denoted by
XðiÞ 2 R2r!T , where i is the index of node vi 2 V.

The mdc-conv layer uses two types of convolution opera-
tions to process these two parts of inputs. We set two filters
f1 : f0; . . . ; w' 1g 7! R2r!N and f2 : f0; . . . ; w' 1g 7! R2r!T .
Then, the mdc-conv operation at time t and index i is repre-
sented as

mdc-conv
%
ðX; tÞ; ðX; iÞ

&

,
"
ðX +c f1ÞðtÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
slicedbytime

; ðX + f2ÞðiÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
slicedbynode

#

¼
Xw'1

j¼0

f1ðjÞ , Xðt'd1*jÞ;
Xw'1

j¼0

f2ðjÞ , Xði'd2*j*ð'1ÞjÞ

( )
;

(4)

where , is the element-wise product, + denotes the dilated
convolution operation, and d1; d2 are the dilation factors.
The first part of mdc-conv is similar to the dc-conv which
captures the individual trend from a temporal sequence,

Fig. 4. Overview of the K-depth aggregation scheme. For instance, here we use K-depth with K ¼ 3 to compute the embedding of the red node vi1 at
time t. In the third layer (i.e., k ¼ 3, the red part in the figure), the embedding h3;t

vi1
is calculated following the Equation (2) using three input elements:

the previous embedding h2;t'1
vi1

of vi1 at time t' 1, the intra-time relations h3;t
N ðvi1 Þ

from vi1 ’s neighbors, and the initial embedding sðtÞi1 of vi1 . The

intra-time relations are calculated following the Equation (1) using the embedding h2;t'1
vi2

of vi2 2 N ðvi1 Þ. The first layer and second layer follow the

same process. In first layer, we specifically use the initial embedding at the previous time step of each node as the first input element. Finally, we

model the evolving process from time t' 2 to t and obtain embedding h3;t
vi1

of node vi1 . We make this computation over each graph snapshot and the
entire time span in parallel for acceleration.

4462 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 09:31:30 UTC from IEEE Xplore.  Restrictions apply. 



while the second part is willing to learn the common trend
from different nodes. The input of the second part is a
sequence of nodes, which are not temporally arranged.
As we know if the sequence is in arbitrary order, the
convolution operation may not capture meaningful fea-
tures. To address this issue, the node sequence is
expected to be arranged exploiting prior knowledge, e.g.,
if we cluster and arrange the nodes by distance, the
dilated convolution could summarize the features of
adjacent nodes at the first layer and expand its receptive
field at subsequent layers.

We denote the two parts’ outputs of several mdc-conv
layers as Z1 and Z2. The mdc-conv outputs a sequence hav-
ing the same dimension as the input. We can exponentially
expand the effective receptive field of our model by stacking
multiple mdc-conv layers, which enables our model to cap-
ture long-term temporal patterns with a few layers and save
computation resources.

4.3.2 Residual Blocks

Our model is able to look through a long sequence by stack-
ing many layers. Residual architectures use an identity
mapping which transfers the features in shallow layers to
deeper layers. It benefits the backpropagation of gradients,
which has been demonstrated as a good solution for very
deep neural networks in many applications [43]. We use F
to denote a series of layers which stacked by two groups of
a mdc-conv layer, a normalization layer, a rectified linear
unit (ReLU) layer, and a dropout layer. The normalization
layer is applied for accelerating convergence of the training
process. The ReLU layer can relieve the vanishing gradient
problem. The dropout layer benefits the regularization of
parameters, which avoids overfitting. The output of a resid-
ual block is combined by an input X and the output F ðXÞ of
the series of layers, described as

ReLUðX- F ðXÞÞ; (5)

where - denotes element-wise adding and ReLU denotes a
rectified linear unit operation. We employ residual blocks in
place of the mdc-conv layers.

4.3.3 Discussions

How to Deal With Changes in the Network Topology.Our model
can easily adapt to the deletion of nodes or the changes of

edges in the graph. When adding new nodes, the node
embedding module can generate embeddings of new nodes
because it works by aggregating the neighbors of the node
instead of the entire graph. However, the traffic prediction
module is not suitable for new nodes because the input size
is fixed after training. In this situation, we can extend the fil-
ters f1 and fine-tune the traffic prediction module based on
the existing model.

