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Abstract Supermarket models are a class of parallel queueing networks with an adap-
tive control scheme that play a key role in the study of resource management of, such as,
computer networks, manufacturing systems and transportation networks. When the arrival
processes are non-Poisson and the service times are non-exponential, analysis of such a
supermarket model is always limited, interesting, and challenging. This paper describes a
supermarket model with non-Poisson inputs: Markovian Arrival Processes (MAPs) and with
non-exponential service times: Phase-type (PH) distributions, and provides a generalized
matrix-analytic method which is first combined with the operator semigroup and the mean-
field limit. When discussing such a more general supermarket model, this paper makes some
new results and advances as follows: (1) Providing a detailed probability analysis for setting
up an infinite-dimensional system of differential vector equations satisfied by the expected
fraction vector, where the invariance of environment factors is given as an important result.
(2) Introducing the phase-type structure to the operator semigroup and to the mean-field
limit, and a Lipschitz condition can be established by means of a unified matrix-differential
algorithm. (3) The matrix-analytic method is used to compute the fixed point which leads to
performance computation of this system. Finally, we use some numerical examples to illus-
trate how the performance measures of this supermarket model depend on the non-Poisson
inputs and on the non-exponential service times. Thus the results of this paper give new
highlight on understanding influence of non-Poisson inputs and of non-exponential service
times on performance measures of more general supermarket models.
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1 Introduction

Supermarket models are a class of parallel queueing networks with an adaptive con-
trol scheme that play a key role in the study of resource management of, such as
computer networks (e.g., see the dynamic randomized load balancing), manufacturing sys-
tems and transportation networks. Since a simple supermarket model was discussed by

Mitzenmacher (1996), Vvedenskaya et al. (1996) and Turner (1996) through queueing the-
ory as well as Markov processes, subsequent papers have been published on this theme,
among which, see, Vvedenskaya and Suhov (1997, 2005), Turner (1998), Jacquet and
Vvedenskaya (1998), Jacquet et al. (1999), Mitzenmacher (1999), Mitzenmacher and Upfal
(2005), Kurtz (1981), Graham (2000a, b, 2004), Mitzenmacher et al. (2001), Luczak and
Norris (2005), Luczak and McDiarmid (2006, 2007), Bramson et al. (2010, 2012, 2013), Li
and Lui (2010), Li et al. (2011, 2013) and Li (2011, 2014). For the fast Jackson networks (or
the supermarket networks), readers may refer to Martin and Suhov (1999), Martin (2001)
and Suhov and Vvedenskaya (2002).

The available results of the supermarket models with non-exponential service times
are still few in the literature. Important examples include an approximate method of
integral equations by Vvedenskaya and Suhov (1997), the Erlang service times by
Mitzenmacher (1999) and Mitzenmacher et al. (2001), the PH service times by Li et al.
(2011) and Li and Lui (2010), and the ansatz-based modularized program for the general
service times by Bramson et al. (2010, 2012, 2013).

Little work has been done on analysis of the supermarket models with non-Poisson
inputs, which are more difficult and challenging due to the higher complexity of that N
arrival processes are superposed. Li and Lui (2010) and Li (2011) used the superposi-
tion of N MAP inputs to study the infinite-dimensional Markov processes of supermarket
modeling type. Comparing with the results given in Li and Lui (2010) and Li (2011), this
paper provides more necessary phase-level probability analysis in setting up the infinite-
dimensional system of differential vector equations, which leads some new results and
methodologies in the study of block-structured supermarket models. Note that the PH
distributions constitute a versatile class of distributions that can approximate arbitrarily
closely any probability distribution defined on the nonnegative real line, and the MAPs
are a broad class of renewal or non-renewal point processes that can approximate arbitrar-
ily closely any stochastic counting process (e.g., see Neuts (1981, 1989) and Li (2010)
for more details), thus the results of this paper are a key advance of those given in
Mitzenmacher (1996) and Vvedenskaya et al. (1996) under the Poisson and exponential
setting.

The main contributions of this paper are threefold. The first one is to use the MAP inputs
and the PH service times to describe a more general supermarket model with non-Poisson
inputs and with non-exponential service times. Based on the phase-type structure, we define
the random fraction vector and construct an infinite-dimensional Markov process, which
expresses the state of this supermarket model by means of an infinite-dimensional Markov
process. Furthermore, we set up an infinite-dimensional system of differential vector
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equations satisfied by the expected fraction vector through a detailed probability analysis.
To that end, we obtain an important result: The invariance of environment factors, which
is a key for being able to simplify the differential equations in a vector form. Based on the
differential vector equations, we can provide a generalized matrix-analytic method to inves-
tigate more general supermarket models with non-Poisson inputs and with non-exponential
service times. The second contribution of this paper is to provide the phase-type structure
for the operator semigroup with respect to the MAP inputs and to the PH service times,
and use the operator semigroup to provide the mean-field limit for the sequence of Markov
processes who asymptotically approaches a single trajectory identified by the unique and
global solution to the infinite-dimensional system of limiting differential vector equations.
To prove the existence and uniqueness of solution through the Picard approximation, we
provide a unified matrix-differential algorithm for establishing a Lipschitz condition, which
is crucial in all the rigor proofs involved. The third contribution of this paper is to provide
a generalized matrix-analytic method both for computing the fixed point and for analyzing
the performance measures of this supermarket model. Furthermore, we use some numerical
examples to indicate how the performance measures of this supermarket model depend on
the non-Poisson MAP inputs and on the non-exponential PH service times. Therefore, the
results of this paper gives new highlight on understanding influence of non-Poisson inputs
and of non-exponential service times on performance measures of more general supermarket
models.

