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Abstract—In recent years, we have witnessed a growing trend
for online service companies to offer “bundling sales” to increase
revenue. Bundling sale means that a company groups a set of
its products/services and charges this bundle at a fixed price,
which is usually less than the total price of individual items. In
this paper, our goal is to understand the underlying dynamics of
bundling, in particular, what is the optimal bundling sale strategy
and under what situations it will be more attractive than the
separate sales. We focus on online service markets that exhibit
network effect. We provide mathematical models to capture the
interactions between buyers and sellers, analyze the market
equilibrium and its stability, and formulate an optimization
framework to determine the optimal sale strategy for the service
provider. We analyze the impact of the key factors, including
the network effects and operating costs, on the profitability of
bundling. We show that bundling is more profitable than separate
sale in most cases; however, the heterogeneity of services and the
asymmetry of operating costs reduce the advantage of bundling.
These findings provide important insights in designing proper
sale strategies for online services.

I. Introduction

As the economy becomes more global and competitive, it
is becoming more important for online service companies to
find new ways to increase revenue. One way is by bundling
services. Bundling service (or bundling sale) means that com-
panies group a set of their products/services and propose a
single price for this group. Usually, the price of this bundling
service is less than the total price of individual items. In
online service markets, services are provided over the Internet
infrastructure, and the service contents may vary. Typical
services include instant messaging, online social networks, on-
line games, online recommendation systems, etc. Companies
usually want to expand the service scale to be as large as
possible so as to increase their market share. Although most
online service providers do not charge ordinary services, they
do charge users for premium services, e.g., the largest movie
recommendation network, IMDb, has an “IMDbPro” session
where premium services (“Get informed”, “Get connected”
and “Get discovered”) are provided to paid-users only. These
premium services are often provided in a bundling manner,
e.g., customers are not allowed to buy these three “Get”
services separately, but they have to pay a uniform price so
as to obtain the premium services as a whole. Though this is
a common sale strategy in online service markets, researchers
have limited understandings of the underlying rationales.

There are a number of reasons why service providers offer
bundling sales. An appealing justification for providers is cost
saving. The online services usually share the same network or
storage infrastructure; therefore, the cost of providing an extra
service on the same infrastructure is often marginal.

Another important reason is that by bundling, the service
providers can reduce the variance of customers’ reservation
prices on the services, thereby increasing the revenue of the
product. In here, a customer’s reservation price refers to a
value such that she will purchase the service if and only if its
price is no higher than this value. For example, if customer
1’s reservation price on service A is $5, and if the sale price
of service A is less than or equal to $5, then customer 1 will
subscribe to such service. Note that different customers have
different reservation prices towards each service. In Table I,
we use a simple example to illustrate this concept. Suppose a
company sells two services (A and B) to two customers. The
second and third column depict both customers’ reservation
prices on the services. Assume a customer’s reservation price
of the bundle is the sum of reservation prices of individual
services, then the two customers have the same reservation
price on the bundle. If the services are sold separately, they
can be priced at $5 and attract both customers (hence the
revenue is $20); or they can be priced at $10 and attract only
one customer for each service (hence the revenue is $20, too).
In contrast, if services are bundled and priced at $15, then
both customers will purchase the service, and the total revenue
is $30. This shows that bundling can reduce the variance of
customers’ reservation prices on these services, and thus the
company can increase its revenue.

Service A Service B Bundle
Customer 1 $5 $10 $15
Customer 2 $10 $5 $15

TABLE I: An example of bundling sales

One important unique feature of online services is the “net-
work effect”. It refers to the market effect at the customer’s
side where a particular customer’s interest on a service is influ-
enced by other customers’ purchasing decisions. For example,
in online social networks (e.g., Facebook, LinkedIn, Twitter,
IMDb, etc.), when the number of membership increases, the
benefit each member receives also increases due to a higher
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degree of interaction and efficiency of information spreading,
and this causes more users to subscribe to this service. This
is a prime example of an online service market where a
large population size indicates a positive influence on each
customer’s valuation, and we call this the “positive network
effect”1. This effect has a major impact on the choice of
pricing strategies for online service providers.

A number of existing research [1], [10], [11], [13] discussed
bundling strategies, but most of them focused on non-digital
goods or services, and were mainly based on graphical expla-
nations, case studies or algorithmic approaches. Very limited
work has been focusing on formal mathematical models to
provide deeper insights for the companies. Furthermore, most
existing work did not consider the impact of network effect,
so they can only provide limited insights on the online service
market. We aim to address the following questions:

• Is it more profitable for online service providers to bundle
a number of services and sell them at a single price?

• What are the factors that impact the optimal pricing
strategy with network effect?

In this paper, we make the following contributions:
• We build a mathematical model which captures the online

service market with network effect.
• We analyze the market equilibrium and formulate an op-

timization framework to capture the optimal sale strategy.
• We discuss the impact of different factors on the prof-

itability of the bundling strategy. We show that bundling
is more profitable than separate sale in most cases, while
the heterogeneity of services and asymmetry of operating
costs reduce the advantage of bundling.

Our paper is organized as follows. Sec. II presents a general
model to capture customers’ purchasing decision and the
service provider’s profit. Sec. III focuses on the online service
market, analyzes the market equilibrium and its stability, and
presents an optimization framework to capture the optimal
sale strategies. In Sec. IV and Sec. V, we analyze the role
of network effect and operating cost on the profitability of
bundling. Sec. VI states related work and Sec. VII concludes.

II. General Model

We present a general model to characterize the Internet
service market, and to study how customers and the service
provider make their purchasing/pricing decisions. Let us first
provide formal definitions on the sale strategies.

Definition 1: Separate sale is a strategy by which a service
provider sells each service Si at price pi individually. Cus-
tomers can choose to purchase any service or not.

Definition 2: Bundling sale is a strategy by which a service
provider offers to sell a set of services as a single unit. The
bundling service is priced at pb. Customers can only choose
to purchase the whole bundling service or not.