4.4 Traffic Prediction
After stacking several residual blocks, we obtain the final
output Z1 2 R2r!N and Z2 2 R2r!T . Z1 contains the individ-
ual trend of each node and Z2 contains the common trend
of different nodes. In order to leverage the common trend
learned in Z2 into each node, we multiply these two parts as
ZT
2 * Z1. Finally, we use a fully-connected layer to predict

the future traffic volume Sp , fSðtþ1Þ
r: ; . . . ; SðtþpÞ

r: g as

cSp ¼ FCN
%
Z1jjðZT

2 * Z1Þ
&
; (6)

where FCN refers to a fully-connected layer. In the training
process, the goal is to minimize the error between cSp and its
real value Sp. Formally, the loss function of our model is

L ¼ kSp 'cSpk2 þ !Lreg; (7)

where the first term is used to minimize the error between
the real traffic and the prediction, the second term Lreg is an
L2 regularization term that helps to avoid over-fitting, and
! is a hyperparameter.

5 EXPERIMENTS

In this section, we conduct experiments on real-world data-
sets to answer the following research questions:

RQ1 What is the prediction performance of GTCN when
comparing with other baselines?

RQ2. What is the benefit of dynamically upgrading the fea-
ture of each node in the time-evolving graph?

RQ3. What are the advantages for temporal convolutional
networks when comparing with the RNNmodels?

RQ4. What are the factors that impact the prediction perfor-
mance on real-world datasets?

RQ5. What applications can our model contribute to?

Fig. 5. Overview of the Temporal Dynamic Prediction module. An illusion of the dilated causal convolutions (left) and the structure of an alternative
operation, residual block (right).
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5.1 Experimental Settings

5.1.1 Evaluation Metrics

To evaluate the accuracy of forecast traffic volumes bY with
respect to the ground truth Y, we use the following four
measurement metrics:

" Root Mean Squared Error (RMSE).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N * T
XN *T

i¼1

ðYi ' bYiÞ2
vuut ;

where N is the number of network units in the test-
ing data, and T is the time span of the testing data.

" Mean Absolute Error (MAE).

MAE ¼ 1

N * T
XN*T

i¼1

jYi ' bYij:

" Coefficient of Determination (R2).

R2 ¼ 1'
PN*T

i¼1 ðYi ' bYiÞ2PN *T
i¼1 ðYi ' YÞ2

;

where Y is the mean value of Y, i.e., Y ¼ 1
n

Pn
i¼1 Yi.

" Explained Variance Score (Var).

Var ¼ 1' varfY' bYg
varfYg

;

where varf*g is the variance function.

5.1.2 Baselines

To evaluate the performance of our model, we compare it
with following methods.

" NAIVE. We tested two NAIVE methods. One is the
historical average method, which uses the average
value of the last 12 time slices (3 hours) to predict the
next value. The other is the last-value method, which
uses the last value of the inputs to predict the next
value. In our experiment, we find the last-value
method performs better, so we report its result in the
follows.

" SVR [44]. Linear Support Victor Regression uses a
linear support vector machine for the regression
task. We apply an open-source version1.

" ARIMA [45]. Auto-Regressive Integrated Moving
Average model is commonly used for modeling time
series and has been widely adopted in time series
prediction tasks. We use an ARIMA model with Kal-
man filter2.

" FC-LSTM [46]. Long-short term memory network
(LSTM) [26] is an improved RNN model that uses a
“gate” mechanism to maintain long-term informa-
tion. FC-LSTM is a special LSTM model with fully
connected hidden units. We use the open source
version2.

" DCRNN [47]. Diffusion convolution recurrent neural
network (DCRNN) uses graph convolution network
to model spatial dependency and applies recurrent
neural network to capture the temporal dynamics in
an encoder-decoder manner. The code is public
available2.

" T-GCN [29]. Temporal graph convolutional network
(T-GCN) combines GCN [31] and GRU [32]. Specifi-
cally, GCN is used to capture the topological struc-
ture of the graph to obtain the spatial dependence,
and GRU is applied to explore the dynamic change
of node attribute to mine the temporal dependence.
The code is public available1.