The remainder of this paper is organized as follows. In Section 2, we first introduce
a new MAP whose transition rates are controlled by the number of servers in the sys-
tem. Then we describe a more general supermarket model of N identical servers with
MAP inputs and PH service times. In Section 3, we define a random fraction vector
and construct an infinite-dimensional Markov process, which expresses the state of this
supermarket model. In Section 4, we set up an infinite-dimensional system of differential
vector equations satisfied by the expected fraction vector through a detailed probability
analysis, and establish an important result: The invariance of environment factors. In Sec-
tion 5, we show that the mean-field limit for the sequence of Markov processes who
asymptotically approaches a single trajectory identified by the unique and global solution
to the infinite-dimensional system of limiting differential vector equations. To prove the
existence and uniqueness of the solution, we provide a unified matrix-differential algo-
rithm for establishing the Lipschitz condition. In Section 6, we first discuss the stability
of this supermarket model in terms of a coupling method. Then we provide a gener-
alized matrix-analytic method for computing the fixed point whose doubly exponential
solution and phase-structured tail are obtained. Finally, we discuss some useful limits of
the fraction vector u™ (1) as N — oo and t — +oo. In Section 7, we provide two
performance measures of this supermarket model, and use some numerical examples to
indicate how the performance measures of this system depend on the non-Poisson MAP
inputs and on the non-exponential PH service times. Some concluding remarks are given in
Section 8.

To shorten this paper, three appendices are moved to Li and Lui (2014) as an online
supplementary material (see http://arxiv.org/pdf/1406.0285.pdf), where Appendices A and
C are respectively designed for the proofs of Theorems 1 and 3, and Appendix B contains
the proof of Theorem 2, where the mean-field limit of the sequence of Markov processes
in this supermarket model is given a detailed analysis through the operator semigroup. We
hope that such an online material will also be convenient for readers, if caring for the rigor
proofs.
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2 Supermarket model description

In this section, we first introduce a new MAP whose transition rates are controlled by the
number of servers in the system. Then we describe a more general supermarket model of N
identical servers with MAP inputs and PH service times.

2.1 A new Markovian arrival process

Based on Chapter 5 in Neuts (1989), the MAP is a bivariate Markov process
{(N(t), J(®)) :t >0} with state space S = {1,2,3,...} x {1,2,...,my}, where
{N(t) :t = 0} is a counting process of arrivals and {J(¢) : + > 0} is a Markov environ-
ment process. When J(¢) = i, if the random environment shall go to state j in the next
time, then the counting process {N(¢) : t > 0} is a Poisson process with arrival rate d; ; for
1 <i, j < mya. The matrix D with elements d; ; satisfies D Z 0. The matrix C with ele-
ments ¢; ; has negative diagonal elements and nonnegative off-diagonal elements, and the
matrix C is invertible, where c; ; is a state transition rate of the Markov chain {J (¢) : t > 0}
from state i to state j for i # j. The matrix Q = C + D is the infinitesimal generator of
an irreducible Markov chain. We assume that Qe = 0, where ¢ is a column vector of ones
with a suitable size. Hence, we have

ma ma
Ciji = — Zdi,j +Zci,j
Jj=1 J#i
Let
my
- Y c,j cl2 - Clmy
J#1
ma
2,1 -2 €25 - C2,mx
C= Jj#2 s
ma
CmA,l CmA,Z T Z CmA,j
J#Ema
C(N) = C — Ndiag(De),
D(N)=ND,
where
ma ma ma
diag(De) =diag | > "d1.j. Y daj..... Y dm,.,
j=1 j=1 j=1
Then

Q (N) = C(N) + D(N) = [C — Ndiag(De)] + ND
is obviously the infinitesimal generator of an irreducible Markov chain with m 4 states.
Thus (C(N), D(N)) is the irreducible matrix descriptor of a new MAP of order m 4. Note
that the new MAP is non-Poisson and may also be non-renewal, and its arrival rate at each
environment state is controlled by the number N of servers in the system.
Note that
Q (N)e = [C — Ndiag(De)] e + NDe =0,

the Markov chain Q (N) with m 4 states is irreducible and positive recurrent. Let wy be the
stationary probability vector of the Markov chain Q (N). Then wy depends on the number
N > 1, and the stationary arrival rate of the MAP is given by NAy = Nwy De.

@ Springer



Discrete Event Dyn Syst (2016) 26:147-182 151

2.2 Model description

Based on the new MAP, we describe a more general supermarket model of N identical
servers with MAP inputs and PH service times as follows:

Non-Poisson inputs Customers arrive at this system as the MAP of irreducible matrix
descriptor (C (N), D (N)) of size m 4, whose stationary arrival rate is given by NAy =
Nwpy De.

Non-exponential service times The service times of each server are i.i.d. and are of phase
type with an irreducible representation («, T') of order mp, where the row vector « is a
probability vector whose jth entry is the probability that a service begins in phase j for
1 < j <mp; T is a matrix of size mg whose (i, j)th entry is denoted by #; ; with #;; < 0

forl <i <mp,andt;; > 0fori # j.LetT® = —Te = (t?,tg,...,t,gB)T = 0, where
“AT” denotes the transpose of matrix (or vector) A. When a PH service time is in phase i,
the transition rate from phase i to phase j is #; ;, the service completion rate is tl.O, and the
output rate from phase i is u; = —t; ;. At the same time, the mean of the PH service time is

givenby 1/u = —aT le.

Arrival and service disciplines Each arriving customer chooses d > 1 servers indepen-
dently and uniformly at random from the N identical servers, and waits for its service at the
server which currently contains the fewest number of customers. If there is a tie, servers with
the fewest number of customers will be chosen randomly. All customers in any server will
be served in the FCFS manner. Figure 1 gives a physical interpretation for this supermarket
model.

Remark I The block-structured supermarket models can have many practical applications
to, such as, computer networks and manufacturing system, where it is a key to introduce the
PH service times and the MAP inputs to such a practical model, because the PH distributions

L ) PH |
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| State 1 | Vi |
| : _——— 142
¢ |
: 2 | P! /: PH |
| I service |
| | MAP 1 2 I | State 2
| input VA
| State 2 | P L I
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. . |
I I ~0 . PH
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I i . | \I l'{ LA service I Loy o Ty 2
: Como Cny2 I AN | | .
| * : : d\l |
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Fig. 1 The supermarket model with MAP inputs and PH service times
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contain many useful distributions such as exponential, hyper-exponential and Erlang distri-
butions; while the MAPs include, for example, Poisson process, PH-renewal processes, and
Markovian modulated Poisson processes (MMPPs). Note that the probability distributions
and stochastic point processes have extensively been used in most practical stochastic mod-
eling. On the other hand, in many practical applications, the block-structured supermarket
model is an important queueing model to analyze the relation between the system perfor-
mance and the job routing rule, and it can also help to design reasonable architecture to
improve the performance and to balance the load.