1There is also a negative network effect if a large number of users cause
congestion. However, congestion is a physical level infrastructural problem
but is not the focus of our paper on the application level pricing problem.

A. Utility functions of separate sales

Customers’ utility. A customer determines whether to pur-
chase the service(s) provided by the service provider. We
consider a single service provider and a continuum of cus-
tomers with different reservation prices on the service. The
customers’ heterogeneity in reservation prices is represented
by their types, i.e., each infinitesimal customer is characterized
by a one-dimensional type parameter ✓ 2 ⇥, which has a
continuous distribution over ⇥. The customer’s utility function
describes her purchasing behavior: a customer subscribes to a
service if and only if she achieves a non-negative utility. This
utility function depends on 1) the customer’s reservation price
on the service, and 2) the sale price pi of the service. We
assume customer ✓’s reservation price on Si is vi(✓)⇢i(�i),
where vi(✓) is her intrinsic valuation on Si, �i is the fraction of
customers that subscribe to Si, and ⇢i(�i) is a non-decreasing
function in �i representing the network effect. The multiplica-
tion form vi(✓)⇢i(�i) is to characterize that a customer with
a higher intrinsic valuation is more sensitive to the network
effect [6], and that the reservation price is zero if ⇢i(✓) = 0.
We define ui(✓) as customer ✓’s utility on service Si:

ui(✓) = vi(✓)⇢i(�i)� pi. (1)

Customers of different types have different intrinsic val-
uations vi(✓) on Si, and we assume vi(✓) has a continuous
distribution in ✓ over ⇥. We further denote f(✓) as the density
function of ✓, and define

Hi(x) ,
Z

✓2⇥
1{vi(✓)x}f(✓)d✓ (2)

as the cumulative distribution function of vi(✓), i.e., given any
value x, Hi(x) represents the fraction of customers whose
intrinsic valuation on service Si is less than or equal to x.

Service provider’s utility. The service provider determines
whether it should provide separate or bundling sale, and to
propose the price(s) for the service(s). We model the service
provider’s utility as its total profit, and we will use “utility”
and “profit” interchangeably in later analysis. We consider two
factors that impact the service provider’s utility: 1) the service
fee received from customers, which we model as pi�i; 2) the
variable operating cost2 which we model as mi�i. In here, mi

represents the per-unit variable cost3, and we call it the unit
operating cost or the unit cost for short. We define

Ui = (pi �mi)�i (3)

as the service provider’s utility on service Si. Therefore, the
service provider’s utility from all separate sale services is

Us =

IX

i=1

(pi �mi)�i. (4)

2Variable cost and fixed cost consist of the total cost. We consider the
variable cost only since the fixed cost only represents a linear shift on the
utility and does not affect our conclusion.

3Some existing literature uses the term “marginal cost” to represent this
concept. In fact, if the marginal cost is a constant, its value is equal to the
per-unit variable cost which we define here.
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B. Utility functions of the bundling sale

The previous subsection has set up the stage for expressing
the utilities of customers and the service provider when
services are sold individually. We now consider the bundling
strategy which bundles services S1, S2, . . . , SI . Often times,
customers view the bundled services as a whole. We use the
notation b to denote the bundling service Sb. For consistency,
we still assume that the network effect function impacts the
utilities of the bundle in a multiplication form. By substituting
b for i we denote the corresponding notations for Sb. In
particular, ub(✓), vb(✓), �b and pb represent customer ✓’s
utility on purchasing Sb, her intrinsic valuation on Sb, the
fraction of users purchasing Sb, and the price charged for Sb,
respectively. We have the customer’s and the service provider’s
utility functions as

ub(✓) = vb(✓)⇢b(�b)� pb and Ub =(pb �mb)�b, (5)
where mb denotes the unit cost for Sb. In particular, we assume
mb =

PI
i=1 �imi where �i 2 [0, 1] denotes the scaling

factors of the operating cost. In fact, �i  1 implies that
bundling can save unit costs, e.g., if we bundle a number of
bandwidth-related functionalities in online game services, then
the services can rely on the same infrastructure and save cost.

C. Market equilibrium

Due to the network effect, and that customers subscribe
to services at different times, the above model is in fact a
dynamic system. We use the following definition to describe
the steady state of the system.

Definition 3: Given price pi, �i > 0 is a market equilibrium
if Z

✓2⇥
1{vi(✓)⇢i(�i)�pi}f(✓)d� = �i, (6)

where f(✓) is the density function of ✓.

This definition states that for any given customer’s utility as
ui(✓) = vi(✓)⇢i(�i) � pi, if exactly �i fraction of customers
have a non-negative utility to purchase Si, then �i is a
market equilibrium. It represents the fraction of customers
who purchase the service Si when the system reaches a steady
state, i.e., given this fraction, no customer has an incentive to
change her decision. In the following, our analysis is based on
this equilibrium. We will discuss pricing strategies under such
scenario. Unless we state otherwise, we will use �i to denote
the equilibrium in the remaining of this paper.

Note that when �i = 0, it may also be a steady state with
no users. But in this case, the service is closed and there is
no real market. Thus, we exclude �i = 0 from the definition
of equilibrium. Now let us characterize the value of �i.
Lemma 1: Assume ⇢i(�i) > 0 for any �i > 0. The value �i is
an equilibrium if and only if it satisfies �i = 1�Hi

⇣
pi

⇢i(�i)

⌘
,

where Hi(·) is the cumulative distribution function of vi(✓).
Proof: Please refer to the appendix.

The above lemma gives an implicit form to characterize
and compute the equilibrium. In later analysis, it is more
convenient to use the following corollary.

Corollary 1: Assume Hi(·) is a strictly increasing function
in [0, Vi], and ⇢i(�i) > 0 for any �i > 0. Given any price pi,
if there exists an equilibrium �i, then it is a solution to the
following equation:

pi = ⇢i(�i)H
�1
i (1� �i), (7)

where H�1
i (·) is the inverse function of Hi(·) defined in [0, 1].

