
Computer Networks 246 (2024) 110395

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Online optimal service caching for multi-access edge computing: A
constrained Multi-Armed Bandit optimization approach
Weibo Chu a,∗, Xiaoyan Zhang a, Xinming Jia a, John C.S. Lui b, Zhiyong Wang b

a Northwestern Polytechnical University, Xi’an, China
b The Chinese University of Hong Kong, Hong Kong

A R T I C L E I N F O

Keywords:
Multi-access edge computing
Service selection
Service caching
Constrained multi-armed bandit
Online algorithm

A B S T R A C T

In order to fully exploit the power of Multi-Access Edge Computing, services need to be cached at the network
edge in an adaptive and responsive way to accommodate the high system dynamics and uncertainty. In this
paper, we study the online service caching problem in MEC, with the goal to minimize users’ perceived latency
while at the same time, ensure the rate of tasks processed by the edge server is no less than a preset threshold.
We model the problem with a Constrained stochastic Multi-Armed Bandit formulation, and propose a simple
yet effective online caching algorithm called Constrained Confidence Bound (CCB). CCB achieves 𝑂(

√

𝑇 ln 𝑇)
bounds on both regret and violation of the constraint, and is able to achieve a good balance between them.
We further consider the scenario when there is cost (i.e., delay) due to service switches, and propose two
service switch-aware caching algorithms — Explore-First (EF) and Successive Elimination-based (SE) caching,
together with a novel sampling scheme. We prove that EF achieves 𝑂(𝑇

2
3 (ln 𝑇)

1
3) bound on regret and violation,

whereas SE achieves 𝑂(
√

𝑇 ln 𝑇) and converges significantly faster. Lastly, we conduct extensive simulations
to evaluate our algorithms and results demonstrate their superior performance over baselines.
1. Introduction

It has been shown repeatedly that innovative network architectures
and key technologies enable and empower crucial applications. It is
our consensus today that the reverse is also true as applications are
shaping/changing the network architectures and technologies. Take
for example emerging applications such as autonomous driving [1],
AR/VR [2], and networked gaming. Being resource-hungry and delay-
sensitive, these applications impose a stringent requirement on both
computing and networking capacity, but which cannot be met solely
by the existing cloud systems due to the long propagation delay
and unstable network connections. In this context, a new network
computing paradigm called multi-access edge computing (MEC [3,
4]), has been put forward. The key feature of MEC is that services
are hosted at various type of edge nodes endowed with comput-
ing/storage/communication capacities, so that low-latency access to
services are possible.

With MEC, users can offload their tasks to the edge nodes (a.k.a
MEC servers) for high energy-efficiency, fast responses and enhanced
security/privacy protection [5]. However, as compared with cloud in-
frastructure (e.g., data centers) which can virtually host all the services
with abundant resources, MEC servers are often resource-constrained

∗ Corresponding author.
E-mail addresses: wbchu@nwpu.edu.cn (W. Chu), zhangxy301@mail.nwpu.edu.cn (X. Zhang), jxm12f@mail.nwpu.edu.cn (X. Jia), cslui@cse.cuhk.edu.hk

(J.C.S. Lui), zywang21@cse.cuhk.edu.hk (Z. Wang).

and can only accommodate a limited number of services. For example,
network operators usually implement cloudlet based mobile computing
using a computing server with small resources or a cluster with medium
resources. This raises the service placement problem as when and where
to host the services at the edge nodes. Apparently, the performance of
MEC varies significantly depending on service placement.

The service placement problem (SPP), sometimes also referred to
as service caching [6], has attracted a lot of research in the past
few years, and various algorithms [7–10], i.e., exact/approximate,
static/dynamic, centralized/decentralized, have been proposed. Yet de-
signing an optimal policy for service caching remains a challenge due to
the high heterogeneity and dynamics of both the system and workload.
The problem becomes even more challenging when we consider it in an
online setting where the caching decisions have to be made as system
operates, but without a priori knowledge of user-generated workload
and network condition. In fact, these critical information such as task
offloading delays are stochastic and unobservable unless the services
are cached. Moreover, from a practical point of view, it is expected that
the online caching algorithms can provide us provable performance
guarantee.
vailable online 16 April 2024
389-1286/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2024.110395
Received 19 September 2023; Received in revised form 29 February 2024; Accepte
d 2 April 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:wbchu@nwpu.edu.cn
mailto:zhangxy301@mail.nwpu.edu.cn
mailto:jxm12f@mail.nwpu.edu.cn
mailto:cslui@cse.cuhk.edu.hk
mailto:zywang21@cse.cuhk.edu.hk
https://doi.org/10.1016/j.comnet.2024.110395
https://doi.org/10.1016/j.comnet.2024.110395
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2024.110395&domain=pdf

Computer Networks 246 (2024) 110395W. Chu et al.
In this paper, we study the online service caching problem for a
generic multi-access edge computing system, with the goal to minimize
users’ perceived latency. We adopt a Multi-Armed Bandits (MAB) [11,
12] optimization framework, which is a simple but very powerful tool
for online learning that allows a decision maker to estimate parame-
ters and perform optimization overtime under uncertainty. Our model
differs substantially from traditional MAB in that: (1) in addition to
cumulative reward (here, cumulative latency) that measured by regret,
we also consider a QoS constraint from MEC service provider that the
rate of tasks processed by the edge server is no less than a preset
threshold. This formulation captures a key feature in many real-world
optimization tasks that network operators seek some other performance
guarantees (or constraints, measured by violation) in addition to the
optimal solution; (2) Besides bandit feedback, our model also involves
other type of feedback, i.e., full feedback, complementary feedback,
and even state-dependent feedback. This significantly extends the exist-
ing MAB framework, while at the same time, poses challenges to design
efficient algorithms and characterize their performance.

More specifically, in this paper we formulate the online service
caching problem as a Constrained Multi-Armed Bandits (CMAB) op-
timization problem. To balance between minimizing the aggregate
delay and satisfying the QoS constraint, we first propose a simple
yet effective algorithm, called Constrained Confidence Bound (CCB),
which is a probabilistic algorithm that achieves sub-linear bounds on
both regret and violation with high probability, i.e., at time 𝑇 with
a probability 1 − 𝛿, we have 𝑅𝑒𝑔(𝑇) = 𝑂((𝐾 − 𝐿)

√

𝐾𝑇 ln 2𝐾𝑇
𝛿) and

𝑉 𝑖𝑜(𝑇) = 𝑂(𝐾
√

𝐾𝑇 ln 2𝐾𝑇
𝛿), where 𝐾 is the number of services in

system and 𝐿 is the server capacity. Our simulation results suggest that
CCB serves as a good candidate to online caching if our goal is more
about the long-term performance.

We then consider the scenario when there is service switching cost,
i.e., delays for fetching a new service from cloud and then instantiate
it at the MEC server. We show that with service switching cost, the
performance of CCB degrades due to the inaccurate estimate of pa-
rameters and frequent service switches. To this end, we propose two
new service switch-aware online caching algorithms — Explore-First
(EF) and Successive Elimination-based (SE) caching, both of which can
effectively deal with service switches during the caching process. A
common ingredient of the two algorithms is a novel sampling scheme
that we propose, which is designed to sample services uniformly at the
same rate with small sampling cost, while at the same time, which can
avoid too many service switches. We show that both algorithms are able
to identify the optimal solution efficiently, with the difference that a
large number of samples are required by EF whereas the sampling cost
can be significantly decreased by SE through gradually eliminating non-
optimal services with high confidence during the learning process. This
allows SE to converge much faster and also more computationally cost-
effective. Furthermore, we prove that both algorithms simultaneously
achieve sub-linear bounds on regret and violation.

The remainder of this paper is organized as follows. In Section 2 we
describe system model and the CMAB formulation for the online service
caching problem. Section 3 presents CCB, its performance analysis and
simulation results. In Section 4 we extend the model to problems with
service switching cost, and elaborate the EF and SE algorithm and their
performance evaluation. Section 5 gives related work. We discuss some
future research directions and conclude the paper in Section 6.

2. System model and problem formulation

2.1. System model

We consider a Multi-Access Edge Computing system as shown in
Fig. 1, which consists of multiple user equipments (UEs), an MEC
server and the cloud. To make our model generic, this MEC server
can be micro data center, an edge cloud or a computing server with
2

Fig. 1. A Multi-Access Edge Computing system.

high capacity. Resource-hungry and delay-sensitive tasks are generated
from UEs and routed to the MEC server. If the required services are
hosted, the corresponding tasks are performed locally and superior
user experience can be achieved. Otherwise, they are directed to the
cloud for remote execution at the cost of large delay. Throughout
the paper, we assume that the cloud hosts all the services; however,
due to resource (CPU, memory, etc.) constraints, the MEC server can
only accommodate a limited number of services simultaneously, which
raises the service caching problem, i.e., how to properly select a subset
of services from a large service pool and instantiate them at the MEC
server so as to optimize the system performance.

Due to its combinatorial nature, service caching problem is gen-
erally hard to tackle even when all system parameters are available,
i.e., the problem is often modeled as a 0–1 programming problem. It is
much more challenging when we consider it in an online setting where
one has to make caching decisions as system operates, but without any
priori knowledge of the stochastic user-generated tasks and network
condition. Simply caching the most popular services does not always
guarantee low latency when, i.e., the computation workload of the tasks
are high. Likewise, caching the services with the best network condition
is also sub-optimal when the popularity of the service is low. In fact,
system parameters such as MEC-offloading delay and service switching
cost are unobservable unless the service is selected/cached.

In this paper, we study this online service caching problem and our
goal is to minimize users’ perceived latency. We seek efficient online
caching algorithms which can optimally select a subset of services
while at the same time, which can run at the MEC server without
any collaboration with UEs or the cloud. This makes our mechanism
easy to deploy, scalable and of low cost. To achieve this, we make the
following assumptions: (1) tasks for the services arrive independently;
(2) a task can only be offloaded to the MEC server if the required
service is present; otherwise, it will be directed to the cloud; and (3)
the network delay between UEs and the MEC server is negligible as
compared to the delay between the MEC server and the cloud, which
implies that the MEC-offloading delay for a task equals to the time it
is performed at the MEC server, and the cloud computing delay is the
time for the task being processed at cloud plus the time it takes for
transmitting data and computation results. It follows that both of the
two delays can be observed at the MEC server.

Let  = {1, 2,… , 𝐾} be the set of services in system, and assume
they are of equal sizes. The MEC server can accommodate up to 𝐿 < 𝐾
services. Time is divided into successive slots with equal length  =
{1, 2,… , 𝑇 }. At each time slot 𝑡, we associate with each service 𝑖 ∈ 
the following three quantities: (1) 𝛽𝑡𝑖 , which is the arrival rate of tasks
for service 𝑖 at time 𝑡; (2) 𝑚𝑡

𝑖, which is the aggregate latency of tasks
for service 𝑖 at time 𝑡 if they are computed at the MEC server, i.e., the
MEC-offloading delay; and (3) 𝑐𝑡𝑖 , which is the aggregate latency of tasks
for service 𝑖 at time 𝑡 if they are performed at cloud, i.e., the cloud
computing delay. Note that depending on the caching state of service
𝑖, at an arbitrary time slot 𝑡 we can only observe 𝑚𝑡

𝑖 or 𝑐𝑡𝑖 , but not both of
them. However, we can always observe 𝛽𝑡𝑖 since all tasks from UEs are
routed to the MEC server for potential offloading. Moreover, without
loss of generality, we assume 𝛽𝑡𝑖 ∈ [0, 1], 𝑚𝑡

𝑖 ∈ [0, 1] and 𝑐𝑡𝑖 ∈ [0, 1].
Table 1 gives main notations used in this paper.

Computer Networks 246 (2024) 110395W. Chu et al.

w
o
l

b
a
t

v

F
{
i

(
t
W
p

𝐱

t
l
a

e
t
r
t

𝑅

m
a
b
a

𝑉

w

a
A
o
w
r
a

3

a
i
p
t
p
c
B

Table 1
Main notations.

Symbol Definition

 Set of services in system, || = 𝐾
𝐿 Server capacity
ℎ A threshold denoting the rate of tasks processed by the MEC

server
𝛿 Failure probability

𝛽𝑡𝑖 Arrival rate of tasks for service 𝑖 at time 𝑡
𝑚𝑡

𝑖 MEC offloading delay of tasks for service 𝑖 at time 𝑡
𝑐𝑡𝑖 Cloud computing delay of tasks for service 𝑖 at time 𝑡
(𝛽𝑖 , 𝑚𝑖 , 𝑐𝑖) Expectation of (𝛽𝑡𝑖 , 𝑚

𝑡
𝑖 , 𝑐

𝑡
𝑖)

(𝛽𝑡𝑖 , 𝑚̄
𝑡
𝑖 , 𝑐

𝑡
𝑖) Empirical means of ({𝛽𝑡𝑖}, {𝑚𝑡

𝑖}, {𝑐𝑡𝑖}) up to time 𝑡
(𝛽𝑡𝑖 , 𝑚̌

𝑡
𝑖 , 𝑐

𝑡
𝑖) Lower Confidence Bound for (𝛽𝑖, 𝑚𝑖, 𝑐𝑖) at time 𝑡

(𝛽𝑡𝑖 , 𝑚̂
𝑡
𝑖 , 𝑐

𝑡
𝑖) Upper Confidence Bound for (𝛽𝑖, 𝑚𝑖, 𝑐𝑖) at time 𝑡

𝑚𝑡
𝑖,11 MEC offloading delay of tasks for service 𝑖 of type 11 at

time 𝑡
UCB𝑡(𝑚𝑖,11) Upper Confidence Bound for 𝑚𝑖,11 at time 𝑡
LCB𝑡(𝑚𝑖,11) Lower Confidence Bound for 𝑚𝑖,11 at time 𝑡

𝐱∗ Optimal caching policy
𝐱𝐭 Caching decision at time 𝑡
𝐱𝑡(𝜋) Caching decision made by algorithm 𝜋 at time 𝑡
𝑡(𝜋) Set of services selected by algorithm 𝜋 at time 𝑡

Let 𝐱𝐭 = (𝑥𝑡1, 𝑥
𝑡
2,… , 𝑥𝑡𝐾)

T be the caching decision at time slot 𝑡,
where 𝑥𝑡𝑖 = 1 if service 𝑖 is cached, and 𝑥𝑡𝑖 = 0 otherwise.1 Also denote
𝐦𝐭 = (𝑚𝑡

1, 𝑚
𝑡
2,… , 𝑚𝑡

𝐾)
T, 𝐜𝐭 = (𝑐𝑡1, 𝑐

𝑡
2,… , 𝑐𝑡𝐾)

T and 𝜷𝑡 = (𝛽𝑡1, 𝛽
𝑡
2,… , 𝛽𝑡𝐾)

T.
Here, in addition to optimize users’ perceived latency, we also enforce
another constraint to the caching policy that the aggregate rate of tasks
processed by the MEC server is no less than a preset threshold ℎ > 0.
Note that this constraint can be regarded as the QoS requirement from
the service providers. Indeed, one of the most significant benefits that
a service provider can expect from multi-access edge computing is that
the vast majority of their tasks are processed at the network edge and
the workload on cloud thus can be dramatically decreased. This at the
same time alleviates network congestion for the infrastructure provider.