3 An infinite-dimensional Markov process

In this section, we first define the random fraction vector of this supermarket model. Then
we use the random fraction vector to construct an infinite-dimensional Markov process,
which describes the state of this supermarket model.

For this supermarket model, let n(N) (t) be the number of servers with at least k& cus-
tomers (note that the serving customer 1s also taken into account), and with the MAP be in
phase i and the PH service time be in phase j at time ¢ > 0. Clearly, 0 < ”0 M) (t) < N and
Ogn(N) (t)<Nfork>1,1<i<mpgandl <j <mp.Let

(N )
(N) ) .
U = , 1 <i <my,
) = N <i<my
and for k > 1
(N )
k i,j ®)
N

Then U, (N) (t) is the fraction of servers with at least k customers, and with the MAP be in
phase i and the PH service time be in phase j at time 7. Using the lexicographic order we
write

(N)

Uk~,'/'(t) s ISZSmA,ISJSmB

v 0 = (U 0. Uy @ Ul o)

0 ma
fork > 1
v o=l oo, o. ol o
U 0. U0 .Ul L o),
and
v™ @ = (U w. oMo, uM o, ). (1)

Leta = (a1, a2, a3,...) and b = (b1, ba, b3, ...). We write a < b if a; < by for some
k> 1;a <bif ap <byforevery k > 1.
For a fixed quaternary array (¢, N,i,j) with + > O, N e {1,2,3,...},i €

{ 1 2,....,my}and j € {1,2,...,mp}, it is easy to see from the stochastic order that
n. l) (t) > n,((/_\{_)l ij (t) fork > 1. Th1s gives
vz =M@ =0 @)
and
1=UMN e 0e=U"N t)e=UN (1)e> . >0. 3)
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Note that the state of this supermarket model is described as the random fraction vector
UM @) for r > 0, and {U(N) (t),t >0} is a stochastic vector process for each N =
1,2, .... Since the arrival process to this supermarket model is the MAP and the service
times in each server are of phase type, {U M@y, t > O} is an infinite-dimensional Markov

process whose state space is given by

EZN = [(h(()N), th), th) .. ) : h(()N) is a probability vector of size m 4,
h%N) > héN) > th) >...>0, h,((N) is a row vector of size mamp fork > 1,
1= h(()N)e > th)e > th)e > 20,

and N h,((N) is a row vector of nonnegative integers for k > 0] s 4

We write
N N
ufy 0 =E[Ug) 0]
and for k > 1
N N
W () = E [U,él.!)j (t)] .

s

Using the lexicographic order we write

N N N N
u(() ) ) = (u(();l) @), u(();z) ®,..., u(();nzA (t))
and for k > 1
N N N N
u™ (1) = (u,‘(;lfl O™, @0
(N) (N) (N)
uk;mA,l (t) ’ uk;mA,2 (t) [ uk;mA,mB (t)) ’

u™ (1) = (u(()N) o.M @), M @), .. ) :

It is easy to see from Eqs. 2 and 3 that

Moy = a0y = a0 =0 (5)
and
1=ule=u@0ye=ul" t)e=-- >0 (6)

In the remainder of this section, for convenience of readers, it is necessary to explain the
structure of this long paper which is outlined as follows. Part one: The limit of the sequence
of Markov processes. It is seen from Eqgs.(1) and (4) that we need to deal with the limit
of the sequence {U™) (1)} of infinite-dimensional Markov processes. This is organized in
Appendix B (see http://arxiv.org/pdf/1406.0285.pdf) by means of the convergence theorems
of operator semigroups, e.g., see Ethier and Kurtz (1986) for more details. Part two: The
existence and uniqueness of the solution. As seen from Theorem 2 and Eq. (27), we need
to study the two vectors u™) () and u (f) = limy_ oo u™) (7). To that end, Section 4 sets
up the system of differential vector equations satisfied by u*) (1), while Section 5 provides
a unified matrix-differential algorithm for establishing the Lipschitz condition. Part three:
Computation of the fixed point and performance analysis. Section 6 provides a generalized
matrix-analytic method for computing the fixed point. Section 7 analyzes the performance
measures of this supermarket model by means of some numerical examples.
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4 The system of differential vector equations

In this section, we set up an infinite-dimensional system of differential vector equations
satisfied by the expected fraction vector through a detailed probability analysis. Specifically,
we obtain an important result: The invariance of environment factors, which is a key in
rewriting the differential equations as a simple vector form.

To derive the system of differential vector equations, we first discuss an example with
the number k& > 2 of customers through the following three steps:

Step one: Analysis of the Arrival Processes In this supermarket model of N identical
servers, we need to determine the change in the expected number of servers with at
least k customers over a small time period [0, df). When the MAP environment process
{J (¢) : t = 0} jumps form state [ to state i for | < [,i < m, and the PH service environ-
ment process {I (¢t) : t > 0} sojourns at state j for | < j < mp, one arrival occurs in a small
time period [0, d¢). In this case, the rate that any arriving customer selects d servers with at
least k — 1 customers at random and joins the shortest one with k — 1 customers, is given by

%[ M O dii =l ) (dig diae . dimy) ]XL( ) (i () , ug (1)) Ndt,
. @)
where
mp m—1 mp d—m
L et @0 ) = 3 € S [ o-ul o] 13wl o]
m=1 =1 iz
m—1

d—1 mp
(N) )
+ZC4 Z[kllj(t)_ukl (’)] Z
m=1 j=1 ri+ry+-- +rmA=d—m
ST iz
O<rj<d m, 1<]<mA

ma mp
d—m )
X(rl,rz,...,rmA)il_[l ;[k,/(f)] +chm 17
= — -
mp mp—1
N N
x A3 [, © =y, ] )3
Jj=1 nyngt g =m—m)

mA
Zi#l ni>1
0<nj<m—mi,1<j<my

nj

m m
x m—mi l—A[ XB:[ W) ) — u™ (t)]
NN, e, Ty pirll e Up—1:i,j ki, j

ri
mp

d— ma
8 Z (r],rz,..’.n,rmA>l_[ ZI:;((A:)/(I)]

ritratetrm  =d—m i=1 | j=1
0<rj<d—m,1<j<mp

®)
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Note that [u,((N)l 2 O dii — l) () (di1.di2, ... dim,) e] is the rate that any arriv-

ing customer joins one server with the shortest queue length k — 1, where the MAP goes to
phase i from phase /, and the PH service time is in phase j.