" GraphWaveNet [30]. It is a CNN-based method,
which uses graph convolution [31] with dilated
casual convolution [20]. The stacked dilated casual
convolutions are used to capture temporal depen-
dencies. The code is public available3.

" GNN-D [14]. Graph neural network with decom-
posed cellular traffic (GNN-D) learns a node’s repre-
sentation by aggregating its neighbors through fully-
connected neural networks and use RNN to predict
future traffic.

5.1.3 Training Settings

Our model is implemented using Tensorflow 2.0 [48]. We
apply Adam optimizer [49] with the learning rate of 0.001
on the mean square loss to train our model. To balance effi-
ciency and effectiveness, in the spatial dependency model-
ing process, we set the aggregate depth K ¼ 3 and the
feature size of nodes is 12, i.e., the length r of traffic sequen-
ces. The output embedding size of the aggregator function
ra is 32. The output embedding sizes of the three layers rk
while k ¼ 1; 2; 3 are 48, 24, and 12, respectively. For the tem-
poral dynamic prediction process, the size of the convolu-
tion filters is set as 3, and the number of the convolution
filters of each dilation convolution layer is set as 32. To
cover the input sequence length, we use four residual blocks
with a sequence of dilation factors ½1; 2) for each block. We
set the input length as 12 in most of our experiments (we
explain the reason in Section 5.4). To prevent our models
from over-fitting, we adopt the dropout with dropout rate ¼
0:1 and L2 regularization with ! ¼ 0:0015. Dropout is
applied to the outputs of both the graph convolution layer
and the temporal prediction layer. An early stopping strat-
egy with a patience of 50 epochs on validation set is applied
in our experiments. The dataset is split in chronological
order for training, validation, and testing with the ratio of
0:6 : 0:1 : 0:3. All comparative baselines are trained with the
parameters following the description in the original papers
or open-source codes.

5.2 Predictive Performance (RQ1)
In Table 2, we show the overall performance of our model,
temporal models (SVR, ARIMA, and FC-LSTM), and spatio-
temporal models (DCRNN, T-GCN, Graph WaveNet,
GNN-D). We compare the performance of GTCN and base-
line models for predicting traffic in last 15 minutes, 30

1. https://github.com/lehaifeng/T-GCN
2. https://github.com/liyaguang/DCRNN 3. https://github.com/nnzhan/Graph-WaveNet
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minutes, 45 minutes, and 60 minutes on MDT-sub and
MDT-urb datasets. We list four metrics of all comparative
methods. The Root Mean Squared Error (RMSE) and the
Mean Absolute Error (MAE) are log-normalized. The T-
GCN model’s open-source code fails to deal with dataset
MDT-urb due to a memory error because it is designed for a
little graph with only 207 nodes [29], so we omit its result.

Our GTCN model obtains superior results on both data-
sets and outperforms other comparative models in most
metrics for four prediction horizons, i.e., predicting the traf-
fic trend in future 15 minutes, 30 minutes, 45 minutes, and
60 minutes, respectively. GTCN surpasses recent graph
neural network models for spatio-temporal data, including
DCRNN, T-GCN, and GraphWaveNet. The improvement
of GTCN comparing with the second best performance
model (GraphWaveNet) is around 3.2 to 6.6 percent. The
RMSE reduction of GTCN comparing with Graph WaveNet
is 3.7, 3.2, 3.5, and 3.7 percent for four prediction horizons,
respectively. The MAE reduction of GTCN comparing with
GraphWaveNet is 5.2, 4.4, 5.5, and 6.6 percent for four pre-
diction horizons, respectively. Both GTCN and Graph
WaveNet perform well on the 60-minute prediction hori-
zon. We will discuss this in the results of long-term predic-
tion later. GTCN significantly excels GNN-D, which is
proposed to predict traffic on cell towers. The RMSE reduc-
tion of GTCN comparing with GNN-D is 6.4, 6.0, 8.7, and
10.2 percent for four prediction horizons, respectively. The
MAE reduction of GTCN comparing with GNN-D is 6.1,
7.0, 8.3, and 9.5 percent for four prediction horizons, respec-
tively. All these models perform better than temporal mod-
els including SVR, ARIMA, and FC-LSTM.