Let 𝟏 be the one column vector, i.e. 𝟏 = (1, 1,… , 1)T. With the above
notations, we can formulate the online service caching problem as the
following optimization problem:

Min:
{𝐱𝐭}

𝑇
∑

𝑡=1
𝐱𝐭T𝐦𝐭 + (𝟏 − 𝐱𝐭)T𝐜𝐭 (1a)

s.t.: 𝟏T𝐱𝐭 ≤ 𝐿,∀𝑡 ≤ 𝑇 , (1b)

𝜷𝑡T𝐱𝐭 ≥ ℎ, (1c)

𝑥𝑡𝑖 ∈ {0, 1},∀𝑖 ∈ , 𝑡 ≤ 𝑇 , (1d)

here ∑𝑇
𝑡=1 𝐱

𝐭T𝐦𝐭 + (𝟏 − 𝐱𝐭)T𝐜𝐭 is the aggregate users’ perceived delay
ver the whole time horizon 𝑇 . Constraint (1b) is for the resource
imitation at the MEC server, and (1c) is for the QoS requirement.

Problem (1) is an integer linear programming (ILP) problem that can
e well solved by existing algorithms. The key obstacle here is that in
n online setting, {𝐦𝐭 , 𝐜𝐭 , 𝜷𝑡} are not known in advance when it comes
o time slot 𝑡, but rather they are revealed after the caching decision is

made.

Remark. The assumption that the network delay between UEs and the
MEC server can be ignored is for the following two considerations:
(1) MEC servers are generally deployed at the network edge in close
proximity to end-users, whereas cloud are located much further away.
This implies that the delay between UEs and the MEC server is much
smaller than that between the MEC server and cloud. Furthermore, it
is typically also true that the transmission delay between UEs and the

1 Unless otherwise specified, all vectors defined in this paper are column
ectors.
3

MEC server is much smaller than task processing delay; (2) To imple-
ment multi-access edge computing, network infrastructure providers
usually deploy MEC servers at locations such as a base station in a
cellular network, or a gateway in an enterprise local area network. In
such a setup, it is common that we have identical delays between UEs
and the MEC server. The overall effect is that this delay can be ignored
when we want to optimize users’ perceived latency, as doing this will
not make too much differences.

2.2. Problem formulation

To address the online caching problem (1), we model it with a Con-
strained Multi-Armed Bandit (CMAB) formulation. More specifically,
each service is regarded as an arm and caching a service is equivalent to
pulling an arm. The set of arms thus can be written as  = {1, 2,… , 𝐾}.
or each arm 𝑖 ∈ , we associate it with three feedbacks: {𝑚𝑡

𝑖}
𝑇
𝑡=1,

𝑐𝑡𝑖}
𝑇
𝑡=1 and {𝛽𝑡𝑖}

𝑇
𝑡=1. We assume that all these sequences are made of

id. random variables.
Let 𝑚𝑖 = E[𝑚𝑡

𝑖], 𝑐𝑖 = E[𝑐𝑡𝑖] and 𝛽𝑖 = E[𝛽𝑡𝑖]. Also denote 𝐦 =
𝑚1, 𝑚2,… , 𝑚𝐾)T, 𝐜 = (𝑐1, 𝑐2,… , 𝑐𝐾)T and 𝜷 = (𝛽1, 𝛽2,… , 𝛽𝐾)T. Let  be
he set of all valid caching decisions, i.e.,  = {𝐱 ∈ {0, 1}𝐾 |𝟏T𝐱 ≤ 𝐿}.

hen all these information are available, the best (and static) caching
olicy 𝐱∗ can be put as:
∗ = argmin:

𝐱∈ ,𝜷T𝐱≥ℎ
𝐱T𝐦 + (𝟏 − 𝐱)T𝐜 (2)

As we have mentioned above, the expectations and distributions of
he three feedbacks are unknown beforehand, and therefore we have to
earn and make decisions based on their estimates. At each time slot 𝑡,
n algorithm 𝜋 makes caching decision 𝐱𝑡(𝜋) ∈  , and selects services
𝑡(𝜋) ⊂ . It then observes {𝑚𝑡

𝑖, 𝛽
𝑡
𝑖} for each 𝑖 ∈ 𝑡(𝜋), and {𝑐𝑡𝑗 , 𝛽

𝑡
𝑗} for

ach 𝑗 ∈  ⧵𝑡(𝜋). Our objective is to design an algorithm 𝜋 to decide
he caching set 𝑡(𝜋) for 𝑡 = 1, 2,… , 𝑇 such that it achieves the minimal
egret, i.e., the accumulated difference between the latency under 𝜋 and
hat under the optimal policy 𝐱∗, which is defined as:

𝑒𝑔𝜋 (𝑇) =
𝑇
∑

𝑡=1
(
∑

𝑖∈𝑡(𝜋)
𝑚𝑡
𝑖 +

∑

𝑗∈⧵𝑡(𝜋)
𝑐𝑡𝑗) − 𝑇 (𝐱∗T𝐦 + (𝟏 − 𝐱∗)T𝐜) (3)

It is worthy noting that an algorithm 𝜋 which achieves a low regret
ay violate the QoS constraint, especially when it has little information

bout services/arms. We define violation of the algorithm as the gap
etween the accumulated rate of tasks processed by the edge server
nd the target rate, as follows:

𝑖𝑜𝜋 (𝑇) = [ℎ𝑇 −
𝑇
∑

𝑡=1

∑

𝑖∈𝑡(𝜋)
𝛽𝑡𝑖]

+ (4)

here [𝑥]+ = max{𝑥, 0}.
Both the regret and violation are important performance indexes

nd both should be taken into account when we design the algorithm.
small regret means the caching policy by the algorithm is close to the

ptimal one, and a small violation implies that the QoS requirement is
ell satisfied during the service caching process. In practice, an algo-

ithm with sub-linear bounds on both regret and violation is considered
cceptable and applicable.

. CCB and its performance evaluation

In this section, we present our Constrained Confidence Bound (CCB)
lgorithm and its performance under simulation. The idea behind CCB
s straightforward: (1) at each time slot 𝑡 we can derive a valid caching
olicy through solving the optimization problem (1); and (2) although
he system parameters are unknown at the time of decision, we can re-
lace them by estimates. This should work well as long as the algorithm
an provide us with good estimates, i.e., Lower/Upper Confidence
ound.

Computer Networks 246 (2024) 110395W. Chu et al.

𝑐

𝛽

w
s

t

𝑐

a

𝛽

(
s
𝑇
7
p
a
e

O

T
t

𝑅

𝑉

p

3

s
t
p

3.1. Algorithm

Denote by 𝑡 = {𝜏 , 𝑚𝜏
𝑖 , 𝑐

𝜏
𝑖 , 𝛽

𝜏
𝑖 ∶ 𝑖 ∈ 𝜏 , 1 ≤ 𝜏 ≤ 𝑇 } be the history

of caching decisions and the observed feedback up to time slot 𝑡. CCB
maintains the following empirical means for each arm 𝑖 ∈  at each
time 𝑡:

𝑚̄𝑡
𝑖 =

∑

𝜏<𝑡,𝑖∈𝜏
𝑚𝜏
𝑖

𝑁 𝑡
𝑖,M + 1

(5)

̄𝑡𝑖 =

∑

𝜏<𝑡,𝑖∉𝜏
𝑐𝜏𝑖

𝑁 𝑡
𝑖,C + 1

(6)

̄𝑡
𝑖 =

∑

𝜏<𝑡,𝑖∈𝜏
𝛽𝜏𝑖

𝑡
(7)

here 𝑁 𝑡
𝑖,M and 𝑁 𝑡

𝑖,C are the number of times arm 𝑖 is selected and not
elected before time 𝑡, respectively. Obviously, 𝑁 𝑡

𝑖,M +𝑁 𝑡
𝑖,C + 1 = 𝑡.

Let 𝑅(𝜇, 𝑛) =
√

𝛾𝜇
𝑛 + 𝛾

𝑛 as in [13] and 𝛾 is a positive constant. Define
he following Lower Confidence Bound for 𝑚𝑖 and 𝑐𝑖 at each time 𝑡:

𝑚̌𝑡
𝑖 = max{0, 𝑚̄𝑡

𝑖 − 2𝑅(𝑚̄𝑡
𝑖, 𝑁

𝑡
𝑖,M + 1)} (8)

̌𝑡𝑖 = max{0, 𝑐𝑡𝑖 − 2𝑅(𝑐𝑡𝑖 , 𝑁
𝑡
𝑖,C + 1)} (9)

nd Upper Confidence Bound for 𝛽𝑖:

̂𝑡
𝑖 = min{1, 𝛽𝑡𝑖 + 2𝑅(𝑐𝑡𝑖 , 𝑡)} (10)

Denote by 𝐦̌𝐭 = (𝑚̌𝑡
1, 𝑚̌

𝑡
2,… , 𝑚̌𝑡

𝐾), 𝐜̌𝐭 = (𝑐𝑡1, 𝑐
𝑡
2,… , 𝑐𝑡𝐾), and 𝜷̂𝐭 =

𝛽𝑡1, 𝛽
𝑡
2,… , 𝛽𝑡𝐾). As depicted in Alg. 1, the input of CCB includes the arm

et , the server capacity 𝐿, the QoS requirement ℎ, the time horizon
, and 𝛿 ∈ (0, 1) which is a failure probability. CCB starts with 𝛾 set to
2 ln 2𝐾𝑇

𝛿 . It then solves problem (1) at each time 𝑡 with the system
arameters (𝐦, 𝐜, 𝜷) being replaced by (𝐦̌𝐭 , 𝐜̌𝐭 , 𝜷̂𝐭) to get the selected
rms 𝑡. After that, it updates the upper/low confidence bounds for
ach arm. The process repeats until time 𝑇 .

Procedure 1 Constrained Confidence Bound algorithm for Caching
Services at the MEC server.
Input: , 𝐿, ℎ, 𝑇 , 𝛿;
utput: Selected arms/services at each time slot;

1: 𝛾 = 72 ln 2𝐾𝑇
𝛿 , m̌1 = č1 = 𝜷̂1 = 𝟎, 𝑁1

𝑖,M = 𝑁1
𝑖,C = 0,∀𝑖 ∈ .

2: for 𝑡 = 1, 2,… , 𝑇 do
3: Solve the following optimization problem:

𝐱𝑡 = argmin:
𝐱∈ ,

̂𝜷 𝐭T𝐱≥ℎ

𝐱Tm̌𝐭 + (𝟏 − 𝐱)Tč𝐭 (11)

4: Select arms 𝑡 according to 𝐱𝑡, and do the following updates for
each arm 𝑖 ∈ :

𝑁 𝑡+1
𝑖,M =

{

𝑁 𝑡
𝑖,M + 1, ∀𝑖 ∈ 𝑡

𝑁 𝑡
𝑖,M, ∀𝑖 ∈  ⧵ 𝑡

. (12)

𝑁 𝑡+1
𝑖,C =

{

𝑁 𝑡
𝑖,C + 1, ∀𝑖 ∈  ⧵ 𝑡

𝑁 𝑡
𝑖,M, ∀𝑖 ∈ 𝑡

. (13)

5: Based on the received feedback, calculate (m̌𝑡+1, č𝑡+1, 𝜷̂𝑡+1)
accordingly.

The following theorem holds for CCB:

heorem 3.1. By running CCB, we have a probability at least 1− 𝛿 such
hat:

𝑒𝑔(𝑇) = 𝑂((𝐾 − 𝐿)
√

𝐾𝑇 ln 2𝐾𝑇
𝛿

),

𝑖𝑜(𝑇) = 𝑂(𝐾
√

𝐾𝑇 ln 2𝐾𝑇).
4

𝛿

Proof. See Appendix A. □

Remark. CCB is based on Con-UCB [14], but with the following differ-
ences: (1) Con-UCB is proposed to tackle the online decision problem
where the objective function is a function of one parameter only (can
be in the form of multi-level feedback), whereas CCB can be applied
when there are two or more such parameters in the objective function;
(2) In Con-UCB, all feedback are bandit feedback, i.e., observations
can only be made if the arm is selected. On the other hand, CCB
allows both bandit feedback and full feedback, i.e., {𝛽𝑡𝑖}. Moreover, CCB
allows feedback that are complementary, i.e., one parameter that can
be observed if the arm is selected, and the other one be observed if
the arm is not selected, but which cannot be simultaneously observed,
i.e., {𝑚𝑡

𝑖} and {𝑐𝑡𝑖}. These feedback need to be properly handled in the
erformance analysis. As a result, CCB is a generalization of Con-UCB.

.2. Simulation results

We use simulations to investigate the performance of CCB, with both
ynthetic workload and real dataset. For synthetic workload, we assume
he popularity of services follows a Zipf distribution with skewdness
arameter 𝑠 ∈ {0.6, 0.8, 1.0}. Task parameters are configured as follows:

we divide task sizes into a set of intervals as [0.1 MB, 0.3 MB], [0.3 MB,
0.5 MB], [0.5 MB, 0.8 MB], [0.8 MB, 1 MB], [1 MB, 3 MB], [3 MB,
5 MB], [5 MB, 8 MB], and [8 MB, 10 MB] [15,16]. Note that these
intervals are not of the same lengths. The task size of each service falls
in one of these intervals that are randomly picked, and once fixed, the
size of a task for the service is uniformly chosen from that interval. The
computing intensity of tasks (in CPU cycles per bit) are drawn randomly
from [100, 200, 300, 400, 500] [17], which represents certain amount
of task heterogeneity and skewed workload distribution.

Meanwhile, we assume tasks arrive independently and the aggre-
gate request rate for services is 100 req/sec. The network bandwidth
between cloud and the MEC server is 5 Mbps [18], and each service is
allocated to 5.6 GHz and 2.8 GHz CPU resources from cloud and the
MEC server, respectively. The time horizon is set as 𝑇 = 100 000, and
the length of each slot is 100 s. Without otherwise specified, we set the
number of services in system as 𝐾 = 100 and that can be hosted at the
MEC server as 𝐿 = 10.