Now, we provide a detailed interpretation for how to derive Eq. (8) through a set decom-
position of all possible events given in Fig. 2, where each of the d selected servers has at
least k — 1 customers, the MAP arrival environment is in phase i or /, and the PH ser-
vice environment is in phase j. Hence, the probability that any arriving customer selects d
servers with at least k — 1 customers at random and joins a server with the shortest queue
length k — 1 and with the MAP phase i or / is determined by means of Fig. 2 through the
following three parts:

PartI:  The probability that any arriving customer joins a server with the shortest queue
length k—1 and with the MAP phase [, and the queue lengths of the other selected
d — 1 servers are not shorter than k — 1, is given by

m—1 d—m
d mp mp
N N
S iy w0 -ul; 0] S o]t
m=1 j=1 j=1

where CI' = d!/[m!(d — m)!] is a binomial coefficient, and

m—1
mp

> [uMh; 0 -l 0]

j=1

is the probability that any arriving customer who can only choose one server
makes m — 1 independent selections during the m — 1 servers with the queue

length k — 1 and with the MAP phase [ at time ¢; while [Zm‘* [ ,(CA;) ; (t)] ]
is the probability that there are d —m servers whose queue lengths are not shorter

than k and with the MAP phase /.

Each of the d selected servers is at the MAP phase /, and there is at least
one server with the shortest queue length 4-1.
(Part I)

In the d selected servers, there is In the d selected servers with no less
only one server with the shortest than k-1 customers, there is at least
queue length &-1 and with the MAP [fone server with the shortest queue
phase /; there exists at least one length k-1, and with the MAP phase
server is at the MAP phase i#/; and [|/; there is also at least one server
all the other d-1 selected servers with the shortest queue length -1
contain no less than k customers. and with the MAP phase i#l.
(Part IT) (Part I1I)

Fig. 2 A set decomposition of all possible events
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Part II: ~ The probability that any arriving customer joins a server with the shortest queue
length k—1 and with the MAP phase /; and the queue lengths of the other selected
d — 1 servers are not shorter than k — 1, and there exists at least one server with
no less than k customers and with the MAP phase i # [, is given by

m—1
d—1 mp
m (N) (N)
> Ci Z[ —111(”_”“,(”] >
m=1 j=1 Pyt =d—m

m
Z,‘ﬁ ri>1
0<rj<d—m,1<j<mp

ri

d mA mp
-m V)
X<r1,r2,...,rmA>1_[ Z[kl,(t)] ,

i=1 | j=1

where when 7y +7r + -+ + 71, = n, <l’1 rz,n..,rmA) = 1_[’%1"1' is a
multinomial coefficient. l

Part III:  If there are m selected servers with the shortest queue length k — 1 where
there are m servers with the MAP phase / and m — m servers with the MAP
phases i # [, then the probability that any arriving customer joins a server
with the shortest queue length k — 1 and with the MAP phase / is equal to
m1/m. In this case, the probability that any arriving customer joins a server
with the shortest queue length ¥ — 1 and with the MAP phase [, the queue
lengths of the other selected d — 1 servers are not shorter than k — 1, is given

by
d m—1 m mpg m—1
m M1 ~my (N) _ ()
RS o Cm Z[”k 15,5 @ “kz (t)] >
m=2 my=1 j=1 ni+ny+-- +nmA_m—m1

iy niz1
0<n;j<m-mi,1<j<mgu

ni

m_ml ma mp (N) )
X(nl,nz,.“’nmA>1_[ Zl:ukll/(t)_uklj(t)]

i=1 | j=1

ri
mp

ma
d—m (N)
X t
Z (rl,rz,...,rmA)H Z[k’/()]
ritratetry  =d—m i=1 | j=1
0<rj<d-m,1<j<mgu
Using the above three parts, Egs. (7) and (8) can be obtained immediately.

The following theorem gives an important result, called the invariance of environment
factors, which will play an important role in setting up the infinite-dimensional system
of differential vector equations. This enables us to apply the generalized matrix-analytic
method to the study of more general supermarket models with non-Poisson inputs and non-

exponential service times.
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Theorem 1
A mp m—1
L) (" 0 @a” 0) =3 cp | 3557 () s~ )
m=1 =1 j=1
d—m
mag mp
S ©)
=1 j=1
and for k > 2
J ma mg m—1
Ll (0. ©) =3 | 303 (w0 - ully; )
m=1 =1 j=1
d—m
mag mpg
YoXui o . (10)
=1 j=1
Thus L ( M) o ul (t)) and Ly (u,((N NONT (t))fork > 2 are independent

of the MAP phasel € {1,2,...,mu}. In thls case, we have

L) (1" weau 0) L1 (1 © @ w.ufV 0) (a1

and fork > 2
L,((?;)( ® 1y, u™ (t)) d:eleim( ® 1y, u™ (t)>. (12)
Proof See Appendix A (http://arxiv.org/pdt/1406.0285.pdf). o

For any two matrices A = (a; ;) and B = (b, ), their Kronecker product is defined as
A®B = (a,-,jB), and their Kronecker sum is givenby A@ B=AQ® 1+ 1 ® B.

It is seen from the invariance of environment factors in Theorem 1 that Eq. 7 is rewritten
as, in a vector form,

[ @y D@D —ul™ ) [diag (D) @ 1]}

x L,EN)( ™ @1y, ul™ (t)) Ndr. (13)

Note that LEN) (u(()N) HR«a, uiN) (t)) and L,(CN) ( (V) 10, u(N) (t)) are scale for k > 2.