Up till now we have set up a general model to capture the
customers’ and the service provider’s utilities. Based on this
model, we will proceed to analyze the properties of the market.

III. Online Service Market:
Equilibrium and Optimal Sale Strategy

In this section we study an online service market. We first
model the users’ valuation distribution and the network effect,
and then analyze the market equilibrium. Lastly, we establish
a framework to determine the optimal sale strategies.

A. Distributions of users’ intrinsic valuations

Let us first state two basic assumptions on the users’ intrin-
sic valuation distributions. First, given a customer ✓’s intrinsic
valuation on each individual service Si as vi(✓), we assume
that her valuation on the bundle satisfies vb(✓) �

PI
i=1 vi(✓).

The rationale is that the online services are often comple-
mentary, i.e., using them in conjunction can give customers
extra utilities4. Second, we assume the customers’ intrinsic
valuation on different services are independent. Therefore,
if we let Hi(x) and HB(x) be the cumulative distribution
functions of vi(✓) and

PI
i=1 vi(✓), respectively, we have

HB(x) = H1(x)⌦H2(x)⌦· · ·⌦HI(x), where the convolution
operation is defined by Hi(x)⌦Hj(x) =

R
Hi(x�t)dHj(t).5

Let Hb(x) be the cumulative distribution of vb(✓). Since
vb(✓) is lower bounded by

PI
i=1 vi(✓), i.e., any customer’s

intrinsic valuation on the bundle is at least
PI

i=1 vi(✓), thus,
Hb(x) is upper bounded by HB(x), i.e., given any value x,
the fraction of users whose vb(✓)  x is at most HB(x). In
fact, Hb(x) equals HB(x) if vb(✓) =

PI
i=1 vi(✓). In what

follows, we use HB(x) for the baseline analysis. It is easy to
see that if in this baseline analysis, bundling achieves a profit
gain over the separate sale under a certain circumstance, it
must achieve an equally high or even higher profit gain under
the distribution Hb(x).

We focus on bundling two services S1 and S2. This model
represents a wide range of bundling strategy decisions, since
any bundling of multiple services can be consequentially
constructed by bundling two services. We consider the uniform
distribution6 of customer’s intrinsic valuation, which is widely

4For example, in the IMDb premium services, “Get informed” can help
users to fully utilize the “Get connected” and “Get discovered” functionalities.

5This is a standard result in probability theory and we omit its proof.
6We use the uniform distribution for ease of mathematical derivation.

However, the underlying rationale of bundling does not rely on this specific
form, so our framework and insights do hold for other distributions.
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Fig. 1: Cumulative distribution HB(x), V1 = 2, V2 = 3

adopted in economic literatures (e.g., [2], [10]). Formally, we
have the cumulative distribution of vi(✓), i = 1, 2 as

Hi(x) =

8
<

:

0 if x < 0,
x/Vi if 0  x  Vi,
1 if x > Vi,

(8)

where Vi(i = 1, 2) is the maximal intrinsic valuation of Si.
Without loss of generality, we let V1  V2, and we have
Lemma 2: The baseline distribution function HB(x) is

HB(x) =

8
>>>><

>>>>:

0 if x < 0,
x2/(2V1V2) if 0  x  V1,
(2x� V1)/(2V2) if V1 < x  V2,
1�(V1+V2�x)2/(2V1V2) if V2 < x  V1+V2,
1 if x > V1 + V2.

Proof: By taking the convolution operations on Hi(x) we
can directly reach the result.

In Fig. 1, we illustrate the shape of this distribution. It shows
that HB(x) increases more rapidly in the middle range of
the interval; in other words, customers are more concentrated
to have a moderate valuation of the bundle, comparing with
the uniform distribution of separate services. This shows that
bundling can reduce the variance of customers’ valuations,
and it is an important underlying reason to make bundling
profitable: if the service provider sets a relatively low bundling
price, then it becomes easier for him to attract more customers
since there are a lot of customers with moderate valuations,
and hence the service provider can make more profit. However,
if the service provider only targets at a small amount of
customers with high valuations, then bundling may not have an
advantage. This is because HB(x) indicates fewer customers
with high valuations comparing to the uniform distribution.

B. Network effect and utility functions

We model the network effect in form of ⇢i(�i) = �↵i
i ,

where ↵i 2 (0,+1) represents the shape of the network
effect. When the two services with ↵1  ↵2 are bundled,
customers view it as a new service with the network effect
function ⇢b(�b) = �↵b

b , where ↵1  ↵b  ↵2.
We use the above form for a number of reasons. First,

ui(✓) = 0 if �i = 0, i.e., no customer has an incentive to enter
an empty market. This is a common fact in many interactive
applications, e.g., online social network or recommendation
systems; and this also shows that it is important for a service
provider to promote the service and have some initial users

for startup. Second, �↵i
i is increasing in �i, so it represents

a positive network effect. Last but not least, this is an iso-
elasticity function which allows us to use a single parameter
↵i to model the elasticity, or the shape of the network effect.
Large ↵i (or a convex function) means that given a small �i,
�↵i
i is small and many users will lose their interest, so a large

start-up population is necessary. On the contrary, if ↵i is small
(or a concave function), then �↵i

i is large given a moderate or
small �i. This means a small amount of initial users can be
enough to induce a large network effect, and later on, the
service can potentially attract many more customers. Note
that our model generalizes the linear network effect models
in many existing literatures [6], [12]; in fact, when ↵i = 1,
our model exactly represents the linear network effect.