For performance evaluation, we adopt the following two algorithms
as baselines: (1) Random-Caching : this is the algorithm that randomly
picks 𝐿 services to cache at the MEC server at each time slot; and (2)
Top-Rate-Caching : this is the algorithm that always cache the top 𝐿 most
popular services, assuming that the knowledge of service popularity is
given a priori.

Fig. 2 shows how each algorithm performs with different parameter
settings in simulation. From these figures, we can see that: (1) as
expected, in all cases Random-Caching performs worst as both the
regret and violation grow linearly in time; (2) the Top-Rate-Caching,
which is able to satisfy the QoS constraint consistently, also does
not provide a satisfactory delay performance for the linearly growing
regret (although it grows much more slowly than Random-Caching).
This implies that in general, the top 𝐿 most popular services does
not coincide with the set of services that provides the most caching
gain. The reason is that workload distribution can be inconsistent with
service popularity distribution, as we configured in simulation; and
(3) CCB gives the best performance among the three algorithms, in
that both the regret and violation grow sub-linearly as time elapses.
Moreover, it can be observed that CCB behaves exactly the same way as
Random-Caching at the very beginning (i.e., 𝑡 < 20 000), for the fact that
during this period not enough samples are collected for services and as
a result, CCB is not able to differentiate them but have to randomly pick
services. After that period, CCB gradually identifies/learns the optimal
services and the regret grows sub-linearly then.

Fig. 3 shows the performance of each algorithm in trace-driven
simulation. We adopt a dataset from [19], which contains packet inter-

arrival times from 5 applications generated by 36 wireless devices. The

Computer Networks 246 (2024) 110395W. Chu et al.

I
h
b
s
r
l
s

c
m
m
a

4

C
t
t
l
t

Fig. 2. Performance of CCB and the two baseline algorithms under different system settings.
d

wireless traces are used to generate workload, where each packet is
regarded as a request and each <device, application> as a service.
n this way, we get workload for 94 services in total. Meanwhile, to
ave enough data for simulation, we stretch time axis in each trace
y 1000 (so a millisecond becomes a second). Here, since the optimal
et of services is not known, we give the cumulative latency instead of
egret. Again, we can see that CCB outperforms the two baselines whose
atency and violation keep growing linearly all the time, whereas CCB
lows down the growth, i.e., when 𝑡 > 40 000.

All in all, we believe that CCB serves as a good solution to online
aching problem if our goal is more about the long-term system perfor-
ance. In the next section, we will present an algorithm that converges
uch faster, which at the same time, grows much slower in both regret

nd violation than CCB.

. Service switch-aware online caching

In Section 3, we formulate the online caching problem and propose
CB, without taking into account service switching cost. According
o the current technology, services are often hosted by VMs or con-
ainers, whose image (e.g., data, code) needs to be fetched and then
oaded into system before the service is available. Note that during
his period of time, tasks for the service will not be performed at
5

the MEC server, but instead they have to be directed to the cloud
for remote execution. The cost of service switches raises two new
problems for online caching algorithms, if they were designed without
properly considering it: (1) biased/inaccurate estimate of parameters,
in particular, the MEC-offloading delay; and (2) system performance
degradation due to frequent service switches. Take CCB for example,
Fig. 4 shows its performance when there is no switching cost VS. there
is cost, where in the latter scenario we set the time to load a new service
as 20 s. It is evident that in call cases, the performance of CCB decreases
due to service switches, i.e., the regret grows faster and it takes more
time to converge. These results suggest that in practice, we need online
caching algorithms that can properly handle the service switching cost.

4.1. Problem formulation

With service switching cost, the MEC-offloading delay for each
service depends on whether the service is cached or not in the previous
time slot, i.e., the caching state. Accordingly, at each time slot 𝑡 we can
ivide services into 4 categories:

• type 00 — this is the set of services not cached at time 𝑡 and will
also be absent at 𝑡 + 1;

• type 01 — this is the set of services not cached at 𝑡 but will be
cached at 𝑡 + 1;

Computer Networks 246 (2024) 110395W. Chu et al.
Fig. 3. Performance of CCB and the two baseline algorithms in trace-driven simulation: 𝐿 = 10, ℎ = 0.2, 𝛿 = 0.01.
Fig. 4. Performance reductions of CCB when there is service switching cost.
• type 10 — this is the set of services cached at 𝑡 but will be absent
at 𝑡 + 1;

• type 11 — this is the set of services cached at 𝑡 and will also be
present at 𝑡 + 1.

Note that among the four categories, service switching cost is in-
curred only for services of type 01, i.e., when a new service is loaded.

Likewise, for each service 𝑖, let 𝑚𝑡
𝑖,11 and 𝑚𝑡

𝑖,01 denote the delays of
type 11 and 01, respectively, and denote by 𝑐𝑡𝑖 the delays of type 00
and 10 (both for cloud computing). The online caching problem then
becomes:

Min:
{𝐱𝐭}

𝑇
∑

𝑡=1

∑

𝑖∈
𝑥𝑡−1𝑖 𝑥𝑡𝑖𝑚

𝑡
𝑖,11 + (1 − 𝑥𝑡−1𝑖)𝑥𝑡𝑖𝑚

𝑡
𝑖,01 + (1 − 𝑥𝑡𝑖)𝑐

𝑡
𝑖 (14a)

s.t.: 𝟏T𝐱𝐭 ≤ 𝐿,∀𝑡 ≤ 𝑇 , (14b)

𝜷𝑡T𝐱𝐭 ≥ ℎ, (14c)

𝑥𝑡𝑖 ∈ {0, 1},∀𝑖 ∈ , 𝑡 ≤ 𝑇 , (14d)

The above problem is a 0–1 quadratic programming problem that is
much more complicated than problem (1), in that the caching decision
at each time slot not only depends on the unknown delays but also
depends on the current caching state. A simple and heuristic algorithm
is to select services at each time slot 𝑡 through solving the following
0–1 LP problem given the current system state 𝐱𝐭−𝟏:

𝐱𝐭 =∶ (15a)

argmin:
𝐱𝐭∈ ,𝜷𝐭

T
𝐱𝐭≥ℎ

∑

𝑖∈
𝑥𝑡−1𝑖 𝑥𝑡𝑖𝑚̌

𝑡
𝑖,11 + (1 − 𝑥𝑡−1𝑖)𝑥𝑡𝑖𝑚̌

𝑡
𝑖,01 + (1 − 𝑥𝑡𝑖)𝑐

𝑡
𝑖 (15b)

where 𝑚̌𝑡
𝑖,11 and 𝑚̌𝑡

𝑖,01 are LCBs of 𝑚𝑖,11 and 𝑚𝑖,01, respectively. This
approach, although straightforward, is greedy in nature, and far from
optimal as shown in Fig. 5, where we can see that the performance of
the algorithm is identical or even worse (see Fig. 5(b)) than CCB.
6

4.2. Explore-first algorithm

The first algorithm we propose to deal with service switches is
Explore-First (EF). To start with, let us re-examine the online caching
problem. We make the following observations: (1) Our goal is to
minimize the user-perceived latency, that is, to cache the 𝐿 services
with the largest delay savings (under the given constraint), i.e., the gap
between MEC-offloading delay and cloud computing delay; and (2) The
optimal policy is:

𝐱∗ = argmin:
𝐱∈ ,𝜷T𝐱≥ℎ

𝐱T𝐦𝟏𝟏 + (𝟏 − 𝐱)T𝐜 (16)

Note that both do not involve the switching cost. It follows that if
we can estimate 𝐦𝟏𝟏, 𝐜 and 𝜷 accurately based on feedback, then we
can always find a good solution. Meanwhile, since service switching
cost is incurred only when we explore new services, and multiple
services needs to be selected at each time slot, we need an efficient
sampling scheme with the following properties: (1) low cost (≪ C𝐿

𝐾);
(2) arms/services are sampled uniformly, so as to simplify the algorithm
design and its performance analysis; and (3) the frequency of service
switches are well controlled so that we can avoid too much switching
cost.

Our Explore-First algorithm is based on a novel sampling scheme
with the above properties. We use segment as the basic unit to sample
a given set of services, where each segment contains multiple rounds,
and each round consists of two successive time slots. The structure of a
segment is depicted in Fig. 6. We discriminate two scenarios according
to whether the number of services to sample 𝑆 can be divided by 𝐿:

• 𝑆 mod 𝐿 = 0. In this case, whenever a new round begins, we
select 𝐿 new services (at the first time slot), and keep hosting
these services at the second time slot, as shown in Fig. 6(a). To
sample all the services, each segment contains 𝑆∕𝐿 rounds, and
2𝑆∕𝐿 time slots in total.

Computer Networks 246 (2024) 110395W. Chu et al.

i

𝑛

𝑛

Fig. 5. Performance comparison between CCB and the greedy algorithm when there is service switching cost.
Fig. 6. A segment used to sample 𝑆 services.
• 𝑆 mod 𝐿 ≠ 0. Let 𝛼 be the smallest positive integer such that
𝑆𝛼 mod 𝐿 = 0. In this case, each segment contains 𝑆𝛼∕𝐿 rounds,
and we select at the 𝑗th round the following services: {[(𝑗 −1)𝐿+
1] mod 𝑆, [(𝑗 − 1)𝐿 + 2] mod 𝑆,… , 𝑗𝐿 mod 𝑆}, as depicted in
Fig. 6(b). Note that it is our policy that service switch occurs
whenever a new round begins, regardless of whether the service
to cache has been hosted in the previous round.

It can be easily verified that with this sampling scheme, each service
s sampled at the same rate, i.e., for both two scenarios we have:

(𝑖,M) = 𝛼 (17)

(𝑖,C) = 2(𝑆𝛼 − 𝛼) (18)
7

𝐿

𝑛(𝑖) = 2𝑆𝛼∕𝐿 (19)

where we set 𝛼 = 1 when 𝑆 mod 𝐿 = 0. 𝑛(𝑖,M) and 𝑛(𝑖,C) denote
the number of times service 𝑖 is hosted at the MEC server (without
switching cost) or it is played at cloud, in each segment, respectively,
and 𝑛(𝑖) denotes the number of times 𝑖 is requested.

The idea behind Explore-First (EF) is simple: we explore services
uniformly with the above sampling scheme, and pick an empirically
best arm set for exploitation, regardless of what has been observed
previously. More specifically, we divide the time horizon 𝑇 into two
phases, exploration phase and exploitation phase, as shown in Fig. 7(a).
The exploration phase consists of 𝑁 successive segments, where each
segment is used to sample the ground set of services . The exploita-
tion phase follows which consists of remaining time slots that always

Computer Networks 246 (2024) 110395W. Chu et al.

s

O

r
𝐿

𝑅

P

4

g
p
c
r
n
t

𝑇
a
s
o
m
e
a
a

f

U

L

L

w
p
𝑚

O

𝑉

play the empirically best arm set, derived by solving the optimization
problem 20.
Procedure 2 Explore-First algorithm for Caching Services at the MEC
erver.
Input: , 𝐿, ℎ, 𝑇 ;
utput: Selected arms/services at each time slot;

1: Exploration phase: Sample the set of arms  with 𝑁 segments.
2: Select the arm set (𝐱∗) by solving the following optimization

problem:

𝐱∗ = argmin:
𝐱∈ ,𝜷̄T

𝐱≥ℎ

𝐱Tm̄𝟏𝟏 + (𝟏 − 𝐱)Tc̄ (20)

3: Exploitation phase: Play (𝐱∗) in all remaining time slots.

As show in Alg. 2, here 𝑁 is a parameter chosen to minimize the
egret. It is a function of the time horizon 𝑇 , the number of arms 𝐾 and
. In Appendix B, we will show how to properly set it.

We define the following regret for performance evaluation:

𝑒𝑔𝜋 (𝑇) =∶
𝑇
∑

𝑡=1
(
∑

𝑖∈𝑡(𝜋)
𝑚𝑖,11 +

∑

𝑗∈⧵𝑡(𝜋)
𝑐𝑗) − 𝑇 (𝐱∗T𝐦, 𝟏𝟏 + (𝟏 − 𝐱∗)T𝐜)

(21)

Note that this definition is different from (3) as it uses the expected
latencies whereas realized latencies are adopted in (3). The definition
of violation remains unchanged as (4).

Theorem 4.1. By running Explore-First, we have the following bounds on
regret and violation:

𝑅𝑒𝑔(𝑇) = 𝑂
(

(𝐾
4

𝐿
)
1
3 𝑇

2
3 (ln 𝑇)

1
3

)

,

𝑉 𝑖𝑜(𝑇) = 𝑂
(

𝐾
1
3 𝐿

2
3 𝑇

2
3 (ln 𝑇)

1
3
)

.

roof. See Appendix B. □

.3. Successive elimination-based algorithm

Explore-First is able to identify the optimal set of services precisely
iven sufficient samples, however, the performance in the exploration
hase may be poor, especially when most of the arms have a large gap
ompared with the optimal one. Here we present another caching algo-
ithm, called Successive Elimination-based (SE) caching, that can sig-
ificantly decrease the sampling cost while at the same time, improve
he bound on both regret and violation.

The main idea behind SE is as follows: (1) we divide time horizon
into two phases: exploration/elimination phase and exploitation phase,

s shown in Fig. 7(b). The exploration/elimination phase consists of
uccessive segments, where each segment is used to sample a given set
f (active) arms; (2) In the end of each segment, one or more arms
ay be deactivated according to the elimination rule; and (3) The

limination phase completes when there is no more arms to be deleted,
nd the exploitation phase follows which keeps playing the remaining
rms.

More specifically, SE maintains the following quantities (LCB/UCB)
or each service 𝑖 at time 𝑡:

CB𝑡(𝑚𝑖,11) = 𝑚̄𝑖,11 +
√

2 ln 𝑇 ∕𝑛𝑡(𝑖,M) (22)

CB𝑡(𝑚𝑖,11) = 𝑚̄𝑖,11 −
√

2 ln 𝑇 ∕𝑛𝑡(𝑖,M) (23)

CB𝑡(𝑐𝑖) = 𝑐𝑖 −
√

2 ln 𝑇 ∕𝑛𝑡(𝑖,C) (24)

here 𝑛𝑡(𝑖,M) denotes the number of times service 𝑖 of type 11 is
layed, and 𝑛𝑡(𝑖,C) denotes the number of times 𝑖 is absent before 𝑡.

and 𝑐 denote the aggregate latency when tasks of service 𝑖 are
8

𝑖,11 𝑖
computed at the MEC server (without switching cost) and the cloud,
respectively.