Step two: Analysis of the Environment State Transitions in the MAP When there are at least
k customers in the server, the rate that the MAP environment process jumps from state / to
state i with rate ¢; ;, and no arrival of the MAP occurs during a small time period [0, df), is
given by

ma
[Z wey ;i +uly) (0 (dins din, - dimy) e} Nd.

=1
This gives, in a vector form,

u™ (1) ([C + diag (De)] ® 1) Ndt. (14)
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Step three: Analysis of the Service Processes To analyze the PH service process, we need
to consider the following two cases:

Case one:  One service completion occurs with rate tlo during a small time period [0, df).
In this case, when there are at least kK + 1 customers in the server, the rate that
a customer is completed its service with entering PH phase j and the MAP is
in phase i is given by

N N
[ I(c+)1 i, l(t)tlaj + uk+l i, Z(I)t2aj +oet MI(H-)I i,mp (t)t’(')lBaj] Ndz.

Case two:  No service completion occurs during a small time period [0, d¢), but the MAP
is in phase i and the PH service environment process goes to phase j. Thus,
when there are at least k customers in the server, the rate of this case is given by

[ Upi. 1(t)n i+ “k i 2(t)tzj + “k i 2(t)t3 o+ u,((Af)mB (t)th,j] Ndt.

Thus, for the PH service process, we obtain that in a vector form,

[u,iN) O AT +ul) (1) (1 ® T%)] Ndr (15)
Let

V0 = () 000, 0
(N) (N) (N)

L ()18 L () RRUI (fua mB(t))'
Then it follows from Eq. 13 to Eq.15 that
dE I:n,((N)(t)] = [[u,i’vi O (D@ 1) —ul™ (¢) [diag (De) @ 1]] L ( ™ (), u®™ (t))

(N)

+ul™ () {[C + diag (D] @ T} +ul) () (1 ® T%z)] Ndr.

since £ [n{")0)/N| = uf () and A® I +1® B = A ® B, we obtain

(N)
+ u,ﬁN) () {[C + diag (De)] ST} +ull) ) (1 ® TOO!) : (16)

Using a similar analysis to Eq. 16, we obtain an infinite-dimensional system of differential
vector equations satisfied by the expected fraction vector u™) (¢) as follows:

d (N)
“IT(” = {[«" 0 @] n—u 1) [diag D) & 1]} 1" (uf" 1) @ " 1))

+u™ (@) {[C + diag (De)] & T} +ul™ (1) (1 ® T0a> , a7
and for k > 2

dul™ (1)

— _[ M ey -u™ @ [dlag(De)®I]] “V)( ™ (), u®™ (t))

0 ([c +dsepe) o 1) il 0 (19 1%). )
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with the boundary condition

™)
W —u" (1) (C+ D), (19)
udV (e =1; (20)
and with the initial condition
™ (0) = gk, k=1, @1)
where
g1>28>g>--20
and

1 =goe>gie>ge>--->0.

Remark 2 Tt is necessary to explain some probability setting for the invariance of environ-
ment factors. It follows from Theorem 1 that

(V) — W™
. " [ @] = [ @re]
LV (w0 @ e uf™ ) = 4 )
uy (He—uy’ (e
and for k > 2

[ () (1) e] _[ ™ () e]

N
u](c )l(t)e—u,(( )(t)e

Note that the two expressions will be useful in our later study, for example, establishing the
Lipschitz condition, and computing the fixed point. Specifically, for d = 1 we have

L (u" e 0) =1

L(N)( (N) (1), u (N) (t))

and for k > 2
L (w0, ) =1
For d = 2 we have
LV (u” O @ u™ ) =ul” e+ ul e >1
and for k > 2
L (@M 0. ©) = e+ ul” we.

This shows that (L1 (uf" ) @ . uf™ ). L8 (™ ). uf" ©))....) s not a
probability vector.

5 The Lipschitz condition

In this section, we show that the mean-field limit of the sequence of Markov processes
asymptotically approaches a single trajectory identified by the unique and global solution
to the infinite-dimensional system of limiting differential vector equations. To that end,
we provide a unified matrix-differential algorithm for establishing the Lipschitz condition,
which is a key in proving the existence and uniqueness of the solution by means of the
Picard approximation according to the basic results of the Banach space.
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Let Ty (#) be the operator semigroup of the Markov process {U(N) t),t> O}. If f:
Qy — C!, where Qy = {g € Qy : ge < 00}, thenforg € Qy and > 0

Tn@) f(g = ELf(Un() | Un(0) =g].

We denote by Ay the generating operator of the operator semigroup Ty (¢), it is easy to see
that Ty (r) = exp {Ant} fort > 0.

In Appendix B (see http://arxiv.org/pdf/1406.0285.pdf), we will provide a detailed anal-
ysis for the limiting behavior of the sequence { (UM (1), > 0} of Markov processes for
N = 1,2,3,..., where two formal limits for the sequence {Ay} of generating operators
and for the sequence {Ty (¢)} of operator semigroups are expressed as A = limy_. o0 Ay
and T (1) = limy_ o Ty (¢) for ¢ > 0O, respectively.

We write
d myg mp m—1
Ly (o) @a,ur () =Y Ci | Y (uos () aj —uryj (1))
m=1 I=1 j=1
d—m
mag mp
X Zzulgl,j () ,
I=1 j=1
fork > 2
m—1

mp mp

d
Li o1 (0 ug (1) = Y C | DO (wraaj (6) = ugerj (1))

m=1 =1 j=1

d—m
myg mp

< [ DD Tk @)

=1 j=1

Let u(t) = limy— oo u™ (1) where uy (t) = limy_ oo uy" () for k > O and 1 > 0.
Based on the limiting operator semigroup T (¢) or the limiting generating operator A, as
N — oo it follows from Eqgs. 17 to 21 that u(#) is a solution to the system of differential
vector equations as follows:

G () _ {luo() ® @] (D ® I) — uy (1) [diag (De) ® I} L1 (uo(t) ® o, uy (1))
dr
+u1 (1) {[C +diag (D] ® T} +u (1) (1 © T%), 22)
and fork > 2
duy (1) .
Franie {uk—1 (1) (D ® I) — uy (1) [diag (De) @ 1]} Ly (ug—1 (1) , ux (1))
+ui (1) {[C + diag (D)) ® T} + i1 () (1 © 7)., (23)
with the boundary condition
ud" (1) = ul" (©)exp ((C + D)1}, (24)
ulV (e =1, (25)
and with initial condition
up (0) =gk, k=0. (26)
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Based on the solution u(z, g) to the system of differential vector Egs. (22) to (26), we
define a mapping: g — u(z, g). Note that the operator semigroup T(z) acts in the space L,
where L = C(€2) is the Banach space of continuous functions f : 2 — R with uniform

metric || f|| = max | f ()|, and
ue

(N)

Q={u:u; >ur>uz>--->0; 1 =u, ™

e ul )

e>uy, ‘e>--- >0}
for the vector u = (ug, u1, uz, ...) with ug be a probability vector of size m 4 and the size
of the row vector uy be mpamp fork > 1.If f € L and g € €2, then

T f(® = f(u(. g).