Based on the above settings, service Si is uniquely defined
by 1) the users’ maximal intrinsic valuation Vi, 2) the unit
operating cost mi, and 3) the network effect parameter ↵i. In
later analysis, we use a tuple Si = hVi,mi,↵ii, i = 1, 2 to
denote a separate sale service. Based on the above, customer
✓’s utility and the service provider’s utility on service Si are:

ui(✓) = vi(✓)�
↵i
i � pi, Ui = (pi �mi)�i; (9)

and the service provider’s utility on all separate sales is

Us =

2X

i=1

Ui =

2X

i=1

(pi �mi)�i. (10)

For the bundling sale, the utility functions are

ub(✓) = vb(✓)�
↵b
b � pb, Ub =

 
pb �

2X

i=1

�imi

!
�b. (11)

C. Analysis of market equilibrium

In this subsection, we derive the conditions for the existence
of the market equilibrium (or equilibria).
Theorem 1: Consider any separate or bundling sale Si, i 2
{1, 2, b}. There exists a threshold p̄i, such that for any given
service price pi, we have

# of equilibrium (or equilibria) =

8
<

:

0 if pi > p̄i,
1 if pi = 0 or p̄i,
2 if pi 2 (0, p̄i).

In particular, for separate sale, we have p̄i =
Vi

↵i+1

⇣
↵i

↵i+1

⌘↵i

.
Proof: Please refer to the appendix.

This theorem states that the condition for the existence of
equilibrium is that the service price is not too high, otherwise
no customer will purchase the service. We also note that if
the existence is guaranteed, then almost surely there are two
equilibria. We next discuss the stability property and explain
why we are interested in the larger equilibrium.
Discussion on stability7. We say that an equilibrium � is sta-
ble, if there exists a positive ✏, such that if at any time, a non-
equilibrium fraction �0 2 (�� ✏, �+ ✏) of customers subscribe
to the service, then the dynamic market will eventually reach
the equilibrium �. In fact, if we consider the two equilibia
�1i < �2i in the above theorem, the only stable one is �2i . If

7The features of equilibria are quite similar to discussions in [4].
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the market is now with �1i � ✏ fraction of customers, then
eventually all customers will leave the market and the service
will be closed; if the market is now with �1i + ✏ fraction of
customers, it will not reach �1i but will reach �2i . Hence, �1i is
an unstable equilibrium. In contrast, if we consider the market
with any fraction �2

0

i 2 (�2i � ✏, �2i + ✏) of users, the dynamic
market will eventually reach the equilibrium �2i ; hence, �2i
is a stable equilibrium. Due to the page limit, we omit the
details here; interested readers may refer to [6] for a detailed
discussion. Due to this stability property, in later analysis,
we can safely restrict our analysis in the larger equilibrium.
We use max{�i(pi)} to denote the maximal equilibrium for a
given pi, and define max ; = 0 to capture an empty market
when the price is too high and the equilibrium does not exist.

D. An optimization framework for the sale strategies
In this section we establish an optimization framework to

determine the optimal sale strategies. A natural way to model
the optimal sales is that the service provider aims to find a
price (or prices) for the separate or the bundling sale which
maximizes its profit, i.e., the optimal separate or bundling sale
Si, i 2 {1, 2, b}, can be modeled as

max

pi

Ui(pi) = (pi �mi)max{�i(pi)},

s.t. pi � 0. (12)

However, this form is not easy for analysis, and we opt
to change the decision variable from pi to �i. According to
Corollary 1, we can transform (12) into the following problem8

max

�i
Ui(�i) = (⇢i(�i)H

�1
i (1� �i)�mi)�i,

s.t. 0  �i  1. (13)

Since the above optimizations for i 2 {1, 2, b} have continu-
ous objective functions over a compact set, they are guaranteed
to have optimal solutions. By solving the above optimizations,
we automatically choose the largest equilibrium fraction for
any given price, which is the stable one as we desire.9 Up
till now we have established an optimization framework to
determine the optimal sale strategies. In what follows, we
use U⇤

s and U⇤
b to denote the maximal profit of the service

provider, under the separate and bundling sales respectively. If
we could calculate U⇤

s and U⇤
b , then we can determine whether

bundling is more profitable than separate sale by comparing
their values. Formally, we have the following definition to
capture the profit gain of bundling over the separate sale:
Definition 4: The profit gain ratio � is the difference between
the maximal profit of the bundling sale and that of the separate
sale, divided by maximal profit of the separate sale, i.e.,

� = (U⇤
b � U⇤

s )/U
⇤
s . (14)

If � > 0, it means the optimal bundling sale is more profitable
than the optimal separate sale, and vice versa. A larger value
of � indicates a larger profit gain by the bundling sale.

8Although �i = 0 is excluded from Corollary 1, we can verify that if the
solution to (12) is p⇤i and max{�i(p⇤i )} = 0, then the solution to (13) is 0.

9To see this, note if there exist �1i < �2i such that ⇢i(�1i )H
�1
i (1� �1i ) =

⇢i(�
2
i )H

�1
i (1��2i ) � mi, then obviously �1i cannot be the solution to (13).

We believe this framework is critical for online service
providers to evaluate their best sale strategies; but we should
also point out it may not be easy to have general results at
this stage, in particular, when a general ↵i induces difficulty
in solving the optimizations. In the following sections, we
explore the impact of various factors, i.e., the network effect
parameter ↵i, and the unit cost mi, on the profitability of
bundling. Before we proceed, let us present the following
lemma which reflects the scaling properties of the sales.
Lemma 3 (Scaling property): Let c be a positive number.
(1) If the equilibrium and profit of the optimal sale Si =

hVi,mi,↵ii are �⇤i and U⇤
i , then the equilibrium and profit of

the optimal sale S0
i = hcVi, cmi,↵ii are �⇤i and cU⇤

i .
(2) If the profit gain ratio for bundling S1 = hV1,m1,↵1i and
S2 = hV2,m2,↵2i is � , then the profit gain ratio for bundling
S0
1 = hcV1, cm1,↵1i and S0

2 = hcV2, cm2,↵2i is also �.
Applying the optimization framework we can easily prove

the above lemma. This lemma points out that if Vi and mi

increases (or decreases) by the same factor, then it does not
impact the equilibrium or the profitability of bundling. Hence,
in later analysis, we can normalize V1 to be 1 and vary V2

so as to explore the whole design space. This simplifies our
analysis and does not lose any generality.