Let 𝑡 be the set of arms remaining active at time 𝑡. SE deactivates
arms according to the following rules:

Rule 1: At the end of each segment (assuming at time 𝑡), identify
the set of arms  such that arm 𝑖 ∈  if we can find some other arm
𝑗 ∈ 𝑡 with UCB𝑡(𝑐𝑖) − LCB𝑡(𝑚𝑖,11) < LCB𝑡(𝑐𝑗) − UCB𝑡(𝑚𝑗,11);

Rule 2: Solve the following optimization problem for 𝑡:

𝐱𝒕 = argmin:
𝐱∈ ,𝜷𝐓𝐱≥𝒉

𝐱𝐓UCB𝒕(𝒎𝟏𝟏) + (𝟏 − 𝐱)𝐓UCB𝒕(𝒄) (25)

Denote by (𝐱𝑡) the set of selected arms, obtain the set  = 𝑡 ⧵ (𝐱𝑡);
Rule 3: Deactivate from 𝑡 the arms in both  and .
Note that rule 1 is used to identify arms with small contribution,

i.e., these arms are likely not the optimal ones. Rule 2 is used to
identify arms that are not optimal with high confidence, where the
QoS constraint has been properly taken into account. Therefore, the
intersection of the two sets gives us arms that can be deactivated with
high confidence. One can image that during the very first few segments
 = ∅ and  is a random set, since not enough samples are collected
and the algorithm is not able to differentiate arms. As time elapses,
 becomes larger and  becomes more accurate. Once an arm is in
∩, we are highly confident that it does not belong to the optimal set
and thus can be eliminated. Moreover, the active set becomes smaller
as time elapses since more and more arms are deactivated, which
significantly decreases the sampling cost. See Alg. 3 for more details.

Procedure 3 Successive Elimination-based Algorithm for Caching
Services at the MEC server.
Input: , 𝐿, ℎ, 𝑇 ;
utput: Selected arms/services at each time slot;

1: 𝑡 = 1;  = . #  is the set of active arms;
2: for 𝑡 ≤ 𝑇 do
3: Sample  with a segment.
4: if || > 𝐿 then
5:  = ∅; #  denotes set of arms to be potentially deactivated;
6: for 𝑖 ∈ 𝑆 do
7: if ∃𝑗 ∈  such that UCB𝑡(𝑐𝑖) − LCB𝑡(𝑚𝑖,11) < LCB𝑡(𝑐𝑗) −

UCB𝑡(𝑚𝑗,11) then
8:  =  ∪ {𝑖};
9: Solve the following optimization problem for , and denote

the selected arms as (𝐱𝑡):

𝐱𝒕 = argmin:
𝐱∈ ,𝜷𝐓𝐱≥𝒉

𝐱𝐓UCB𝒕(𝒎𝟏𝟏) + (𝟏 − 𝐱)𝐓UCB𝒕(𝒄) (26)

10: Deactivate arms in both  and  ⧵ (𝐱𝑡):

 =  ⧵ ( ∩ { ⧵ (𝐱𝑡)}) (27)

Theorem 4.2. Let 𝑡 be the time slot that the elimination phase completes,
by running SE we have the following bounds on regret and violation:

𝑅𝑒𝑔(𝑇) ≤ 𝑂(
√

𝐾𝑇 𝑡 ln 𝑇),

𝑖𝑜(𝑇) ≤ 𝑂(𝑡
√

𝐾𝑇 ln 𝑇).

Proof. See Appendix C. □

Theorem 4.2 gives an instance-dependent upper bound on regret by
SE since 𝑡 is a function of parameter distributions, i.e., {𝑚𝑖,11, 𝑐𝑖, 𝛽𝑖}.
On the other hand, it is well known that UCB-like algorithms achieve
an instance-independent upper bound on the order of 𝑂(

√

𝐾𝑇 ln 𝑇) for
multi-armed bandit problems. We argue that there is no conflict in that
the two bounds are of the same order, as stated in the following lemma.

Computer Networks 246 (2024) 110395W. Chu et al.

L

𝑅

P

4

4

i
2
S
a
C
a
a
f
e
s
i
C

d
p
i
c
p

w
s

R
a
w
n
e

Fig. 7. Two service switch-aware algorithms for online caching.
t
O
t
p
e
l
h
b
d
a
t
w
b
S
i
b
c
a
d

4

a
w
a
H
n
s
a
c
W
𝑖
M
M
𝑖
c

emma 4.1. SE achieves regret:

𝑒𝑔(𝑇) ≤ 𝑂(
√

𝐾𝐿𝑇 ln 𝑇)

roof. See Appendix D. □

.4. Simulation results

.4.1. Performance over baselines
Fig. 8 gives performance of EF, SE and other algorithms when there

s switching cost. Again, we set the time to load a new service as
0 s. From the figure, we can see that in all cases: (1) both EF and
E can accurately identify the optimal set of services as their regret
nd violation keep non-increasing after convergence; on the other hand,
CB exhibits a sub-linear growth in regret; (2) among the two proposed
lgorithms, SE converges much faster, i.e., less than 8000 time slots
re needed for it to get stable whereas it takes more than 30 000 slots
or EF. Moreover, we find that SE are far more computationally cost-
ffective than CCB and EF as it requires less than 10 min to run each
imulation on our machine (2 × 2.2 GHz CPU, 8 GB Memory), whereas
t takes approximately 30 min for EF and even 2 h for CCB (note that
CB requires solving the optimization problem at each time slot).

Fig. 9 gives performance of the corresponding algorithms in trace-
riven simulation. As expected, we observe that both SE and EF out-
erform the baselines and the conclusions are consistent. Moreover,
t is interesting to find that EF and SE have approximately the same
onvergence time under the real workload, which suggests that in
ractice one can adopt either of them for online service caching.

Furthermore, given the performance of CCB as shown in Fig. 4,
e believe that SE and EF also outperforms when there is no service

witching cost.

emark. Here we further compare and analyze the advantages and
pplication scenarios of the two algorithms. As we mentioned above, EF
orks by first sampling services uniformly at the same rate (with our
ovel sampling scheme), and then makes caching decisions based on
9

stimates of the relevant parameters of services. It then keeps caching a
he same empirically optimal set of services in the exploitation phase.
bviously, this algorithm does not adapt its exploration scheduler to

he history of the observed rewards. Moreover, in order to have a good
erformance, usually a large number of time slots is dedicated to the
xploration phase, which incurs a high sampling cost. These together
eads to the fact that this algorithm is particularly useful when the time
orizon 𝑇 is large and the system is stable. On the other hand, SE-
ased caching works by successively eliminating non-optimal services
uring the sampling process, and therefore it satisfies the so called
daptive exploration and incurs much lower sampling cost, i.e., fewer
ime slots are needed in the exploration/elimination phase. In other
ords, this algorithm converges significantly faster and achieves much
etter regret bounds. Based on the above reasoning, we conclude that
E-based caching is particularly suitable when the underlying system
s non-stable such as a real edge computing system, where in that case
oth the convergence speed/rate and accuracy are important, i.e., we
an divide time horizon 𝑇 into multiple phases, and restart the caching
lgorithm when a new phase starts, so as to quickly adapt to the
ynamics of the system.

.4.2. Performance comparison with SoA
It is interesting to see the performance of our proposed schemes

gainst existing online algorithms. To this end, we compare CCB
ith the recently proposed potential-based algorithm [20], which is
lightweight but very efficient algorithm for online content caching.
ere, we model the edge-cloud system as a cache network with two
odes, where the edge server is considered as a cache node with limited
torage capacity, and the cloud as a server that permanently holds
ll the content in system. Moreover, each service is regarded as a
ontent, and each request for a service as a request for a content.
e characterize each request for a service as a tuple (𝑖, 𝑡𝑚𝑖 , 𝑡

𝑐
𝑖), where

is the service requested, 𝑡𝑚𝑖 and 𝑡𝑐𝑖 (both are stochastic) denotes the
EC-offloading delay and cloud-computing delay, respectively. The
EC server maintains a quantity 𝑄𝑖 called potential for each service

, together with the empirical means for MEC-offloading delay 𝑇 𝑚
𝑖 and

loud-computing delay 𝑇 𝑐
𝑖 for each service 𝑖. Note that these quantities

re initialized zero and updated whenever a new request arrives.

Computer Networks 246 (2024) 110395

10

W. Chu et al.

Fig. 8. Performance of EF, SE and baseline algorithms when there is service switching cost.

Fig. 9. Performance of SE, EF and other algorithms in trace-driven simulation with switching cost: 𝐿 = 10, ℎ = 0.2, 𝛿 = 0.01.

Computer Networks 246 (2024) 110395W. Chu et al.
Fig. 10. Performance of CCB and the potential-based caching algorithm in simulation with no service switch cost: 𝐾 = 100, 𝐿 = 10, ℎ = 0.2, 𝛿 = 0.02.
At the very beginning, there is no services cached at the MEC server.
Service caching is then performed according to the following rules:

Rule 1: if a request (𝑖, 𝑡𝑚𝑖 , 𝑡
𝑐
𝑖) arrives at the MEC server, 𝑄𝑖 is updated

as follows:

𝑄𝑖 = 𝑄𝑖 + 𝑇 𝑐
𝑖 − 𝑇 𝑚

𝑖 (28)

If 𝑖 is cached, then:

𝑇 𝑚
𝑖 =

𝑇 𝑚
𝑖 ×𝑁𝑚

𝑖 + 𝑡𝑚𝑖
𝑁𝑚

𝑖 + 1
, 𝑁𝑚

𝑖 = 𝑁𝑚
𝑖 + 1 (29)

else:

𝑇 𝑐
𝑖 =

𝑇 𝑐
𝑖 ×𝑁𝑐

𝑖 + 𝑡𝑐𝑖
𝑁𝑐

𝑖 + 1
, 𝑁𝑐

𝑖 = 𝑁𝑐
𝑖 + 1 (30)

where 𝑁𝑚
𝑖 and 𝑁𝑐

𝑖 denotes the number of times service 𝑖 is requested
when it is cached at the MEC server and when it is absent, respectively.

Rule 2: if a response to request (𝑖, 𝑡𝑚𝑖 , 𝑡
𝑐
𝑖) from the remote cloud

arrives at the MEC server and there is no room for hosting service 𝑖
if it is absent, then the MEC server calculates the caching probability
𝑦𝑖 for 𝑖 based on 𝑄𝑖’s:

𝑦𝑖 =
𝑄𝑖

𝑄𝑖 +
∑

𝑗∈𝑐 𝑄𝑗
(31)

where 𝑐 is the set of services cached at the MEC server. If the decision
is to cache 𝑖, then the service 𝑗 with the least potential, i.e., 𝑗 =
argmin

𝑖∈𝑐
𝑄𝑖, is evicted.

It can be seen from the above two rules that the potential-based
caching algorithm aims at minimizing the aggregate latency for access-
ing the services in system. The following figures show its performance
and our proposed mechanism CCB, when there is no service switch cost
and when there is cost. From Fig. 10 we can see that the potential-based
algorithm performs exceptionally well when there is no service switch
cost, i.e., cumulative regret grows very slowly (although still linear)
and the offloading rate constraint can always be satisfied. However,
as depicted in Fig. 11, its performance gets poor when there is switch
cost, as both the regret and violation grow linearly as time elapses.
After a deep investigation, we find that this phenomenon is due to the
frequent service switches incurred during the caching process by the
potential-based algorithm. Based on this observation, we conclude here
that any caching algorithm could perform poorly when there is service
switch cost, if this cost is not taken into account when we design the
algorithm.

5. Related work

The service placement problem (SPP) in Edge/Fog computing is
essentially to find the available resources (nodes, links) in the network
so as to optimize certain objectives (delay, energy consumption, etc.)
while at the same time satisfy application requirements, resource con-
straints, locality constraints, etc. It has been a hot topic [21–23] in the
past few years, and many approaches have emerged.
11
Existing solutions can be categorized into centralized [24,25] and
distributed [26–28], based on the control plane design. A centralized
algorithm assumes that the global information such as application
demands and infrastructure resources are available, and computes a
globally optimal solution. For example, Hong et al. [25] propose that a
coordinator makes deployment decisions for IoT services over the fog
infrastructure. The drawback of the centralized solution is that global
information is generally hard to collect and the computational cost may
be excessively high. On the other hand, a distributed approach relies on
the local computation of each node and their collaboration to address
the scalability and locality awareness issues. This approach is able to
provide services that fit the local context, but generally speaking, it
cannot guarantee global optimality of the solution.

The service placement problem can be addressed in an offline [29,
30] and online fashion [31,32]. The offline approach requires that
all the information about the system and workload are given a priori
before the placement decision is computed. That is, the placement
decision is made at the complie time before deployment. Examples
include [29,30] that assume full knowledge of the Edge/Fog network.
On the other hand, recently proposed approaches [33–35] are mainly
online that the placement decisions are made during the run-time of
the systems. To provide satisfactory performance, the online algorithms
have to take into account the dynamic behaviors of the system. The
advantage of this approach is that it is more adaptive and responsive
to changes. However, it remains a challenge as how to make the best
use of the system resources.

Based on whether the dynamicity of the system is handled or not,
existing placement solutions can also be classified as static and dy-
namic [36,37]. The static approach usually assumes that the Edge/Fog
infrastructure and application characteristics remain unchanged as time
elapses, which is not realistic. In fact, both the two aspects are highly
time-evolving as new nodes can join and leave the system due to
instability of the network, the resources available can change over
time based on real-life condition, and the workload varies when users’
interest changes. The dynamic approaches [38,39] employ reactive
strategies to deal with the dynamic nature of the infrastructure and
application, in a way that new services may be deployed and exist-
ing services may be replaced/released whenever significant change is
observed.

Alternatively, one can also characterize existing SPP solutions based
on various aspects such as: (1) whether the mobility prediction is
exploited or not for mobility and popularity caching [40,41], (2)
user-centric cooperative edge caching [42,43] or network-centric non-
cooperative caching, (3) intelligent handover predictions for the edge
[44] and various other recent AI-based approaches like adopted rein-
forcement learning [45,46], (4) price congestion schemes for caching
[47,48], and (5) DDPG for orchestration from an SDN perspective [49,
50] and so forth.

Obviously, our algorithms belong to the category of dynamic and
online solutions. The work that most close to ours is [51], where the

authors address user-managed service placement problem, while in this

Computer Networks 246 (2024) 110395W. Chu et al.
Fig. 11. Performance of CCB and the potential-based caching algorithm in simulation with service switch cost: 𝐾 = 100, 𝐿 = 10, ℎ = 0.2, 𝛿 = 0.02.
work we address the problem from the network-side (that is, the net-
work operators make the caching decisions instead of users). Moreover,
they adopt a contextual MAB framework with a Thompson-sampling
scheme for online learning, whereas we employ a Constrained-MAB
framework with a novel sampling scheme that we propose to efficiently
explore system dynamics.