The following theorem uses the operator semigroup to provide the mean-field limit in
this supermarket model. Note that the mean-field limit shows that there always exists the
limiting process {U (¢) , t > 0} of the sequence {U M) (#), ¢t > 0} of Markov processes, and
also indicates the asymptotic independence of the block-structured queueing processes in
this supermarket model.

Theorem 2 For any continuous function f : @ — Randt > Q,

lim sup [Tn (1) f(g) — f(u(; 8)| =0,
N—>oog€Q

and the convergence is uniform in t with any bounded interval.
Proof See Appendix B (http://arxiv.org/pdf/1406.0285.pdf). o

Finally, we provide some interpretation on Theorem 2. If limy_, oo U™ (0) = u(0) =
g € Q in probability, then Theorem 2 shows that U (¢) = limy—_ o U™ (¢) is concentrated
on the trajectory I'g = {u(t, g) : t > 0}. This indicates the functional strong law of large
numbers for the time evolution of the fraction of each state of this supermarket model,
thus the sequence {U M@y, t > O} of Markov processes converges weakly to the expected
fraction vector u(¢, g) as N — oo, that is, forany 7 > 0

lim  sup HU“V) (s) — u(s, £) H — 0 in probability. @7)

N—o0 0<s<T

In the remainder of this section, we provide a unified matrix-differential algorithm for
establishing a Lipschitz condition for the expected fraction vector f : R — C! (Rf)
The Lipschitz condition is a key for proving the existence and uniqueness of solution to the
infinite-dimensional system of limiting differential vector Egs. 22 to 26. On the other hand,
the proof of the existence and uniqueness of solution is standard by means of the Picard
approximation according to the basic results of the Banach space. Readers may refer to Li
et al. (2013) for more details.

To provide the Lipschitz condition, we need to use the derivative of the infinite-
dimensional vector G : R¥® — C! (Rf) Thus we first provide some definitions and
preliminaries for such derivatives as follows.
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For the infinite-dimensional vector G : R — C! (Rf), we write x = (x1, X2, x3,...)
and G(x) = (G1(x), Ga(x), G3(x),...), where x; and G (x) are scalar for k > 1. Then
the matrix of partial derivatives of the infinite-dimensional vector G (x) is defined as

3G (x) 9Ga(x) 3G3(x)

0x1 x| 0x1
0G1(x) 0G2(x) 0G3(x)
_06™ _| 75 9 o
POW === 461tn 96200 3Gt | @8

0x3 0x3 0x3

if each of the partial derivatives exists.
For the infinite-dimensional vector G : RP — C! (Rf) if there exists a linear operator
A :RY — C! (RY) such that for any vector # € R® and a scalar t € R

. IG(x+1th) — G (x) —thAl|
lim =
t—0 1

0,

then the function G (x) is called to be Gateaux differentiable at x € R%°. In this case, we

G
write the Gateaux derivative A = DG (x) = *x) .

X
Lett = (t1,1,13,...) with O <, <1 for k > 1. Then we write

DG(x 4+t (y —x))
1G1(x+ 1 (y—x) 0Ga(x+06 (G —x) G +6—x)

0x] 0x] 0x1
3GIx+11 (y —x) 3Gx+hH(y—x)) 3G3(x+163(y—x))

_ 0x2 0x3 0x2
3GIx+11 (y —x) 3Gx +H(y—x)) 3G3(x+163(y—x))

0x3 0x3 0x3

If the infinite-dimensional vector G : Rj’ro — C! (Rf) is Gateaux differentiable, then
there exists a vector t = (¢, 1, 13, ...) with 0 < f < 1 for k > 1 such that

GY)—-Gx)=(@y—x)DGx +t@(y — x)). (29)
Furthermore, we have

G (») =G )l = sup [[DG(x+1(y—x)Il[ly—xIl. (30)

0<t<I

For convenience of description, Egs. 22 to 26 are rewritten as an initial value problem as
follows:

%ul ={uo®a) (D®I)—u; [diag (De) ® I} Ly (uo ® o, uy)
+u {[C + diag (D)] @ T} +uz (1 ® T') 31)

@ Springer



Discrete Event Dyn Syst (2016) 26:147-182 163

and for k > 2,

d
= {uk—1 (D ® I) — uy [diag (De) ® I} Lk (ug—1, u)

+ui {[C + diag (D] @ T} + s (1 © T0), (32)

with the initial condition
ug (0) = gg, k=0, (33)
where fort > 0
uo (1) = uo (0) exp {(C + D) 1}
and
ug(t)e =1.