Results of Long-Term Prediction. Our model outperforms
comparative models by a large margin on the 60-minute pre-
diction horizon (predicting 4 future data points simulta-
neously). The improvement of GTCN increases when

predicting the traffic in longer ranges. That indicates that our
model captures long-term dynamics better than other models.
It is due to the fact that GTCN can feed longer input sequences
through stacked convolution layers to capture more informa-
tion. GraphWaveNet also incorporates temporal convolutional
layers, which might explain why GraphWaveNet performs
better than other comparativemodels on the 60-minute predic-
tion horizon.

Results of Next-Slice Prediction. For the 15-minute predic-
tion horizon, the difference between different methods is
slight. The reason is that the mobile data traffic varies
slightly within the next time slice. Some simple models (like
SVR, ARIMA) can also get high accuracy. However, once
we extend the prediction horizon, the performance of most
models decline fast, as shown in Table 2. We find that the
NAIVE method, which regards the last-value of the inputs
as the prediction result, performs better than most models
on predicting traffic in next 15-minute horizon (the next
time slice), but the performance degrades fast on prediction
tasks for larger horizons. The reason is that the mobile traf-
fic on each AP is really sparse, i.e., sometimes the traffic on
an AP is zero. In such a situation, the NAIVE method out-
puts zero and it just fits the ground truth. But the prediction
of the NAIVE method is useless for most applications, such

TABLE 2
Overall Prediction Performance of Our Model GTCN in Comparison With Baselines on Two Datasets MDT-Sub and MDT-Urb

Fig. 6. Prediction versus the ground truth for a sample AP.
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as advance starting up and abnormal detection. We will
show some results in Section 5.6.

We plot 15-minute predicted values versus real values of
GTCN and the second best model GraphWaveNet on a
snapshot of the testing dataset in Fig. 6. It shows that our
GTCN generates more stable and low latency predictions
than GraphWaveNet.

5.3 Benefits of Spatial Relation (RQ2)
The results in Table 2 have shown that spatio-temporalmodels
(GTCN, DCRNN, T-GCN, GraphWaveNet, and GNN-D) out-
perform temporal models (SVR, ARIMA, and FC-LSTM) by a
large margin. We further demonstrate the effective contribu-
tion of dynamically upgrading the feature of each node in the
graph.Herewe propose three comparingmethods.

" Dynamic+LSTM. We connect our Node Information
Aggregation module with an LSTM network, i.e.,
incorporating graph convolution into the FC-LSTM
model. The setting of the LSTM network is the same
as the FC-LSTMmodel.

" Static+LSTM. We use a static graph instead of the
evolving User Mobility Graph in the Dynamic
+LSTM method. The static graph considers uses’
movements in the first month.

" GTCN+Static. We use a static graph instead of the
evolving User Mobility Graph in our GTCNmodel.

The experiment is conducted on the dataset MDT-sub.
Fig. 7 shows the performance of thesemodels for four predic-
tion horizons using the RMSEmetric. Through modeling the
spatial correlations of APs, our model GTCN has achieved
a significant improvement in short-term, mid-term, and
long-term forecasting. This indicates that our GTCN can

effectively utilize spatial correlations to provide more accu-
rate predictions. It also shows that ourmodel is more capable
of detecting spatial dependencies at each temporal stage
than LSTM networks. The Dynamic+LSTMmethod, contrast
to FC-LSTM and Static+LSTM, also performs better by incor-
porating the node information aggregation module. GTCN
and Dynamic+LSTM, which use the evolving graph, per-
form better than GTCN+Static and Static+LSTM, respec-
tively. The improvements in four prediction horizons are
ranging from 6.2 to 13.9 percent. These results indicate that
the evolving user mobility graph is more effective in model-
ing spatial relations betweenAPs. The reason is that dynami-
cally upgrading nodes’ features benefits to concentrating on
mining recent movement patterns of mobile users, and for-
gets redundant long-termmemories.

5.4 Benefits of Involving Temporal Convolution
(RQ3)

To evaluate the benefits of incorporating temporal convolu-
tional layers into time series prediction tasks, we conduct
experiments from two aspects: effectiveness and efficiency.