6. Conclusion and future work

In this paper, we study the online service caching problem for
a multi-access edge computing system, with the goal to minimize
users’ perceived latency. We formulate it as a Constrained Multi-Armed
Bandits (CMAB) optimization problem, and propose three efficient
algorithms — CCB, EF and SE. We show that CCB can well balance
the objective and QoS constraint, whereas EF and SE can effectively
learn the optimal solution when there is service switching cost. We
theoretically analyze their performance by giving the bound on regret
and violation, and conduct extensive simulations to validate their effi-
cacy. Our experimental results show that these algorithms outperform
baselines.

There are several interesting issues for exploration. Below we give
some possible directions that we believe are important and worthy of
further investigation.

(1) State-dependent CMAB formulation. We have shown that when
there is service switching cost, the MEC-offloading delay depends on
whether the service is cached or not, i.e., the caching state. Now if we
treat each service of a particular type as an arm, then we get a state-
dependent CMAB problem formulation, where the action available in
the next time slot also depends on the current state of the system. It
is still an open problem as how to design efficient algorithms for this
type of CMAB problem, especially when the state space is huge.

(2) Heterogeneous services. We assume that the MEC server can host
𝐿 services at most. This means all the services are of equal sizes. Given
the limited resources of the MEC server, if services are heterogeneous in
storage or memory, then at any time slot 𝑡 the number of services hosted
by the MEC server can be different, depending on the arms selected.
This is quite different from the problem we considered in this paper.
One way to handle heterogeneous services is to model the problem
with Combinatorial Bandits with Knapsack Constraints (CBwK), which
combines Combinatorial Bandits where a subset of arms needs to be
pulled at each round, and Bandits with Knapsack Constraints where
a super-arm needs to be pulled at each round but within a budget
constraint. However, CBwK is not readily applicable since in addition to
the knapsack constraint, we also need to ensure that the rate of tasks
processed by the MEC server is no less than a preset threshold. This
novel QoS constraint, however, poses significant challenges for both
the design and performance analysis of efficient algorithms.

(3) Multiple instances for each service. We assume in this work
that exactly one instance (e.g., VM) for each service can be hosted at
the MEC server, whereas in practice there can be multiple instances,
12
i.e., for adequate computing power or load balancing. This raises
another question as how to determine the necessary number of VMs for
each service, and then design efficient online learning algorithms for
service caching. One possible solution is to extend the current model,
i.e., by regarding each service with a particular number of instances
as an arm. The key challenges here are: (1) the set of arms/actions
would be huge; and (2) instead of selecting 𝐿 services each time, the
server capacity is now expressed as a new constraint, which further
complicates the online service caching problem.

(4) Online service caching for MEC-based networks. There is a trend
that multiple edge servers work collaboratively to form a shard resource
pool [52–54], so as to provide reliable and elastic edge computing
services. This, on one hand, provides us opportunity to leverage the
power of the network for better exploration and exploitation. On the
other hand, it also raises significant challenges to design online learning
algorithms for the network, since MEC servers may be heterogeneous
in computing power, user bases, network condition, etc. Given that
there is a flurry studies on Multi-agent MAB (MA-MAB) [55–57], to the
best of our knowledge, it is still unclear as how to formulate and solve
the problem that we concern here, i.e., Multi-agent MAB with multiple
constraints. We believe that the problem itself is interesting in the area
of MAB and deserves further study.

CRediT authorship contribution statement

Weibo Chu: Conceptualization, Methodology, Writing – original
draft, Writing – review & editing. Xiaoyan Zhang: Investigation, Soft-
ware, Visualization. Xinming Jia: Formal analysis, Resources, Valida-
tion. John C.S. Lui: Writing – review & editing, Funding acquisition,
Methodology, Supervision. Zhiyong Wang: Data curation, Software,
Visualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported in part by the National Natural Science
Foundation of China (Grant No. 62172333) and the Natural Science
Basic Research Plan in Shaanxi Province of China (Grant No. 2021JM-
073). The work of John C.S. Lui was supported in part by the GRF
14215722 and RGC SRFS2122-4S02.

Computer Networks 246 (2024) 110395W. Chu et al.

𝛾

|

w

L
a
w

|

|

|

w

P
w

|

T

2

L
p

𝑚

𝑐

𝛽

|

P

𝑟

𝑃

E
i

=

=

=

|

w

h

|

Appendix A. Proof of Theorem 3.1

We rely on the following lemmas to prove the theorem.

Lemma A.1 (Azuma-Hoeffding Inequality [58]). Suppose {𝑌𝑛 ∶ 𝑛 =
0, 1, 2, 3,…} is a martingale and |𝑌𝑛 − 𝑌𝑛−1| ≤ 𝑐𝑛 almost surely, then with

probability at least 1 − 2𝑒
− 𝑑2

2
∑𝑛
𝑗=1 𝑐2𝑗 , we have:

|𝑌𝑛 − 𝑌0| ≤ 𝑑.

Lemma A.2 ([59,60]). Consider 𝑛 i.i.d random variables 𝑍1, 𝑍2,… , 𝑍𝑛 in
[0, 1] with expectation 𝑧. Let 𝑢 denote their empirical average. Then for any
> 0, with probability at least 1 − 2𝑒−

1
72 𝛾 we have:

𝑢 − 𝑧| ≤ 𝑅(𝑢, 𝑛)

here 𝑅(𝑢, 𝑛) =
√

𝛾𝑢
𝑛 + 𝛾

𝑛 .

The following lemma is a corollary of Lemma A.2.

emma A.3 ([14]). Let the empirical means 𝑚̄𝑡
𝑖, 𝑐

𝑡
𝑖 and 𝛽𝑡𝑖 be defined

s (5) (6) (7). Then for all 𝑖 and 𝑡, with probability at least 1 − 2𝑒−
1
72 𝛾

e have:

𝑚̄𝑡
𝑖 − 𝑚𝑖| ≤ 2𝑅(𝑚̄𝑡

𝑖, 𝑁
𝑡
𝑖,M + 1) (32)

𝑐𝑡𝑖 − 𝑐𝑖| ≤ 2𝑅(𝑐𝑡𝑖 , 𝑁
𝑡
𝑖,C + 1) (33)

𝛽𝑡𝑖 − 𝛽𝑖| ≤ 2𝑅(𝛽𝑡𝑖 , 𝑡) (34)

here 𝛾 ≥ 1.

roof of Lemma A.3. For every 𝑖 and 𝑡, applying Lemma A.2, we have
ith probability at least 1 − 2𝑒−

1
72 𝛾 :

𝑁 𝑡
𝑖,𝑀 + 1

𝑁 𝑡
𝑖,𝑀

𝑚̄𝑡
𝑖 − 𝑚𝑖| ≤ 𝑅(

𝑁 𝑡
𝑖,𝑀 + 1

𝑁 𝑡
𝑖,𝑀

𝑚̄𝑡
𝑖, 𝑁

𝑡
𝑖,𝑀)

|𝑚̄𝑡
𝑖 − 𝑚𝑖 +

𝑚𝑖

𝑁 𝑡
𝑖,𝑀 + 1

| ≤
𝑁 𝑡

𝑖,𝑀

𝑁 𝑡
𝑖,𝑀 + 1

𝑅(
𝑁 𝑡

𝑖,𝑀 + 1

𝑁 𝑡
𝑖,𝑀

𝑚̄𝑡
𝑖, 𝑁

𝑡
𝑖,𝑀)

This implies that

|𝑚̄𝑡
𝑖 − 𝑚𝑖| ≤

𝑁 𝑡
𝑖,𝑀

𝑁 𝑡
𝑖,𝑀 + 1

(

√

√

√

√

𝛾(𝑁 𝑡
𝑖,𝑀 + 1)𝑚̄𝑡

𝑖

𝑁 𝑡
𝑖,𝑀 ×𝑁 𝑡

𝑖,𝑀
+

𝛾
𝑁 𝑡

𝑖,𝑀
) +

𝑚𝑖

𝑁 𝑡
𝑖,𝑀 + 1

= 𝑅(𝑚̄𝑡
𝑖, 𝑁

𝑡
𝑖,𝑀 + 1) +

𝑚𝑖

𝑁 𝑡
𝑖,𝑀 + 1

≤ 2𝑅(𝑚̄𝑡
𝑖, 𝑁

𝑡
𝑖,𝑀 + 1)

he last inequality holds because 𝑚𝑖 ≤ 1 ≤ 𝛾.
Similarly, we can prove |𝑐𝑡𝑖 − 𝑐𝑖| ≤ 2𝑅(𝑐𝑡𝑖 , 𝑁

𝑡
𝑖,C + 1) and |𝛽𝑡𝑖 − 𝛽𝑖| ≤

𝑅(𝛽𝑡𝑖 , 𝑡). □

emma A.4. By running CCB with 𝛾 = 72 ln 2𝐾𝑇
𝛿 for 𝑇 time slots, with

robability at least 1− 𝛿 we have the following results hold simultaneously:

𝑖 > 𝑚̌𝑡
𝑖,∀𝑖 ∈ ,∀𝑡 ≤ 𝑇 (35)

𝑖 > 𝑐𝑡𝑖 ,∀𝑖 ∈ ,∀𝑡 ≤ 𝑇 (36)

̂𝑡
𝑖 > 𝛽𝑖,∀𝑖 ∈ ,∀𝑡 ≤ 𝑇 (37)

𝑇
∑

𝑡=1
(
∑

𝑖∈𝑡

(𝑚𝑡
𝑖 − 𝑚̌𝑡

𝑖) +
∑

𝑖∉𝑡

(𝑐𝑡𝑖 − 𝑐𝑡𝑖))| = 𝑂((𝐾 − 𝐿)
√

𝐾𝑇 ln 2𝐾𝑇
𝛿

) (38)

|

𝑇
∑ ∑

(𝛽𝑡𝑖 − 𝛽𝑖)| = 𝑂(𝐾
√

𝐾𝑇 ln 2𝐾𝑇
𝛿

) (39)
13

𝑡=1 𝑖∈𝑡
roof of Lemma A.4. Denote by 𝑄𝑡
𝑖 be the event such that |𝑚̄𝑡

𝑖 − 𝑚𝑖| >
2𝑅(𝑚̄𝑡

𝑖, 𝑁
𝑡
𝑖,M +1), and 𝑄̄𝑡

𝑖 be its complement. Let 𝛾 = 72 ln 2𝐾𝑇
𝛿 , obviously

≥ 1.
From Lemma A.3 we have:

𝑟{𝑄𝑡
𝑖} < 𝛿

𝐾𝑇
taking a union bound,

𝑃𝑟{∪𝑖,𝑡𝑄
𝑡
𝑖} ≤

𝑇
∑

𝑡=1

𝐾
∑

𝑖=1
𝑃𝑟{𝑄𝑡

𝑖} < 𝛿

therefore,

𝑃𝑟{∩𝑖,𝑡𝑄̄
𝑡
𝑖} = 1 − 𝑃𝑟{∪𝑖,𝑡𝑄

𝑡
𝑖} > 1 − 𝛿

The above inequality states that for all 𝑖 and 𝑡, at probability at least
1 − 𝛿 we have:

|𝑚̄𝑡
𝑖 − 𝑚𝑖| ≤ 2𝑅(𝑚̄𝑡

𝑖, 𝑁
𝑡
𝑖,M + 1) (40)

It follows that at probability at least 1 − 𝛿,

𝑚𝑖 > 𝑚̄𝑡
𝑖 − 2𝑅(𝑚̄𝑡

𝑖, 𝑁
𝑡
𝑖,M + 1) = 𝑚̌𝑡

𝑖

(36) and (37) can be proved in the same way.
To prove (38), define two series of random variables:

𝑍𝑡 =
∑

𝑖∈𝑡

𝑚𝑡
𝑖 −

∑

𝑖∈𝑡

𝑚𝑖, 𝑌𝑡 =
𝑡

∑

𝑙=1
𝑍𝑙

It can be seen that {𝑌𝑛} is a sequence of independent variables, and
[𝑍𝑡|𝑡−1] = E[𝑍𝑡] = 0, where 𝑡−1 = (𝑌𝑡−1, 𝑌𝑡−2,… , 𝑌1) is the historical

nformation up to time 𝑡 − 1. {𝑌𝑛} is a martingale since

E[𝑌𝑡+1|𝑌𝑡, 𝑌𝑡−1,… , 𝑌1]

E[𝑌𝑡 +𝑍𝑡+1|𝑌𝑡, 𝑌𝑡−1,… , 𝑌1]

E[𝑌𝑡|𝑌𝑡, 𝑌𝑡−1,… , 𝑌1] + E[𝑍𝑡+1|𝑌𝑡, 𝑌𝑡−1,… , 𝑌1]

𝑌𝑡 + E[𝑍𝑡+1] = 𝑌𝑡 + 0 = 𝑌𝑡

Moreover, |𝑌𝑡 − 𝑌𝑡−1| = |𝑍𝑡| ≤ 𝐿. Let 𝑑 = 𝐿
√

2𝑇 ln 2
𝛿 , according to

Lemma A.1, we known that with probability at least 1 − 𝛿:
𝑇
∑

𝑡=1

∑

𝑖∈𝑡

𝑚𝑡
𝑖 −

∑

𝑖∈𝑡

𝑚𝑖| ≤ 𝐿
√

2𝑇 ln 2
𝛿

(41)

On the other hand, for all 𝑖 ∈ 𝑡 and 𝑡 ≤ 𝑇 , we get

|𝑚̌𝑡
𝑖 − 𝑚𝑖| =|𝑚̌𝑡

𝑖 − 𝑚̄𝑡
𝑖 + 𝑚̄𝑡

𝑖 − 𝑚𝑖|

≤|𝑚̌𝑡
𝑖 − 𝑚̄𝑡

𝑖| + |𝑚̄𝑡
𝑖 − 𝑚𝑖|

≤2𝑅(𝑚̄𝑡
𝑖, 𝑁

𝑡
𝑖,M + 1) + |𝑚̄𝑡

𝑖 − 𝑚𝑖|

≤2𝑅(𝑚̄𝑡
𝑖, 𝑁

𝑡
𝑖,M + 1) + 2𝑅(𝑚̄𝑡

𝑖, 𝑁
𝑡
𝑖,M + 1)

=4𝑅(𝑚̄𝑡
𝑖, 𝑁

𝑡
𝑖,M + 1)

here the third inequality is due to (40).
Let 𝜏(𝑖, 𝑛) be the time slot that arm 𝑖 is played for the 𝑛th time, we

ave
𝑇
∑

𝑡=1

∑

𝑖∈𝑡

(𝑚̌𝑡
𝑖 − 𝑚𝑖)| ≤

𝑇
∑

𝑡=1

∑

𝑖∈𝑡

4𝑅(𝑚̄𝑡
𝑖, 𝑁

𝑡
𝑖,M + 1)

=
𝐾
∑

𝑖=1

𝑁𝑇+1
𝑖,M
∑

𝑛=1
4𝑅(𝑚̄𝜏(𝑖,𝑛)

𝑖 , 𝑛)

=
𝐾
∑

𝑖=1

𝑁𝑇+1
𝑖,M
∑

𝑛=1
4(

√

𝛾𝑚̄𝜏(𝑖,𝑛)
𝑖
𝑛

+
𝛾
𝑛
)

≤
𝐾
∑

𝑖=1

𝑁𝑇+1
𝑖,M
∑

𝑛=1
4(
√

𝛾
𝑛
+

𝛾
𝑛
)

Note that when 𝑛 is large enough,

1 + 1 + 1 +⋯ + 1
⟶ ln 𝑛 + 𝐶
2 3 𝑛

Computer Networks 246 (2024) 110395W. Chu et al.