Let x = (x1,x2,%3,...) = (u1,uz,u3,...) and F(x) = (F1(x), F2(x), F3(x),...)

where

Fi(x) ={(uo®a) (D ®I) — x; [diag (De) ® ]} L1 (o ® a, x1)

+x1 {[C +diag (De)] © T} +x, (1 © T%) (34)
and for k > 2
Fi(x) = {xi—1 (D ® I) — x¢ [diag (De) ® I} L (xg—1, xx)
+x¢ {[C + diag (D) @ T} + x4t (1 © T0). (35)

Note that ug = goexp {(C + D)t} may be regarded as a given vector. Thus F(x) is in
C? (Rf) and the system of differential vector Egs. 31 to 33 is rewritten as

d
TE=F® (36)
with the initial condition
x(0)=2=1(g1,82,83-..). 37

In what follows we show that the expected fraction vector F(x) is Lipschitz.
Based on the definition of the Gateaux derivative, it follows from Eqs.34 and 35 that

0F1(x) 0F>(x)

0x1 0x]
IFI(x) 3F2(x) dF3(x)
d0F (x) _ 0x7 0x7 daxo
x IF>(x) dF3(x) dFs(x)
0x3 0x3 0x3

We write
A1(x) Bi(x)

Ca(x) Az(x) Ba(x) AF (x)

DF(x) = C3(x) Az(x) B3(x) N T

(38)

where Ay (x), By (x) and C; (x) are the matrices of size mamp fork > 1 and j > 2.
To compute the matrix DF (x), we need to use two basic properties of the Gateaux
derivative as follows:
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Property one

Xy _ ox;S _g
axy 0 oxxy
where S is a matrix of size mamp.
Note that 4 J 4
upe)® — (xye 1—(xte
Ly @z = W0 = @o? 1= i)
upe — xie 1—xje
and for k > 2

d d
(xg—1€)" — (xxe)
Xp_1€e — Xpe

Ly (xg—1, xx) =
Let y; = x1e. Then
ILy (o ®a, x1) _ dy1 ALy (o ® ¢, x1)
ax1 ax1 ay1
Y [(uoe)d - (Xle)d] —d ()Cle)d_1 (upe — x1€)

(uge — xle)2

Similarly, for k > 2 we can obtain

L (=1, Xk) _ ed (1) (k1 — xpe) — [(r—10)? — (xe)?]
0xg—1 (xk—1e — xge)?

and
oL (1, x) _ [am10)! = (re)] = d o)™ (mre — i)
Xk (xp—1e — xe)? .
It is easy to check that

(oe)! — (x1e)?
upe — xie
[oe)! — (x1e)?] — d (x1€)~" (uge — x1e)

A1(x) =[C +diag (De)| & T + [diag (De) ® I ]

+ ex; [diag (De) ® I] 5 . (39
(uoe — x1€)
(x10)? — (x2) .
Bix)=(D®I) ————"— 4 e{x1 (D® ) — x, [diag (De) ® I]}
xie — xpe

A (x10)7! (x1e — x2e) — [(lee)d — (xze)"]; “0)

(x1e — xze)

and fork > 2

Ci(x) =1 ® T, (41)

d d
(xke)® — (xk+1€)
——— " tef

Xpe — Xgy1€

LA (k) ™! (xre — xpp1€) — [(ree)? — (xpg1€)]

Bi(x)=(D®I) xk (D ® 1) — xg41 [diag (De) ® 1]}

, (42)
(xke — Xgr1)?
d_ d
Ar(x) = [C + diag (De)] @ T + [diag (De) @ 1] Oi-10)” = (k€)™
Xp—1€e — Xpe
+e {xk_l DRI)— xi [diag (De) ® I]}
5 [Ck—10)? — (k)] — d (xke)' ™" (xp—1e — xe) )

2
(Xk—1€ — xpe)
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Note that [|A]| = max; {Z |ai ;| } it follows from Eq. 38 that
J

[IDF (x) || = max {”Al Ol + 1182 (X)Il,iug{llAk G+ 1B () [+ [1Cre () (1} ¢ -

44)
Since uge < 1 and x1e < 1, we obtain
d — d a-l . .
M — Z (upe)’ (XIE)d_l_j <d,
upe — xie -
j=0
[woe)! — (x10)?] —d (x1e)? " (woe —x10) 2 P e V)
= (uoe)! (x10)"77 < ——F——5;
(uge — x1€)? ]; j2=;) 2
d _ d
(xg—1€)" — (xxe) <d.
Xp_1€e — Xpe
[Care)! — ()] — d (e) ™" (kre —xie) (=1 (d - 2)
(xk—1e — xge)? h 2 .
Thus it follows from Eqgs. 39 and 40 that
. 2d 4+ (d—1)(d —2)
A1 (x)]l < |IC + diag (De)|l + 3 ( DI+ 1T,
1Bi)I <[d+d—-1)d—-2]IDI,
. 3d-1)d-2)
1AM+ [1Bi(x) | < IC + diag (De) || + [Zd—i— f] DI+ Tl -
It follows from Eqs. 41 to 43 that for k > 2
AN < IIC + diag (De)|| +[d + (d — 1) (d =1 IDI + T,
1Bl <[d+(d—1)d—-2]IDI,
ICkeoll = | 7%],
hence we have
Ak GO + [ Bl + [ Cr ()]
< IIC + diag (D)l + 21d + (d = 1) (@ = DI DI + T + | 7]
Let
M = max {||c + diag (De)|| +2[d + (d — 1) (d =21 ID]| + I TIl + HT%H} .
Then
AL + [[Bi(o)ll =M
and for k > 2
1A O + 1B (O] + [ICk ()| < M.
Hence, it follows from Eq. 44 that
[IDF (x)|| < M.
Note that x = u, this gives that foru € Q
IDF (m)|| < M. 45)
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Foru, v e Q,

IIF () — FW) || < sup [[DF(u+1(v—w)] |lu—vl|

0<r<l1

< Mllu—vl|. (46)

This indicates that the function F (u) is Lipschitz for u € Q. _
Note that x = u, it follows from Eqgs. 31 and 33 that for u € Q2

t
u(?) =u(0)+/0 F(u(§))ds,
this gives
t
u () =§+/0 F(u(§))ds. 47

Using the Picard approximation as well as the Lipschitz condition, it is easy to prove
that there exists the unique solution to the integral Eq. 47 according to the basic results of
the Banach space. Therefore, there exists the unique solution to the system of differential
vector Egs. 31 to 33 (that is, Eq. 22 to Eq. 26).

6 A matrix-analytic solution

In this section, we first discuss the stability of this supermarket model in terms of a coupling
method. Then we provide a generalized matrix-analytic method for computing the fixed
point whose doubly exponential solution and phase-structured tail are obtained. Finally, we
discuss some useful limits of the fraction vector u™) () as N — oo and t — +o0.