IV. Impact of Network Effect
Up to now we have formulated a framework to capture

the pricing strategies and the market equilibrium. In this and
the next sections we discuss the impact of key factors on the
profitability of bundling. We first focus on the network effect.

Many online service providers incur a much larger fixed cost
comparing to their variable cost. For example, online social
network service needs to invest a large amount of money to
initially set up the hardware and infrastructure, but the cost is
minimal to increase one user membership. So in this section,
we set the per-unit variable cost mi = 0 and consider Si =

hVi, 0,↵ii. The service provider’s utility can be expressed as

Us = p1�1 + p2�2. (15)

This simplification captures the feature of a wide range of
digital online services, and it allows us to isolate different
factors so as to better understand the impact of network effect.

A. Homogeneous network effect (↵1 = ↵2 = ↵)

We start our discussion with the network effect functions
⇢1(�) = ⇢2(�) = �↵. Naturally, we assume the bundling
service Sb also have ⇢b(�) = �↵. Such setting represents
bundling two services with similar network effects. We have
the following theorem to show that bundling is more profitable
than separate sales under this setting.
Theorem 2: Consider S1 = hV1, 0,↵i and S2 = hV2, 0,↵i.
1) The profit gain ratio of the bundling sale � > 0.
2) In particular, when S1 = S2 = hV, 0,↵i, we have

a) The optimal separate sale is

�⇤i =

↵+ 1

↵+ 2

, p⇤i =

V

↵+ 2

✓
↵+ 1

↵+ 2

◆↵

, U⇤
s = 2�⇤i p

⇤
i .

b) The optimal bundling sale is
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Fig. 3: Impact of network effect, ↵1 6= ↵2

�⇤b =

2↵+ 2

2↵+ 3

, p⇤b =

✓
2↵+ 2

2↵+ 3

◆↵r
2

2↵+ 3

V, U⇤
b = �⇤bp

⇤
b .

c) The profit gain ratio of the bundling sale is

�(↵) =

p
2

4

(2↵+ 4)

↵+2

(2↵+ 3)

↵+3/2
� 1,

and it is an increasing function in ↵.
Proof: Please refer to the appendix.

This theorem states that when ↵1 = ↵2, bundling is always
more profitable, and large ↵ (i.e., a convex network effect
function) indicates a high profit gain. Let us use examples
to show how bundling achieves a higher profit. In Fig. 2
we consider S1 = h1, 0,↵i and S2 = hV2, 0,↵i, where we
vary V2 2 {1, 2, 5} and ↵ 2 [0.1, 3.0]. We can see � is
always positive, and this validates our results in Theorem 2.
We can also observe that when there is a large gap between
V1 and V2, the profit gain ratio � reduces. This is because
the joint distribution HB(x) becomes less concentrated in the
middle range, so bundling sale can attract fewer customers. To
summarize, we have the following observation:
Observation 1: The advantage of bundling becomes more
dominant when the network effect function is more convex
(i.e., larger ↵); however, the heterogeneity in intrinsic valua-
tion distributions reduces the profit gain ratio of bundling.

B. Heterogeneous network effect (↵1 6= ↵2)

Now let us consider bundling two services with different
network effects. We first consider V1 = V2. It is natural to
assume ↵b, the network effect parameter for the bundle, is
between ↵1 and ↵2. Let ↵b = ⌘↵1+(1�⌘)↵2 where ⌘ 2 [0, 1].
We have the following result.
Theorem 3: Consider S1 = hV, 0,↵1i and S2 = hV, 0,↵2i.
Let ↵b = ⌘↵1 + (1� ⌘)↵2. The profit gain ratio is

� =

⇣
2↵b+2
2↵b+3

⌘↵b+1q
2

2↵b+3

1
↵1+2

⇣
↵1+1
↵1+2

⌘↵1+1
+

1
↵2+2

⇣
↵2+1
↵2+2

⌘↵2+1 � 1. (16)

Proof: By noting the form of U⇤
s and U⇤

b in Theorem 2, we
can directly reach the conclusion .

Let us show the impact of network effect on �. In Fig. 3(a)
we consider S1 = h1, 0, 0.1i and S2 = h1, 0,↵2i where we

vary ↵2 2 [0.1, 10.0]. We plot three curves of � when ⌘ =

0.8, 0.5 and 0.2, respectively. We first focus on a particular
curve, e.g., ⌘ = 0.5. When ↵2 increases from 0.1, � also
increases; this is because a large network effect parameter has
a positive impact on bundling. But when ↵2 is large, � begins
to decrease and eventually becomes negative; this is because
when ↵1 and ↵2 differ a lot, the optimal equilibria, �⇤1 and
�⇤2 , also differ a lot. In such cases it is not rational to bundle
S1 and S2, since the bundling sale needs to find a unique
equilibrium �⇤b , which is either far away from �⇤1 or far away
from �⇤2 , so bundling is not as profitable as separate sale. We
also observe when ⌘ is larger, � is also larger. This is because
larger ⌘ implies larger ↵b, or a more convex network effect
function, which makes bundling even more profitable.

Similar to the previous discussions, we also consider the
services with different Vi. In Fig. 3(b), we consider S1 =

h1, 0, 0.1i and S2 = hV2, 0,↵2i where we vary ↵2 2 [0.1, 10]
and V2 2 {1, 2, 5}. We set ⌘ =

V1
V1+V2

to represent the relative
weight of each service. We can observe the similar feature as
we have shown before: when ↵2 increases, � first increases
and then decreases. We also observe that the inflection point
increases when V2 increases. This is because when V2 is large,
service S2 has a major impact on the bundle, so the positive
impact of ↵2 on bundling can be effective in a larger range.
To summarize, we have the following observation:
Observation 2: The heterogeneity of network effect functions
decreases the profitability of bundling.