1

=

=

=

w
t
T

|

|

A

𝛼

i
o

𝑃

and for all 𝑛 ≥ 1 it can be proved that

+ 1
√

2
+ 1

√

3
+⋯ + 1

√

𝑛
< 2

√

𝑛

Therefore,

|

𝑇
∑

𝑡=1

∑

𝑖∈𝑡

(𝑚̌𝑡
𝑖 − 𝑚𝑖)| ≤

𝐾
∑

𝑖=1

𝑁𝑇+1
𝑖,M
∑

𝑛=1
4(
√

𝛾
𝑛
+

𝛾
𝑛
)

=𝑂(
𝐾
∑

𝑖=1
(
√

𝛾𝑁𝑇+1
𝑖,M + 𝛾 ln𝑁𝑇+1

𝑖,M))

𝑂(
𝐾
∑

𝑖=1

√

𝛾𝑁𝑇+1
𝑖,M +

𝐾
∑

𝑖=1
𝛾 ln𝑁𝑇+1

𝑖,M)

𝑂(

√

√

√

√(
𝐾
∑

𝑖=1

√

𝛾𝑁𝑇+1
𝑖,M)2 + 𝛾 ln

𝐾
∏

𝑖=1
𝑁𝑇+1

𝑖,M)

≤𝑂(

√

√

√

√

𝐾
∑

𝑖=1
12

𝐾
∑

𝑖=1
𝛾𝑁𝑇+1

𝑖,M + 𝛾 ln[(
𝐾
∏

𝑖=1
𝑁𝑇+1

𝑖,M)
1
𝐾]𝐾)

≤𝑂(
√

𝐾

√

√

√

√

𝐾
∑

𝑖=1
𝛾𝑁𝑇+1

𝑖,M + 𝛾𝐾 ln[(
𝐾
∏

𝑖=1
𝑁𝑇+1

𝑖,M)
1
𝐾])

≤𝑂(
√

𝐾

√

√

√

√

𝐾
∑

𝑖=1
𝛾𝑁𝑇+1

𝑖,M + 𝛾𝐾 ln

∑𝐾
𝑖=1 𝑁

𝑇+1
𝑖,M

𝐾
)

=𝑂(
√

𝐾

√

√

√

√

𝐾
∑

𝑖=1
𝛾𝑁𝑇+1

𝑖,M + 𝛾𝐾 ln 𝐿𝑇
𝐾

)

≤𝐿
√

2𝑇 ln 2
𝛿
+ 𝑂(

√

𝐾

√

√

√

√

𝐾
∑

𝑖=1
𝛾𝑁𝑇+1

𝑖,M + 𝛾𝐾 ln 𝑇)

𝑂(𝐿
√

𝐾𝑇 ln 2𝐾𝑇
𝛿

)

here the first inequality is due to Cauchy–Schwarz inequality, and the
hird inequality is from inequality of arithmetic and geometric mean.
he fourth equality holds since ∑𝐾

𝑖=1 𝑁
𝑇+1
𝑖,M = 𝐿𝑇 .

Rewriting it in a compact way, we get

𝑇
∑

𝑡=1

∑

𝑖∈𝑡

(𝑚̌𝑡
𝑖 − 𝑚𝑖)| ≤ 𝑂(𝐿

√

𝐾𝑇 ln 2𝐾𝑇
𝛿

) (42)

By the same reasoning, we can prove that with a probability 1 − 𝛿,

𝑇
∑

𝑡=1

∑

𝑖∉𝑡

(𝑐𝑡𝑖 − 𝑐𝑖)| ≤ (𝐾 − 𝐿)
√

2𝑇 ln 2
𝛿

(43)

|

𝑇
∑

𝑡=1

∑

𝑖∉𝑡

(𝑐𝑡𝑖 − 𝑐𝑖)| ≤ 𝑂((𝐾 − 𝐿)
√

𝐾𝑇 ln 2𝐾𝑇
𝛿

) (44)

Based on (42) (43) (44), we have

|

𝑇
∑

𝑡=1
(
∑

𝑖∈𝑡

(𝑚𝑡
𝑖 − 𝑚̌𝑡

𝑖) +
∑

𝑖∉𝑡

(𝑐𝑡𝑖 − 𝑐𝑡𝑖))|

=|
𝑇
∑

𝑡=1
(
∑

𝑖∈𝑡

𝑚𝑡
𝑖 +

∑

𝑖∉𝑡

𝑐𝑡𝑖 −
∑

𝑖∈𝑡

𝑚̌𝑡
𝑖 −

∑

𝑖∉𝑡

𝑐𝑡𝑖)|

=|
𝑇
∑

𝑡=1
(
∑

𝑖∈𝑡

𝑚𝑡
𝑖 +

∑

𝑖∉𝑡

𝑐𝑡𝑖 +
∑

𝑖∈𝑡

𝑚𝑖 −
∑

𝑖∈𝑡

𝑚𝑖

+
∑

𝑖∉𝑡

𝑐𝑖 −
∑

𝑖∉𝑡

𝑐𝑖 −
∑

𝑖∈𝑡

𝑚̌𝑡
𝑖 −

∑

𝑖∉𝑡

𝑐𝑡𝑖)|

≤|
𝑇
∑ ∑

(𝑚𝑡
𝑖 − 𝑚𝑖)| + |

𝑇
∑ ∑

(𝑚̌𝑡
𝑖 − 𝑚𝑖)|
14

𝑡=1 𝑖∈𝑡 𝑡=1 𝑖∈𝑡
+ |

𝑇
∑

𝑡=1

∑

𝑖∉𝑡

(𝑐𝑡𝑖 − 𝑐𝑖)| + |

𝑇
∑

𝑡=1

∑

𝑖∉𝑡

(𝑐𝑡𝑖 − 𝑐𝑖)|

≤𝐿
√

2𝑇 ln 2
𝛿
+ 𝑂(𝐿

√

𝐾𝑇 ln 2𝐾𝑇
𝛿

)

+ (𝐾 − 𝐿)
√

2𝑇 ln 2
𝛿
+ 𝑂((𝐾 − 𝐿)

√

𝐾𝑇 ln 2𝐾𝑇
𝛿

)

=𝑂((𝐾 − 𝐿)
√

𝐾𝑇 ln 2𝐾𝑇
𝛿

)

the last equality holds since 𝐿 ≪ 𝐾 and 𝐿 < 𝐾 −𝐿. (39) can be proved
in the same way.

Now we prove the theorem. Let 𝐱∗ be the optimal solution to
problem (1). From (39) we know that 𝐱∗ is also a feasible solution to
problem 11, i.e., 𝜷𝐭T𝐱∗ ≥ 𝜷T𝐱∗ ≥ ℎ. Then for all 𝑡 ≤ 𝑇 we have:

𝐱𝐭T𝐦̌𝐭 + (𝟏 − 𝐱𝐭)T𝐜̌𝐭 ≤ 𝐱∗T𝐦̌𝐭 + (𝟏 − 𝐱∗)T𝐜̌𝐭

≤ 𝐱∗T𝐦𝐭 + (𝟏 − 𝐱∗)T𝐜𝐭
(45)

Combining (38) (45), we get:

𝑅𝑒𝑔(𝑇) =|
𝑇
∑

𝑡=1
(
∑

𝑖∈𝑡

𝑚𝑡
𝑖 +

∑

𝑖∉𝑡

𝑐𝑡𝑖) − 𝑇 (𝐱∗T𝐦𝐭 + (𝟏 − 𝐱∗)T𝐜𝐭)|

≤|
𝑇
∑

𝑡=1
(
∑

𝑖∈𝑡

𝑚𝑡
𝑖 +

∑

𝑖∉𝑡

𝑐𝑡𝑖 −
∑

𝑖∈𝑡

𝑚̌𝑡
𝑖 −

∑

𝑖∉𝑡

𝑐𝑡𝑖)|

=𝑂((𝐾 − 𝐿)
√

𝐾𝑇 ln 2𝐾𝑇
𝛿

)

On the other hand, since for all 𝑡, 𝐱𝐭 is a feasible solution to problem 11,
i.e., 𝜷𝐭T𝐱𝐭 ≥ ℎ, and with (39), we have:

𝑉 𝑖𝑜(𝑇) =|ℎ𝑇 −
𝑇
∑

𝑡=1

∑

𝑖∈𝑡

𝛽𝑡𝑖 |
+

≤|
𝑇
∑

𝑡=1

∑

𝑖∈𝑡

𝛽𝑡𝑖 −
𝑇
∑

𝑡=1

∑

𝑖∈𝑡

𝛽𝑡𝑖 |

=|
𝑇
∑

𝑡=1

∑

𝑖∈𝑡

(𝛽𝑡𝑖 − 𝛽𝑡𝑖)|

=𝑂(𝐾
√

𝐾𝑇 ln 2𝐾𝑇
𝛿

)

This completes the proof. □

ppendix B. Proof of Theorem 4.1

It suffices to consider the case when 𝐾 mod 𝐿 ≠ 0, since we can set
= 1 when 𝐾 mod 𝐿 = 0.

Let us focus on the time slot when the exploration phase completes,
.e., when 𝑡 = 2𝑁𝐾𝛼∕𝐿. From Hoeffding inequality (Appendix A
f [12]), we know that ∀𝑖,

𝑟{|𝑚̄𝑖,11 − 𝑚𝑖,11| ≤ 𝑟𝑡(𝑚𝑖,11)} ≥ 1 − 2
𝑇 4

(46)

𝑃𝑟{|𝑐𝑖 − 𝑐𝑖| ≤ 𝑟𝑡(𝑐𝑖)} ≥ 1 − 2
𝑇 4

(47)

𝑃𝑟{|𝛽𝑖 − 𝛽𝑖| ≤ 𝑟𝑡(𝛽𝑖)} ≥ 1 − 2
𝑇 4

(48)

where 𝑟𝑡(𝑚𝑖,11) =
√

2 ln 𝑇
2𝑁𝛼(𝐾∕𝐿−1) , 𝑟𝑡(𝑐𝑖) =

√

2 ln 𝑇 ∕𝑁𝛼, and 𝑟𝑡(𝛽𝑖) =
√

2𝐿 ln 𝑇
2𝑁𝐾𝛼 are the radius of confidence intervals.
Define the clean event to be the event that (46) (47) (48) hold for

all arms simultaneously, and the ‘‘bad event ’’ to be its complement. To
analyze the regret and violation of the algorithm, it suffices to focus

Computer Networks 246 (2024) 110395W. Chu et al.

w

𝑁

𝛥

T

𝑅

I

𝑅

on the clean event, since the contribution of the bad event can be
neglected.2

Denote by 𝑡 be the arm set selected when the exploration phase
completes (assuming at time 𝑡). If 𝑡 = ∗, then the regret will no longer
increase in the exploitation phase. On the other hand, if 𝑡 ≠ ∗, then
we must have,
∑

𝑖∉𝑡

𝑐𝑖 +
∑

𝑖∈𝑡

𝑚̄𝑖,11 <
∗
∑

𝑖∉
𝑐𝑖 +

∗
∑

𝑖∈
𝑚̄𝑖,11 (49)

Since this is a clean event, we have:
∑

𝑖∉𝑡

𝑐𝑖 − (𝐾 − 𝐿)𝑟𝑡(𝑐𝑖) +
∑

𝑖∈𝑡

𝑚𝑖,11 − 𝐿𝑟𝑡(𝑚𝑖,11)

≤
∑

𝑖∉𝑡

𝑐𝑖 +
∑

𝑖∈𝑡

𝑚̄𝑖,11
(50)

and
∗
∑

𝑖∉
𝑐𝑖 +

∗
∑

𝑖∈
𝑚̄𝑖,11

≤
∗
∑

𝑖∉
𝑐𝑖 + (𝐾 − 𝐿)𝑟𝑡(𝑐𝑖) +

∗
∑

𝑖∈
𝑚𝑖,11 + 𝐿𝑟𝑡(𝑚𝑖,11)

(51)

Combining (49)(50)(51), we get:
∑

𝑖∉𝑡

𝑐𝑖 +
∑

𝑖∈𝑡

𝑚̄𝑖,11 −
∗
∑

𝑖∉
𝑐𝑖 −

∗
∑

𝑖∈
𝑚̄𝑖,11

≤2(𝐾 − 𝐿)𝑟𝑡(𝑐𝑖) + 2𝐿𝑟𝑡(𝑚𝑖,11)

(52)

The above inequation states that each time slot in the exploitation
phase contributes at most 2(𝐾 − 𝐿)𝑟𝑡(𝑐𝑖) + 2𝐿𝑟𝑡(𝑚𝑖,11) to regret.

Next, we consider the regret generated in the exploration phase.
Note that 𝑐𝑡𝑖 ∈ [0, 1], 𝑚𝑡

𝑖,11 ∈ [0, 1], ∀𝑡, and there are 2𝑁𝐾𝛼∕𝐿 time slots
within 𝑁 segments. It follows that the regret from exploration phase
can be bounded by 2𝑁𝐾2𝛼∕𝐿.