5.4.1 Long-term Receptive Field

We compare our GTCN with Dynamic+LSTM (considered
as using LSTM instead of temporal convolutional layers)
and T-GCN (an RNN-based comparative model). We use
traffic sequences with different lengths, from 4 (i.e., 60
minutes) to 48 (i.e., 12 hours), as inputs to forecast traffic in
the future 60 minutes. The experiment is conducted on the
dataset MDT-sub. Fig. 8a shows the performance of these
models using the RMSE metric. The difference between
these models is slight when the input sequence is short.
When we use a longer sequence as input, the RMSE of our
GTCN decreases faster than other models. It indicates that
our GTCN can effectively capture information in long
sequences by utilizing temporal convolutional layers. The
improvement is 4.6 percent when the input length is 12, and
6.8 percent when the input length is 36. Considering effi-
cient and fair comparison to all models, we set the input
length as 12 in most of our experiments.

5.4.2 Model Efficiency

To see the benefits of the temporal convolution along the
time axis in our proposal, we summarize the comparison of
training time between GTCN, T-GCN, and Dynamic+LSTM
with respect to different input lengths in Fig. 8b. We see
RNN-based models need more training time as the length

Fig. 7. Prediction errors with/without using spatial correlations.

Fig. 8. Benefits of involving temporal convolution.
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of the input sequences increases. Then we summarize the
comparison of training time and inference time when the
input length is set as 36, as shown in Table 3. Our model
achieves 8.4! improvement on inference time, which very
benefits for low latency applications in practice. This accel-
eration of training and inference speed mainly benefits from
applying the temporal convolution instead of recurrent
structures, which can achieve parallel computation rather
than relying on chain structures as RNN models do [21].
When the length of inputs increases to 48, T-GCN and
Dynamic+LSTM have to decrease the batch size, since their
GPU memory consumption exceeds the capacity, which
will increase training batch and training time. So we omit
the result under this circumstance.

5.5 Data Measurements and Impacts (RQ4)

5.5.1 Impact of Mobile Data Traffic Volume

Fig. 9a plots the cumulative distribution function (CDF) of
per one-quarter traffic volume in our MDT(sub) dataset. As
shown, both light traffic (<102 bytes) and heavy traffic
(>105 bytes) take up only a small percentage. We test the
prediction ability of our model for different traffic volumes.
Generally, it is more important to forecast heavy traffic than
light traffic, because heavy traffic more impacts the stability
and service quality of the whole wireless network. To evalu-
ate the prediction performance for different traffic volume,
we divide the testing set into five subsets based on traffic

volume levels: ½0; 102Þ, ½102; 103Þ, ½103; 104Þ, ½104; 105Þ,
½105;1). Fig. 9d present the prediction performance for dif-
ferent traffic volume levels. For all prediction methods,
log-normalized RMSE of light (½0; 102Þ) level is lowest, and
log-normalized RMSE of ½102; 103Þ, ½103; 104Þ, and ½104; 105Þ
levels are higher than log-normalized RMSE of heavy
(½105;1)) level. The reason lies in the imbalance nature of
the MDT dataset in which 95 percent of the traffic volume
data is 0. The prediction results of all comparative methods
have a tendency to close to 0. On the other hand, when the
ground truth is in heavy level, the results will be close to the
maximum of the dataset. Therefore, both light traffic and
heavy traffic can be well predicted. Overall, the results indi-
cate that our method outperforms others and it is applicable
to predict mobile data traffic volume spanning a wide
range. The improvements for different traffic volumes are
ranging from -9.2 to 27.9 percent.

Maximal Capacity. In practice, each AP has a limited maxi-
mal capacity. Once the maximal capacity is reached, users will
not be able to connect to this node so they have to connect to a
far one. In this case, our model will predict the future traffic of
these nodes. The results show that our model addresses this
problembetter than the comparativemethods.