V. Impact of Operating Cost
In the previous section we have discussed the impact of

network effect when the variable operating cost equals zero.
Although this approximation applies to many existing services,
there might be exceptions. For example, in online storage
systems (e.g., Dropbox), the unit cost of storing the data might
not be negligible. In this section, we discuss how the operating
cost impacts the pricing strategies. Our discussions generalize
the results we obtained in the previous section.

A. Impact of operating cost when ↵1 = ↵2 = ↵

We start our discussion when both services have the same
network effect function, i.e., ⇢i(�i) = �↵i , i = 1, 2. We want
to explore how our results in Theorem 2 can be generalized
with non-zero unit operating costs. According to Lemma 3, we
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can normalize Vi so that the effectiveness of the unit cost is
represented by mi

Vi
. We will discuss when m1 : m2 = V1 : V2

and m1 : m2 6= V1 : V2, i.e., symmetric and asymmetric unit
costs, respectively. We start from the symmetric case.
Theorem 4: If ↵ � 1 and m1 : m2 = V1 : V2, then U⇤

b � U⇤
s .

Proof: Please refer to the appendix.
This theorem states that if S1 and S2 have the same convex

network effect function and symmetric unit costs, then the
profit of the optimal bundling is no less than that of the optimal
separate sale. The key reason is that under this setting, the
optimal separate sale always obtains an equilibrium larger than
1/2, so bundling can attract more customers. However, if ↵i <
1 and m is large, then �⇤i may be less than 1/2 and bundling
may not be always profitable. Let us use examples to show
this phenomenon. Since U⇤

s may be zero, which leads � = 1,
we opt to use the profit gain, defined by �U⇤

= U⇤
b � U⇤

s ,
as the performance measure. In Fig. 4(a), we consider S1 =

S2 = h1,m,↵i and vary m 2 [0, 0.34], ↵ 2 {0.5, 1, 2}. We
observe for any given ↵, �U⇤ reduces with respect to m. This
indicates that unit cost reduces the profit gain of bundling.
When ↵ = 1 or 2, bundling is always no worse than separate
sale. This validates our result in Theorem 4. When ↵ = 0.5,
�U⇤ can be negative when m is large. This indicates when
the network effect functions are concave, a large unit cost can
make bundling less profitable than separate sale.

Now let us consider the impact of asymmetric unit costs,
i.e., m1 : m2 6= V1 : V2. The asymmetry induces different
equilibria, and bundling is not always more profitable. It is not
easy to quantify the dominant domain of the bundling or the
separate sales. We have the following theorem as a sufficient
condition to guarantee the profitability of bundling.
Theorem 5: Let �⇤i , i = 1, 2 be equilibria of optimal separates
sales S1 and S2. If �2

2��2
�⇤1  �⇤2  �⇤1 (where �2 is the scaling

factor such that mb = �1m1 + �2m2), then U⇤
b > U⇤

s .

Proof: Please refer to the appendix.
This theorem states that if the optimal equilibria of separate

sales are close, then bundling is more profitable. The underly-
ing reason is similar to the previous analysis: if two services
are highly asymmetric and have very different equilibria, then
it is not feasible to find a suitable service price for the bundle,
because the corresponding equilibrium �b of the bundle, is
either too far from �⇤1 or too far from �⇤2 ; only when �⇤1 and

�⇤2 are close, bundling can be more profitable. Let us use
examples to show how the asymmetry impacts the profit gain.
In Fig. 4(b), we consider S1 = h1, 0.14,↵i, S2 = h1,m2,↵i
and vary m2 2 [0, 0.34] and ↵ 2 {0.5, 1, 2}. We can observe
that when m2 increases, the profit gain �U⇤ decreases; when
m2 is greatly larger than m1, then �U⇤ can be negative for
↵ = 1 or 2. Comparing with Fig. 4(a) where �U⇤ is always
non-negative for ↵ = 1 or 2, we can see the asymmetry in
unit costs further reduces the profitability of bundling.

To summarize, we have the following observation.

Observation 3. Under the symmetric operating costs and
homogenous network effect, the operating costs reduce the
profitability of bundling; in particular, when the network effect
function is concave, bundling may be less profitable than
separate sales. When the operating costs are asymmetric, the
profitability of bundling is further reduced.

B. Impact of operating cost when ↵1 6= ↵2

In this section, we observe the impact of the unit op-
erating cost when the two services have different network
effect functions. In particular, we show how our result in
Fig. 3(a) changes with consideration of the unit cost. To keep
consistency with Fig. 3(a), we evaluate the profit gain ratio
�. In Fig. 5, we consider bundling S1 = h1,m1, 0.1i and
S2 = h1,m2,↵2i. We fix �1 = �2 = 1, ⌘ = 0.5, and vary
↵2 2 [0.1, 10.0]. We consider three cases of �: � = �1 if
m1 = m2 = 0, � = �2 if m1 = 0,m2 = 0.1, and � = �3
if m1 = 0.1,m2 = 0. We first note �3 < �1. This means a
unit cost on S1 discourages bundling, which is the same as our
finding in the previous subsection. Next we focus on the curve
of �2, and we have some interesting observations. We note
�2 > �1 when ↵2 is moderately large. This shows the unit cost
of S2 can sometimes increase the profitability of bundling. The
reason is this unit cost reduces �⇤2 , so that the gap between �⇤1
and �⇤2 reduces. Therefore, the unit cost reduces the asymmetry
of S1 and S2, so it increases the profitability of bundling.
However, when ↵2 is quite large, the unit cost further reduces
�⇤2 and its negative impact on the profit becomes dominant. To
summarize, we have the following observation:

Observation 4. The operating costs play a complicated role
when network effect functions are different. In particular, a
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moderate operating cost on the service with larger ↵i may
increase the profitability of bundling.