Given that the regret to time slot 𝑇 is the sum of regret from the
two phases, we can bound it as follows:

𝑅𝑒𝑔(𝑇) ≤
(

2(𝐾 − 𝐿)𝑟𝑡(𝑐𝑖) + 2𝐿𝑟𝑡(𝑚𝑖,11)
)

(𝑇 − 2𝑁𝐾𝛼
𝐿

)

+ 2𝑁𝐾2𝛼
𝐿

<
(

2(𝐾 − 𝐿)𝑟𝑡(𝑐𝑖) + 2𝐿𝑟𝑡(𝑚𝑖,11)
)

𝑇 + 2𝑁𝐾2𝛼
𝐿

< 2𝐾𝑇 𝑟𝑡(𝑚𝑖,11) +
2𝑁𝐾2𝛼

𝐿

(53)

The last inequation holds since 𝑟𝑡(𝑐𝑖) < 𝑟𝑡(𝑚𝑖,11). Note that the two
summands are respectively monotonically decreasing and increasing in
𝑁 , to minimize the regret we can set it so that they are approximately
equal. Therefore, by setting:

2𝑁𝐾2𝛼
𝐿

= 2𝐾𝑇 𝑟𝑡(𝑚𝑖,11)

e have,

= (2𝐿
2𝑇 2 ln 𝑇
𝐾2𝛼3

)
1
3 (54)

Substituting it into (53), we get:

𝑅𝑒𝑔(𝑇) = 𝑂
(

(𝐾
4

𝐿
)
1
3 𝑇

2
3 (ln 𝑇)

1
3

)

.

Similarly, for violation we have:

𝑉 𝑖𝑜(𝑇) =
𝑇
∑

𝑡=1
[ℎ −

∑

𝑖∈𝑡

𝛽𝑖]+

≤
𝑇
∑

𝑡=1
[
∑

𝑖∈∗
𝛽𝑖 −

∑

𝑖∈𝑡

𝛽𝑖]+

2 The probability that bad event occurs is 𝑂(𝑇 −4).
15
≤ 2𝑁𝐾𝛼
𝐿

𝐿 + 2𝐿𝑇 𝑟𝑡(𝛽𝑖)

< 2𝑁𝐾𝛼 + 2𝐿𝑇
√

ln 𝑇
𝑁𝛼

(55)

Substituting (54) into the above inequation, we get:

𝑉 𝑖𝑜(𝑇) = 𝑂
(

𝐾
1
3 𝐿

2
3 𝑇

2
3 (ln 𝑇)

1
3
)

The proof completes.

Appendix C. Proof of Theorem 4.2

Let 𝑟𝑡(𝑚𝑖,11) =
√

2 ln 𝑇 ∕𝑛𝑡(𝑖,M), 𝑟𝑡(𝑐𝑖) =
√

2 ln 𝑇 ∕𝑛𝑡(𝑖,C). From Hoeffd-
ing inequality, we know that (46) and (47) hold.

Again, define the clean event to be the event that (46) (47) hold for
all arms simultaneously, and the ‘‘bad event ’’ to be its complement. To
prove the theorem, it suffices to focus on the clean event.

For each arm 𝑖 ∈ , define the gap as follows:

(𝑖) ∶= (𝑐𝑖∗ − 𝑚𝑖∗ ,11) − (𝑐𝑖 − 𝑚𝑖,11)

where 𝑖∗ is the best arm, i.e., 𝑖∗ = argmax
𝑖∈

{𝑐𝑖 − 𝑚𝑖,11}. Then we have,

𝑅𝑒𝑔(𝑡) ≤ 𝑡𝐿(𝑐𝑖∗ − 𝑚𝑖∗ ,11) −
𝑡

∑

𝜏=1

∑

𝑖∈𝑡

(𝑐𝑖 − 𝑚𝑖,11)

Let 𝑅(𝑡) be the RHS of the above inequality, i.e., 𝑅(𝑡) = 𝑡𝐿(𝑐𝑖∗ −
𝑚𝑖∗ ,11) −

∑𝑡
𝜏=1

∑

𝑖∈𝑡
(𝑐𝑖 − 𝑚𝑖,11), and 𝑡𝑗 be the time slot that arm 𝑗 is

eliminated. Fix arm 𝑗, for all 𝑡 ≤ 𝑡𝑗 , the confidence intervals of 𝑗 and 𝑖∗

must overlap at time 𝑡, therefore,

𝛥(𝑗) ≤2𝑟𝑡𝑗 (𝑚𝑗,11) + 2𝑟𝑡𝑗 (𝑚𝑖∗ ,11) + 2𝑟𝑡𝑗 (𝑐𝑗) + 2𝑟𝑡𝑗 (𝑐𝑖∗)

≤4𝑟𝑡𝑗 (𝑚𝑗,11) + 4𝑟𝑡𝑗 (𝑚𝑖∗ ,11)

=8𝑟𝑡𝑗 (𝑚𝑗,11)

(56)

where the second inequality is for the fact that 𝑛𝑡𝑗 (𝑗,M) ≤ 𝑛𝑡𝑗 (𝑗,C), and
the last equality holds since 𝑛𝑡𝑗 (𝑗,M) = 𝑛𝑡𝑗 (𝑖

∗,M).
Denote by 𝑅(𝑡, 𝑗) be the contribution of arm 𝑗 to regret at time slot

𝑡, we can bound it as

𝑅(𝑡, 𝑗) =𝑛𝑡(𝑗,M) ⋅ 𝛥(𝑗)

≤8𝑛𝑡(𝑗,M) ⋅
√

2 ln 𝑇
𝑛𝑡𝑗 (𝑗,M)

=𝑂(
√

ln 𝑇 ⋅ 𝑛𝑡𝑗 (𝑗,M))

herefore,

(𝑡) =
∑

𝑗∈
𝑅(𝑡, 𝑗) ≤ 𝑂(

√

ln 𝑇)
∑

𝑗∈

√

𝑛𝑡𝑗 (𝑗,M)

Since 𝑓 (𝑥) =
√

𝑥 is a concave function and ∑

𝑗∈ 𝑛𝑡𝑗 (𝑗,M) = 𝐿𝑡
2 , by

Jensen’s Inequality we have,

1
𝐾

∑

𝑗∈

√

𝑛𝑡𝑗 (𝑗,M) ≤
√

1
𝐾

∑

𝑗∈
𝑛𝑡𝑗 (𝑗,M) ≤

√

𝐿𝑡
2𝐾

t follows that

𝑒𝑔(𝑡) ≤ 𝑅(𝑡) ≤ 𝑂(
√

ln 𝑇)𝐾
√

𝐿𝑡
2𝐾

= 𝑂(
√

𝐾𝐿𝑡 ln 𝑇)

Next, we prove the bound for violation. Let 𝑖⋆ be the arm with the
largest arrival rate, i.e., 𝑖⋆ = argmax

𝑖∈
𝛽𝑖. Then we have,

𝑉 𝑖𝑜(𝑇) ≤
𝑇
∑

(𝐿𝛽𝑖⋆ −
∑

𝛽𝑖)

𝜏=1 𝑖∈𝑡

Computer Networks 246 (2024) 110395W. Chu et al.

t
t

𝛿

O

𝛿

v

w

A

w

𝛥

a

𝑅

t

𝑅

t

𝑅

T

Denote by 𝑉 (𝑇) be the RHS of the above inequality, and 𝑡𝑗 be the
ime slot that arm 𝑗 is eliminated. Also denote by 𝑡1 be the time slot
hat the first segment ends. Define the gap as:

(𝑖) ∶= 𝛽𝑖⋆ − 𝛽𝑖

bviously,

(𝑖) ≤ 2𝑟𝑡1 (𝑖) + 2𝑟𝑡1 (𝑖
⋆) = 4𝑟𝑡1 (𝑖)

On the other hand, let 𝑉 (𝑗, 𝑡𝑗) be the contribution of arm 𝑗 to
iolation at time 𝑡𝑗 , we have,

𝑉 (𝑗, 𝑡𝑗) =𝑛𝑡𝑗 (𝑗,M) ⋅ 𝛿(𝑗)

≤4𝑛𝑡(𝑗,M) ⋅
√

𝐿 ln 𝑇
𝑎𝐾

=𝑂(𝑛𝑡(𝑗,M) ⋅
√

𝐿 ln 𝑇
𝑎𝐾

)

Therefore,

𝑉 (𝑇) =
∑

𝑗∈
𝑉 (𝑗, 𝑡𝑗) ≤ 𝑂(

∑

𝑗∈
𝑛𝑡(𝑗,M) ⋅

√

𝐿 ln 𝑇
𝑎𝐾

)

≤𝑂(𝐿𝑡
2

⋅

√

𝐿 ln 𝑇
𝑎𝐾

)

=𝑂(𝑡
√

𝐿3 ln 𝑇
𝑎𝐾

)

≤𝑂(𝑡
√

𝐾𝐿 ln 𝑇)

here the last inequality is due to 𝐿 <= 𝐾. The proof completes.

ppendix D. Proof of Lemma 4.1

From (56) we known that 𝛥(𝑗) ≤ 8𝑟𝑡𝑗 (𝑚𝑗,11). Since for each 𝑗 ≠ 𝑖∗,
e have 𝑛𝑇 (𝑗,𝑀) = 𝑛𝑡𝑗 (𝑗,𝑀), it follows that:

(𝑗) ≤ 𝑂(𝑛𝑇 (𝑗,𝑀)) = 𝑂(

√

ln 𝑇
𝑛𝑇 (𝑗,𝑀)

)

Therefore,

𝑛𝑇 (𝑗,𝑀) ≤ 𝑂(ln 𝑇
𝛥(𝑗)2

)

nd

(𝑇 , 𝑗) = 𝛥(𝑗) ⋅ 𝑛𝑇 (𝑗,𝑀) ≤ 𝑂(ln 𝑇
𝛥(𝑗)

)

Let ∗ be the optimal set of arms to the online caching problem,
hen we have:

(𝑇) =
∗
∑

𝑗∉
𝑅(𝑇 , 𝑗) ≤ 𝑂(ln 𝑇) ⋅

∗
∑

𝑗∉

1
𝛥(𝑗)

Now let us fix some 𝜖, then the regret consists of two parts: (1)
each arm 𝑗 with 𝛥(𝑗) ≤ 𝜖 contributes at most 𝜖 per time slot, for a
otal of 𝐿𝑇 𝜖 by 𝐿 arms; (2) each arm 𝑗 with 𝛥(𝑗) > 𝜖 contributes
𝑅(𝑇 , 𝑗) ≤ 𝑂(ln 𝑇𝛥(𝑗)) ≤ 𝑂(ln 𝑇𝜖), under the clean event. Combining these
two parts and under the clean event, we have:

𝑅(𝑇) ≤ 𝑂(𝐿𝑇 𝜖 + ln 𝑇
𝜖

)

Note that the above inequality holds for any 𝜖. To minimize the
RHS, we can set 𝐿𝑇 𝜖 = ln 𝑇

𝜖 , and this leads us to the following bound:

𝑒𝑔(𝑇) ≤ 𝑂(
√

𝐾𝐿𝑇 ln 𝑇)

he proof completes.
16
References

[1] A.F. Florian Scheck, A. Freyberg, 5G: A Key Requirement for Autonomous
Driving—Really? https://www.kearney.com/communications-media-technology/
article/-/insights/5g-a-key-requirement-for-autonomous-driving-really-.

[2] Cloud AR/VR Whitepaper, https://www.gsma.com/futurenetworks/wiki/cloud-
ar-vr-whitepaper/.

[3] Y. Mao, C. You, J. Zhang, K. Huang, K.B. Letaief, A survey on mobile edge
computing: The communication perspective, IEEE Commun. Surv. Tutor. 19 (4)
(2017) 2322–2358.

[4] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al.,
Mobile-Edge Computing Introductory Technical White Paper, in: White Paper,
Mobile-Edge Computing (MEC) Industry Initiative, vol. 29, 2014, pp. 854–864.

[5] A. Alwarafy, K.A. Al-Thelaya, M. Abdallah, J. Schneider, M. Hamdi, A survey on
security and privacy issues in edge-computing-assisted internet of things, IEEE
Internet Things J. 8 (6) (2020) 4004–4022.

[6] S. Zhong, S. Guo, H. Yu, Q. Wang, Cooperative service caching and computation
offloading in multi-access edge computing, Comput. Netw. 189 (2021) 107916.

[7] J. Xu, L. Chen, P. Zhou, Joint service caching and task offloading for mobile
edge computing in dense networks, in: IEEE INFOCOM 2018-IEEE Conference
on Computer Communications, IEEE, 2018, pp. 207–215.

[8] L. Chen, C. Shen, P. Zhou, J. Xu, Collaborative service placement for edge
computing in dense small cell networks, IEEE Trans. Mob. Comput. (2019).

[9] N. Yu, Q. Xie, Q. Wang, H. Du, H. Huang, X. Jia, Collaborative service placement
for mobile edge computing applications, in: 2018 IEEE Global Communications
Conference, GLOBECOM, IEEE, 2018, pp. 1–6.

[10] K. Poularakis, J. Llorca, A.M. Tulino, I. Taylor, L. Tassiulas, Service place-
ment and request routing in MEC networks with storage, computation, and
communication constraints, IEEE/ACM Trans. Netw. 28 (3) (2020) 1047–1060.

[11] W. Chen, Y. Wang, Y. Yuan, Combinatorial multi-armed bandit: General frame-
work and applications, in: International Conference on Machine Learning, PMLR,
2013, pp. 151–159.

[12] A. Slivkins, et al., Introduction to multi-armed bandits, Found. Trends Mach.
Learn. 12 (1–2) (2019) 1–286.

[13] R. Kleinberg, A. Slivkins, E. Upfal, Multi-armed bandits in metric spaces, in:
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
STOC ’08, 2008, pp. 681–690.

[14] K. Chen, K. Cai, L. Huang, J.C. Lui, Beyond the click-through rate: web link
selection with multi-level feedback, in: Proceedings of the 27th International
Joint Conference on Artificial Intelligence, 2018, pp. 3308–3314.

[15] W. Chu, P. Yu, Z. Yu, J.C. Lui, Y. Lin, Online optimal service selection, resource
allocation and task offloading for multi-access edge computing: A utility-based
approach, IEEE Trans. Mob. Comput. (2022).

[16] L. Dong, W. He, H. Yao, Task offloading and resource allocation for tasks with
varied requirements in mobile edge computing networks, Electronics 12 (2)
(2023) 366.

[17] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for
mobile-edge cloud computing, IEEE/ACM Trans. Netw. 24 (5) (2015) 2795–2808.

[18] J. Huang, F. Qian, A. Gerber, Z.M. Mao, S. Sen, O. Spatscheck, A close
examination of performance and power characteristics of 4G LTE networks,
in: Proceedings of the 10th International Conference on Mobile Systems,
Applications, and Services, 2012, pp. 225–238.

[19] A.S. Uluagac, CRAWDAD Data Set Gatech/fingerprinting (v. 2014-06-09, 2014,
https://crawdad.org/gatech/fingerprinting/20140609/realtestbed/index.html.

[20] W. Chu, Z. Yu, J.C. Lui, Y. Lin, Jointly optimizing throughput and content
delivery cost over lossy cache networks, IEEE Trans. Commun. 69 (6) (2021)
3846–3863.