5.5.2 Impact of User Activity of APs

This experiment demonstrates the prediction performance
of our method for APs with different levels of user activity.
The user activity of an AP is used to measure how many
users have connected to the AP. After checking the campus
maps, we find that all of high activity APs are located in
busy and crowded locations. Fig. 9b plots the number of
APs with different user activity. Each point with coordinate
ðx; yÞ in the plot represents the number y of APs where x
users have connected to. We divide the APs into three sub-
sets according to user activity: low activity (½0; 101Þ), middle
activity (½101; 102Þ), and high activity (½102;1)). We find all
comparative methods achieve slightly better performance

TABLE 3
Computational Time When the Input Length is 36

Data Models Computational Time

Training (s/epoch) Inference (s)

MDT-sub T-GCN 68.49 17.45
Dynamic+LSTM 109.26 18.53
GTCN 38.12 2.08

Fig. 9. Impact of mobile data traffic volume, user activity, and time period.
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for higher activity APs than lower ones. The reason is that
APs with high activity usually represent regular, daily, and
periodical behaviors of users. They also show a high spatial
dependency in their mobile data traffic on their neighboring
APs. Therefore, such traffic patterns are easy to be captured.
APs with low activity usually represent personal and occa-
sional behaviors, which are not easy to be captured. Our
method can capture the spatial dependency between these
APs and their neighbors to improve the prediction perfor-
mance. Therefore, it achieves a lower prediction error than
other methods. Overall, the results indicate that our method
achieves better performance than comparative methods
over all ranges of user mobility of APs. The improvements
for different user mobility are ranging from 6.7 to 9.4
percent.

5.5.3 Impact of Time Period

This experiment shows the temporal trend of the predic-
tion errors of the selected methods. Since both the traffic
volume and users’ traffic usage preference vary with time,
we try to demonstrate how these factors impact prediction
performance. Fig. 9c plots the average traffic volume for a
whole day. Most users use wireless networks from around
8:00 to 22:00. Fig. 9f plots the log-normalized RMSE metric
of the prediction performance of our method during one
day. According to the result, we demonstrate that our
model has a better prediction ability for daytime mobile
data traffic. The reason lies in the daily and periodical
behaviors of users during the daytime. Users’ personal
behaviors during the night are hard to predict. We find the
predict performance gets better from around 9:00. After
checking the school timetable, we find that many courses
start after 9:00 and many users begin to move to high
mobility APs, which are at crowded locations and have
large mobile data traffic, at that time. As we mentioned
before, such daily patterns are easier to capture. Therefore,
our method can get better prediction performance and
achieves smaller RMSEs.

5.6 Application for Energy-Saving (RQ5)
Commercial WiFi networks need to remain active for better
service quality. However, a commercial WiFi network may
contain thousands of active APs all day, which waste lot of
energy. If we can accurately predict when users arrive and
leave and turn the AP into different modes (normal mode
or low-power mode) ahead, it will be useful for energy sav-
ing while keeping satisfied service quality. To achieve this
target, we demonstrate the ability for predicting users’
arrival and leaving, as shown in Table 4. Our method
achieves precision with 0.9530 and recall with 0.9153 on

predicting user arrival, and precision with 0.9891 and recall
with 0.4889 on predicting user leaving. It means less than 1
in 10 arrival prediction is a false negative, and around 1 in
100 leaving prediction is a false positive. It will still keep
high service quality if we turn the APs into different modes
according to our predicted results.

We compute the amount of energy saved by such a strat-
egy. Assuming low-power mode does not cost any energy,
for each AP, if busy time accounts for x% proportion, we
can save as almost 1' x% energy. The recall of predicting
user leaving is 0.4889 (see Table 4), which means around
48.89 percent relax time is accurately predicted by our
method. Therefore, we can roughly estimate that 0:4889ð1'
x%Þ energy can be saved by turning APs’ mode ahead.

6 CONCLUSION

In this paper, we proposed a deep neural network model
GTCN to predict mobile data traffic of APs in large-scale
wireless networks. GTCN first uses a graph convolutional
neural network to model the spatial correlations between
APs by exploring spatio-temporal mobility trajectories of
mobile users. Then, we adapted temporal convolutional net-
work layers to model the temporal trend of mobile data traf-
fic on each AP. Experimental results on two real-world
datasets demonstrate the efficiency and efficacy of our
GTCN. The datasets will be released soon.
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