VI. Related Work
Bundling strategy has been discussed in economic commu-

nity. Early studies [1], [10], [11] revealed basic understandings
and they were all based on non-digital goods. Authors in [2],
[3], [8] discussed bundling strategy of digital goods with zero
marginal cost but there was no network effect. Network effect
(or network externality) has also been extensively studied.
Early works [7], [9] set up basic models to define and analyze
network effect, and recent works [5], [14], [15] have discussed
various applications under network effects.

Although network effect and bundling sale have been both
extensively studied, there are very few works that combine
them. We only find one recent work [12] closely related to
our paper, where the authors discussed bundling strategy of
technological products with network externality. The paper
presented interesting findings, but they mainly rely on nu-
merical and graphical explanations, and their analysis was
restricted to some special cases. Meanwhile, the linear and
additive form of network externality applied in their work is
in a special form which does not capture all important features
of online services. Hence, we need a more accurate model
on the network effect to capture today’s online market. Our
paper differs from previous works in that 1) we build a formal
optimization framework that captures the optimal separate sale
and bundling strategies, 2) we give rigorous analytical results
based on the multiplication form of network effect, and 3)
we analytically show how network effects and operating costs
impact on the profitability of bundling under various scenarios.

VII. Conclusion
In this paper, we discuss the bundling sale strategy for

online service markets which exhibit network effects. In such
market, a customer’s purchasing decision is influenced by
other customers’ purchasing decisions. We formulate a formal
optimization framework to characterize the optimal sale strate-
gies, which allows the service providers to determine their
best sale strategies. Based on this, we analyze and quantify
the impact of the key factors. Our important findings include:
1) when the network effect function is more convex, the profit
gain of bundling over separate sales becomes larger; 2) the
operating cost usually plays a negative role towards bundling;
but when the two services have different network effects, a
moderate operating cost on a particular service may increase
the profitability of bundling; and 3) the asymmetry in oper-
ating costs, and the heterogeneity in valuation distributions
or network effects, reduce the profitability of bundling, and
can even make bundling less profitable than separate sales.
We believe these findings provide valuable insights for online
service providers to design effective pricing schemes, and we
plan to better explore bundling sales via real data analytics.
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APPENDIX

Proof of Lemma 1: Since for any �i > 0 we have
⇢i(�i) > 0, so the condition vi(✓)⇢i(�i) � pi, is equivalent to
vi(✓) � pi

⇢i(�i)
. According to the definition of equilibrium, we

have �i =

R
✓2⇥ 1n

vi(✓)�
pi

⇢i(�i)

of(✓)d✓. By noting the above

equation and recalling the definition of Hi(x) in Eq. (2), we
can prove the lemma.

Proof of Theorem 1: According to Corollary 1, �i is an
equilibria if and only if it satisfies

pi = �↵i
i H�1

i (1� �i), (i = 1, 2), pb = �↵b
b H�1

B (1� �b),

where H�1
i (1� �i) = Vi(1� �i) and

H�1
B (1��b)=

8
><

>:

V1 + V2 �
p
2V1V2�b if 0  �b  V1

2V2
,

1
2V2 + V2(1� �b) if V1

2V2
< �b  1� V1

2V2
,p

2V1V2(1� �b) if 1� V1
2V2

< �b  1.

Let gi(x) = x↵iH�1
i (1 � x), i = 1, 2 and gb(x) =

x↵bH�1
B (1� x). Then equilibrium �i is a solution to

pi = gi(�i). (17)
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By letting g0i(x) = 0, i = 1, 2, we see there is a unique solution
x⇤
i =

↵i
↵i+1 in (0, 1]. By letting g0b(x) = 0 we have

x⇤
b =

8
><

>:

2↵2
b(V1+V2)

2

(4↵2
b+4↵b+1)V1V2

if 0  x  V1
2V2

,
↵b(V1+2V2)
2(↵b+1)V2

if V1
2V2

< x  1� V1
2V2

,
2↵b

2↵b+1 if 1� V1
2V2

< x  1.

Since ↵b
2↵b+1 < 1

2 < 1 � V1
2V2

, it is not a solution
to g0b(x) = 0. If ↵b(V1+2V2)

(2↵b+1)V2
> V1

2V2
, then V2

V1
> 1

2↵b
.

If 2↵2
b(V1+V2)

2

(4↵2
b+4↵b+1)V1V2

 V1
2V2

, then V2
V1

 1
2↵b

. This means
↵b(V1+2V2)
(2↵b+1)V2

and 2↵2
b(V1+V2)

2

(4↵2
b+4↵b+1)V1V2

cannot be both solutions to
g0b(x) = 0. So g0b(x) = 0 has at most one solution in (0, 1].

Note that for i 2 {1, 2, b}, gi(0) = 0, gi(1) = 0, gi(x) > 0

if 0 < x < 1, and that g0i(x) = 0 has at most one solution
in (0,1], we conclude gi(x) has one and only one maxima
when x 2 (0, 1). Let us denote this value as p̄i. Thus, when
x increases from 0 to 1, gi(x) first increases from 0 to p̄i,
and then decreases from p̄i to 0. Therefore, when pi > p̄i,
Eq. (17) has no solution; when pi = p̄i or 0, Eq. (17) has only
one solution; when 0 < pi < p̄i, Eq. (17) has two solutions.
In particular, we have p̄i = gi(

↵i
↵i+1 ) =

Vi
↵i+1

⇣
↵i

↵i+1

⌘↵i

for
i = 1, 2, which completes the proof.