[21] F.A. Salaht, F. Desprez, A. Lebre, An overview of service placement problem in
fog and edge computing, ACM Comput. Surv. 53 (3) (2020) 1–35.

[22] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J.
Kong, J.P. Jue, All one needs to know about fog computing and related edge
computing paradigms: A complete survey, J. Syst. Archit. 98 (2019) 289–330.

[23] C. Li, Y. Xue, J. Wang, W. Zhang, T. Li, Edge-oriented computing paradigms: A
survey on architecture design and system management, ACM Comput. Surv. 51
(2) (2018) 1–34.

[24] O. Ascigil, T.K. Phan, A.G. Tasiopoulos, V. Sourlas, I. Psaras, G. Pavlou, On
uncoordinated service placement in edge-clouds, in: 2017 IEEE International
Conference on Cloud Computing Technology and Science, CloudCom, IEEE, 2017,
pp. 41–48.

[25] H.-J. Hong, P.-H. Tsai, A.-C. Cheng, M.Y.S. Uddin, N. Venkatasubramanian, C.-
H. Hsu, Supporting internet-of-things analytics in a fog computing platform,
in: 2017 IEEE International Conference on Cloud Computing Technology and
Science, CloudCom, IEEE, 2017, pp. 138–145.

[26] Z. Ning, P. Dong, X. Wang, S. Wang, X. Hu, S. Guo, T. Qiu, B. Hu, R.Y.
Kwok, Distributed and dynamic service placement in pervasive edge computing
networks, IEEE Trans. Parallel Distrib. Syst. 32 (6) (2020) 1277–1292.

[27] Z. Xu, L. Zhou, S.C.-K. Chau, W. Liang, Q. Xia, P. Zhou, Collaborate or separate?
Distributed service caching in mobile edge clouds, in: IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, IEEE, 2020, pp. 2066–2075.

[28] P. Kayal, J. Liebeherr, Distributed service placement in fog computing: An itera-
tive combinatorial auction approach, in: 2019 IEEE 39th International Conference
on Distributed Computing Systems, ICDCS, IEEE, 2019, pp. 2145–2156.

https://www.kearney.com/communications-media-technology/article/-/insights/5g-a-key-requirement-for-autonomous-driving-really-
https://www.kearney.com/communications-media-technology/article/-/insights/5g-a-key-requirement-for-autonomous-driving-really-
https://www.kearney.com/communications-media-technology/article/-/insights/5g-a-key-requirement-for-autonomous-driving-really-
https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper/
https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper/
https://www.gsma.com/futurenetworks/wiki/cloud-ar-vr-whitepaper/
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb3
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb4
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb5
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb6
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb7
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb8
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb9
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb10
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb11
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb12
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb13
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb14
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb15
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb16
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb17
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb18
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb18
https://crawdad.org/gatech/fingerprinting/20140609/realtestbed/index.html
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb20
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb21
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb22
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb23
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb24
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb25
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb26
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb26
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb26
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb26
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb26
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb27
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb27
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb27
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb27
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb27
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb28
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb28

Computer Networks 246 (2024) 110395W. Chu et al.
[29] T. Nishio, R. Shinkuma, T. Takahashi, N.B. Mandayam, Service-oriented het-
erogeneous resource sharing for optimizing service latency in mobile cloud, in:
Proceedings of the First International Workshop on Mobile Cloud Computing &
Networking, 2013, pp. 19–26.

[30] V.B.C. Souza, W. Ramírez, X. Masip-Bruin, E. Marín-Tordera, G. Ren, G.
Tashakor, Handling service allocation in combined fog-cloud scenarios, in: 2016
IEEE International Conference on Communications, ICC, IEEE, 2016, pp. 1–5.

[31] J. Zhao, X. Sun, Q. Li, X. Ma, Edge caching and computation management for
real-time internet of vehicles: an online and distributed approach, IEEE Trans.
Intell. Transp. Syst. 22 (4) (2020) 2183–2197.

[32] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, K.K. Leung, Dynamic service
placement for mobile micro-clouds with predicted future costs, IEEE Trans.
Parallel Distrib. Syst. 28 (4) (2016) 1002–1016.

[33] X. Li, X. Zhang, T. Huang, Asynchronous online service placement and task
offloading for mobile edge computing, in: 2021 18th Annual IEEE International
Conference on Sensing, Communication, and Networking, SECON, IEEE, 2021,
pp. 1–9.

[34] B. Gao, Z. Zhou, F. Liu, F. Xu, B. Li, An online framework for joint network
selection and service placement in mobile edge computing, IEEE Trans. Mob.
Comput. (2021).

[35] T. Liu, S. Ni, X. Li, Y. Zhu, L. Kong, Y. Yang, Deep reinforcement learning based
approach for online service placement and computation resource allocation in
edge computing, IEEE Trans. Mob. Comput. (2022).

[36] T. Ouyang, Z. Zhou, X. Chen, Follow me at the edge: Mobility-aware dynamic
service placement for mobile edge computing, IEEE J. Sel. Areas Commun. 36
(10) (2018) 2333–2345.

[37] Y. Zhang, L. Jiao, J. Yan, X. Lin, Dynamic service placement for virtual reality
group gaming on mobile edge cloudlets, IEEE J. Sel. Areas Commun. 37 (8)
(2019) 1881–1897.

[38] Q. Zhang, Q. Zhu, M.F. Zhani, R. Boutaba, J.L. Hellerstein, Dynamic service
placement in geographically distributed clouds, IEEE J. Sel. Areas Commun. 31
(12) (2013) 762–772.

[39] L. Wang, L. Jiao, T. He, J. Li, H. Bal, Service placement for collaborative edge
applications, IEEE/ACM Trans. Netw. 29 (1) (2020) 34–47.

[40] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, X. Shen, Content popularity
prediction towards location-aware mobile edge caching, IEEE Trans. Multimed.
21 (4) (2018) 915–929.

[41] X. Vasilakos, V.A. Siris, G.C. Polyzos, Addressing niche demand based on joint
mobility prediction and content popularity caching, Comput. Netw. 110 (2016)
306–323.

[42] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, X. Shen, Cooperative edge caching in
user-centric clustered mobile networks, IEEE Trans. Mob. Comput. 17 (8) (2017)
1791–1805.

[43] W. Han, A. Liu, V.K. Lau, Dual-mode user-centric open-loop cooperative caching
for backhaul-limited small-cell wireless networks, IEEE Trans. Wireless Commun.
18 (1) (2018) 532–545.

[44] N. Uniyal, A. Bravalheri, X. Vasilakos, R. Nejabati, D. Simeonidou, W. Feath-
erstone, S. Wu, D. Warren, Intelligent mobile handover prediction for zero
downtime edge application mobility, in: 2021 IEEE Global Communications
Conference, GLOBECOM, IEEE, 2021, pp. 1–6.

[45] C. Zhong, M.C. Gursoy, S. Velipasalar, Deep reinforcement learning-based edge
caching in wireless networks, IEEE Trans. Cogn. Commun. Netw. 6 (1) (2020)
48–61.

[46] S. Chen, Z. Yao, X. Jiang, J. Yang, L. Hanzo, Multi-agent deep reinforce-
ment learning-based cooperative edge caching for ultra-dense next-generation
networks, IEEE Trans. Commun. 69 (4) (2020) 2441–2456.

[47] Z. Zheng, L. Song, Z. Han, G.Y. Li, H.V. Poor, A stackelberg game approach
to proactive caching in large-scale mobile edge networks, IEEE Trans. Wireless
Commun. 17 (8) (2018) 5198–5211.

[48] W. Huang, W. Chen, H.V. Poor, Request delay-based pricing for proactive
caching: A stackelberg game approach, IEEE Trans. Wireless Commun. 18 (6)
(2019) 2903–2918.

[49] G. Qiao, S. Leng, S. Maharjan, Y. Zhang, N. Ansari, Deep reinforcement learning
for cooperative content caching in vehicular edge computing and networks, IEEE
Internet Things J. 7 (1) (2019) 247–257.

[50] Z. Wang, Y. Wei, F.R. Yu, Z. Han, Utility optimization for resource allocation in
multi-access edge network slicing: a twin-actor deep deterministic policy gradient
approach, IEEE Trans. Wireless Commun. 21 (8) (2022) 5842–5856.

[51] T. Ouyang, R. Li, X. Chen, Z. Zhou, X. Tang, Adaptive user-managed service
placement for mobile edge computing: An online learning approach, in: IEEE
INFOCOM 2019-IEEE Conference on Computer Communications, IEEE, 2019, pp.
1468–1476.

[52] Open Edge Computing, http://openedgecomputing.org.
[53] Openfog, https://opcfoundation.org/markets-collaboration/openfog/.
[54] V. Farhadi, F. Mehmeti, T. He, T.F. La Porta, H. Khamfroush, S. Wang, K.S.

Chan, K. Poularakis, Service placement and request scheduling for data-intensive
applications in edge clouds, IEEE/ACM Trans. Netw. 29 (2) (2021) 779–792.

[55] D. Vial, S. Shakkottai, R. Srikant, Robust multi-agent multi-armed bandits,
in: Proceedings of the Twenty-Second International Symposium on Theory,
Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile
Computing, 2021, pp. 161–170.
17
[56] P. Landgren, V. Srivastava, N.E. Leonard, Distributed cooperative decision
making in multi-agent multi-armed bandits, Automatica 125 (2021) 109445.

[57] S. Hossain, E. Micha, N. Shah, Fair algorithms for multi-agent multi-armed
bandits, Adv. Neural Inf. Process. Syst. 34 (2021) 24005–24017.

[58] K. Azuma, Weighted sums of certain dependent random variables, Tohoku Math.
J. Sec. Ser. 19 (3) (1967) 357–367, http://dx.doi.org/10.2748/tmj/1178243286.

[59] R. Kleinberg, A. Slivkins, E. Upfal, Multi-armed bandits in metric spaces, in:
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
2008, pp. 681–690.

[60] A. Badanidiyuru, R. Kleinberg, A. Slivkins, Bandits with knapsacks, J. ACM 65
(3) (2018) 1–55.

Weibo Chu received the B.S. degree in software engineering
in 2005 and the Ph.D. degree in control science and engi-
neering in 2013, both from Xi’an Jiaotong University, Xi’an,
China. He has participated in various research and develop-
ment projects on network testing, performance evaluation
and troubleshooting, and gained extensive experiences in
the development of networked systems for research and
engineering purposes. From 2011–2012 he worked as a
visiting researcher at Microsoft Research Asia, Beijing. From
2013 he was with the School of Computer Science and Tech-
nology, Northwestern Polytechnical University. His research
interests include internet measurement and modeling, traffic
analysis and performance evaluation.

Xiaoyan Zhang received the B.E. degree in 2020 and M.S.
degree in 2023, both in computer science from Northwest-
ern Polytechnical University, Xi’an, China. Her research
interests include task scheduling and service management
for edge/cloud computing systems.

Xinming Jia received the B.E. degree from Northwestern
Polytechnical University, Xi’an, China, in 2021. He is cur-
rently working toward his M.S. degree at the School of
Computer Science and Technology, Northwestern Polytech-
nical University, Xi’an, China. His research interests include
resource management and incentive mechanisms design for
edge computing systems.

John C.S. Lui received the Ph.D. degree in computer
science from UCLA. He is currently a professor in the
Department of Computer Science and Engineering at The
Chinese University of Hong Kong. His current research
interests include communication networks, network/system
security (e.g., cloud security, mobile security, etc.), network
economics, network sciences (e.g., online social networks,
information spreading, etc.), cloud computing, large-scale
distributed systems and performance evaluation theory. He
serves in the editorial board of IEEE/ACM Transactions
on Networking, IEEE Transactions on Computers, IEEE
Transactions on Parallel and Distributed Systems, Journal
of Performance Evaluation and International Journal of
Network Security. He was the chairman of the CSE Depart-
ment from 2005 to 2011. He received various departmental
teaching awards and the CUHK Vice-Chancellor’s Exemplary
Teaching Award. He is also a corecipient of the IFIP WG 7.3
Performance 2005 and IEEE/IFIP NOMS 2006 Best Student
Paper Awards. He is an elected member of the IFIP WG 7.3,
fellow of the ACM, fellow of the IEEE, and croucher senior
research fellow.

Zhiyong Wang received his B.E. degree in 2021 from
Huazhong University of Science and Technology, Wuhan,
China. Since August 2021, he has pursued his Ph.D. degree
in the Department of Computer Science & Engineering at
The Chinese University of Hong Kong, Hong Kong. His re-
search interests include bandits, reinforcement learning and
their applications in computer networks and recommender
systems.

http://refhub.elsevier.com/S1389-1286(24)00227-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb29
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb30
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb31
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb32
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb32
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb32
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb32
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb32
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb33
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb34
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb34
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb34
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb34
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb34
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb35
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb35
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb35
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb35
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb35
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb36
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb36
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb36
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb36
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb36
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb37
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb37
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb37
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb37
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb37
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb38
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb38
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb38
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb38
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb38
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb39
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb39
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb39
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb40
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb40
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb40
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb40
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb40
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb41
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb41
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb41
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb41
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb41
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb42
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb42
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb42
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb42
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb42
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb43
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb43
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb43
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb43
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb43
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb44
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb44
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb44
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb44
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb44
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb44
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb44
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb45
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb46
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb46
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb46
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb46
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb46
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb47
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb47
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb47
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb47
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb47
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb48
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb48
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb48
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb48
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb48
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb49
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb49
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb49
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb49
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb49
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb50
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb50
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb50
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb50
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb50
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb51
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb51
http://openedgecomputing.org
https://opcfoundation.org/markets-collaboration/openfog/
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb54
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb54
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb54
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb54
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb54
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb55
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb56
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb56
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb56
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb57
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb57
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb57
http://dx.doi.org/10.2748/tmj/1178243286
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb59
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb59
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb59
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb59
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb59
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb60
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb60
http://refhub.elsevier.com/S1389-1286(24)00227-5/sb60

	Online optimal service caching for multi-access edge computing: A constrained Multi-Armed Bandit optimization approach
	Introduction
	System Model and Problem Formulation
	System Model
	Problem Formulation

	CCB and its Performance Evaluation
	Algorithm
	Simulation Results

	Service Switch-Aware Online Caching
	Problem Formulation
	Explore-First Algorithm
	Successive Elimination-based Algorithm
	Simulation Results
	Performance over Baselines
	Performance Comparison with SoA

	Related Work
	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Proof of Theorem 3.1
	Appendix B. Proof of Theorem 4.1
	Appendix C. Proof of Theorem 4.2
	Appendix D. Proof of Lemma 4.1
	References