Proof of Theorem 2: We first prove the second part of the
theorem. By applying the optimization framework, we see the
optimal separate sale is a solution to

max

�i
Ui(�i) =

2X

i=1

�i(�
↵
i � �↵+1

i ),

s.t. 0  �i  1. (18)

We can easily obtain the solution as �⇤i =

↵+1
↵+2 and have

p⇤i =
V

↵+2

⇣
↵+1
↵+2

⌘↵
, U⇤

s = 2p⇤i �
⇤
i . Similarly, we can solve the

optimal bundling sale. By noting the definition of � and taking
the forms of U⇤

s and U⇤
b into Eq. (14), we can derive the profit

gain ratio �(↵) as desired. By taking the derivative of log �(↵)
with respect to ↵, it is easy to show �(↵) is increasing in ↵.

Now we prove the first part of the theorem. For any given
↵ we have �⇤1 = �⇤2 =

↵+1
↵+2 , and we denote this value as �⇤.

Obviously, �⇤ > 1/2, and we have

U⇤
s = �⇤⇢1(�

⇤
)H�1

1 (1� �⇤) + �⇤⇢2(�
⇤
)H�1

2 (1� �⇤). (19)

We consider a bundling sale with price pb such that the largest
equilibrium is �⇤. The service provider’s utility in the optimal
bundling sale satisfies

U⇤
b � �⇤⇢b(�

⇤
)H�1

B (1� �⇤). (20)

Given the form of Hi(x) and HB(x), one can easily verify
that H�1

i (1��⇤)
Vi

<
H�1

B (1��⇤)
V1+V2

for �⇤ > 1/2. Therefore, we
have H�1

1 (1 � �⇤) + H�1
2 (1 � �⇤) < H�1

B (1 � �⇤). Since
⇢1(�) = ⇢2(�) = ⇢b(�) = �↵, we have

2X

i=1

�⇤⇢i(�
⇤
)H�1

i (1� �⇤) < �⇤⇢b(�
⇤
)H�1

B (1� �⇤). (21)

Combining inequalities (19), (20) and (21), we have U⇤
b > U⇤

s ,
therefore, the profit gain ratio � > 0.

Proof of Theorem 4: Let us denote m1
V1

=

m2
V2

= m. Accord-
ing to Lemma 3, the equilibria of separate sales satisfy �⇤i = �⇤2
and we denote it as �⇤. Based on the optimization formulation,
we know �⇤ is a solution to the following optimization:

max

�
U(�) = �↵+1 � �↵+2 �m�,

s.t. 0  �  1. (22)

We next show �⇤ = 0 or �⇤ > 1/2. Note that U(�) = �g(�)
where g(�) = �↵ � �↵+1 � m. Let us consider if �⇤ = 0

is not the unique solution, then g(�⇤) � 0. By taking first
and second order derivatives, we can derive g(�) achieves
the unique maximal value in [0, 1] when � =

↵
↵+1 . Let

us suppose �⇤ < ↵
↵+1 , then 0  g(�⇤) < g( ↵

↵+1 ), so
�⇤g(�⇤) < ↵

↵+1g(
↵

↵+1 ), which is U(�⇤) < U(

↵
↵+1 ). This

contradicts with our assumption that U(�⇤) is the maximal
value in [0,1]. Therefore, we have �⇤ = 0 or �⇤ � ↵

↵+1 > 1/2.
If �⇤ = 0, then the optimal separate sale achieves a profit of

zero, which is obviously no larger than the optimal bundling
sale; if �⇤ > 1/2, then using the same approach in the proof
of Theorem 2, we can prove the optimal bundling sale is
more profitable than the optimal separate sale. Combining the
above two cases we prove the theorem.

Proof of Theorem 5: We first analyze the bundling sale with
price pbi such that the equilibrium �bi = �⇤i , i = 1, 2. Given the
forms of Hi(·) and HB(·), we have H�1

i (1��⇤i )
Vi

<
H�1

B (1��⇤i )
V1+V2

.
Since pbi = �⇤↵i H�1

B (1� �⇤i ) and p⇤i = �⇤↵i H�1
1 (1� �⇤i ), we

have pbi > p⇤i
V1+V2

Vi
, so the service provider’s utility under

this setting satisfies

Ubi > (p⇤i (V1 + V2)/Vi � �1m1 � �2m2) �
⇤
i . (23)

Since the above settings (�b1, �b2) are two realizations in the
bundling strategy, we have the optimal bundling utility satisfies

2U⇤
b � Ub1 + Ub2

> p⇤1�
⇤
1(V1 + V2)/V1 + p⇤2�

⇤
2(V1 + V2)/V2

��1(�
⇤
1 + �⇤2)m1 � �2(�

⇤
1 + �⇤2)m2. (24)

Therefore, we have
2(U⇤

b � U⇤
s ) > (V2 � V1) (p

⇤
1�

⇤
1/V1 � p⇤2�

⇤
2/V2)

�((�1 � 2)�⇤1 + �1�
⇤
2)m1 � ((�2 � 2)�⇤2 + �2�

⇤
1)m2.(25)

Let us consider another service S0 = h1, 0,↵ii, and assume
its optimal equilibrium is �⇤0 . Since the increase of unit cost
reduces the value of the optimal equilibrium, and that �⇤2  �⇤1 ,
we have �⇤0 � �⇤1 � �⇤2 . Since �⇤1 , and �⇤2 are also two sale
strategies of S0, and that �⇤1 is nearer to the optimal separate
sale, we have p⇤

1�
⇤
1

V1
� p⇤

2�
⇤
2

V2
. Recall V2 � V1, we have

(V2 � V1) (p
⇤
1�

⇤
1/V1 � p⇤2�

⇤
2/V2) � 0. (26)

Since �1  1,�2  1, �⇤1 � �⇤2 , we have ((�1 � 2)�⇤1 +

�1�
⇤
2)m1  0. Since 2��2

�2
�⇤1  �⇤2 , we have ((�2 � 2)�⇤2 +

�2�
⇤
1)m2  0. Therefore, we have

((�1 � 2)�⇤1 + �1�
⇤
2)m1 + ((�2 � 2)�⇤2 + �2�

⇤
1)m2  0. (27)

Combining (25), (26) and (27), we conclude U⇤
b �U⇤

s > 0.
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