6.1 Stability of this supermarket model

In this subsection, we provide a coupling method to study the stability of this supermarket
model of N identical servers with MAP inputs and PH service times, and give a sufficient
condition under which this supermarket model is stable.

Let Q and R denote two supermarket models with MAP inputs and PH service times,
both of which have the same parameters N,d,ma, C, D, mp, o, T, and the same initial
state at t = 0. Let d (Q) and d (R) be two choice numbers in the two supermarket models
QO and R, respectively. We assume d (Q) = 1 and d (R) > 2. Thus, the only difference
between the two supermarket models Q and R is the two different choice numbers: d (Q) =
landd (R) = 2.

For the two supermarket models Q and R, we define two infinite-dimensional Markov

processes {U;Q) (t):t> 0} and {ULR) (t):t> O}, respectively. The following theorem
sets up a coupling between the two processes {U/E,Q) (t):t> 0} and {U;VR) @ :t> 0}.
Theorem 3 For the two supermarket models Q and R, there is a coupling between the

two processes {Ul(\,Q) (t) :t > O} and U/i,R) (t) : t = 0t such that the total number of cus-

tomers in the supermarket model R is no greater than the total number of customers in the
supermarket model Q at time t > 0.

@ Springer



Discrete Event Dyn Syst (2016) 26:147-182 167

Proof See Appendix C (http://arxiv.org/pdf/1406.0285.pdf). O

Remark 3 Note that the N queueing processes in this supermarket model is symmetric, it is
easy to see from Theorem 3 that the queue length of each server in the supermarket model
R is no greater than that in the supermarket model Q at time ¢ > 0.

Since this supermarket model with MAP inputs and PH service times is more general, it
is necessary to extend the coupling method given in Turner (1996) and Martin and Suhov
(1999) through a detailed probability analysis given in Appendix C. We show that such a
coupling method can be applied to discussing stability of more general supermarket models.

Note that the stationary arrival rate of the MAP of irreducible matrix descriptor (C, D)
is given by A = wDe, and the mean of the PH service time is given by 1/u = —aTle.
The following theorem provides a sufficient condition under which this supermarket model
is stable.

Theorem 4 This supermarket model of N identical servers with MAP inputs and PH service
times is stable if p = M < 1.

Proof From the two different choice numbers: d (Q) = 1 and d (R) > 2, we set up two
different supermarket models Q and R, respectively. Note that the supermarket model Q is
the set of N parallel and independent MAP/PH/1 queues. Obviously, the MAP/PH/1 queue
is described as a QBD process whose infinitesimal generator is given by

C D®ua
I®T CeT DI
1®(T%) CoT DI

Note that
A=A_1+Ag+ A =(C+D)@(T+T°a),

where
A_1=I®(T0a), Ag=C®T. A|=D®]I,

thus it is easy to check that w ® 0 is the stationary probability vector of the Markov chain A,
where 0 is the stationary probability vector of the Markov chain T + 7%. Using Chapter 3
of Li (2010), it is clear that the QBD process Q is stable if (0w ® 0) A_je > (v ® ) Asze,
that is, o = A/ < 1. Hence, the supermarket model Q is stable if p < 1. It is seen from
Theorem 3 and Remark 3 that the queue length of each server in the supermarket model
R is no greater than that in the supermarket model Q at time ¢ > 0, this shows that the
supermarket model R is stable if the supermarket model Q is stable. Thus the supermarket
model R is stable if p = A/ < 1. This completes the proof. o

6.2 Computation of the fixed point
A row vector T = (mp, Ty, M2, ...) is called a fixed point of the infinite-dimensional

system of differential vector Eqs. 22 to 26 satisfied by the fraction vector u(¢) if 1 =
lim;_, o u (¢), or M = lim;_, o uy (t) for k > 0.
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It is well-known that if 7 is a fixed point of the vector u (¢), then

. d
dim [a“(”] =

Let
mag mp m=1 mag mp d=m
Li(mo®a,m) = ch 22 (mogerj — i ) DIPILTN
=1 j=1 =1 j=1
and fork > 2
d mag mp m—1 mg mp d=m
Li (me—y.m) = »_ Cf Z Z 131, — Tkl j) DO
m=1 I=1 j=1 =1 j=1
Then
1 — (me)
Li(m®am)=—_——"
1 —me
and for k > 2
(m—10)? — (me)?
Ly (-1, T) = .

T—1€ — e
To determine the fixed point ©* = (m, Ty, M2, ...), as ¢t — oo taking limits on both
sides of Eqs. 22 to 26 we obtain the system of nonlinear vector equations as follows:

79 (C 4+ D) =0, mpe =1, (43)

{(m®a) (D® 1) —m [diag(De) ® I} L1 (Mo ® o, 1)
+m {[C +diag (DO)] @ T} + 72 (1 ® T%) =0, (49)
and for k > 2
{1 (D ® I) — m [diag (De) ® I} Ly (—, )
+ 1 {[C + diag (D)] @ T} + Ty (1 @ T) = 0. (50)

Since w is the stationary probability vector of the Markov chain C + D, then it follows from
Eq. 48 that
Ty = w. ShH
For the fixed point © = (m, 7y, M2, .. .), (e, M€, Mae, - - - ) is the tail vector of the
stationary queue length distribution. The following theorem shows that the tail vector
(mpe, me, Me, - - - ) of the stationary queue length distribution is doubly exponential.

Theorem 5 If p = A/ < 1, then the tail vector (Tpe, Tie, e, - -+ ) of the stationary
queue length distribution is doubly exponential, that is, for k > 0

d*—1

e = p a1, (52)

Proof Multiplying both sides of the Eq. 50 by the vector e, and noting that
[C + diag (De)] e=0and Te = —TY, we obtain

[(To ® @) (De ® ¢) — ) (De & e)] Ly (T ® &, 1) — [nl (e ® TO> 1 (e ® TO)] —0
(53)
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and for k > 2,

[Mi—1 (De ® €) — T (De ® )| Ly (y—1, ) — [nk (6 ® TO) — Tt 1 (e ® TO)] =0.

(54)

Let my = nx (w ® 0) for k > 1. Note that A = wDe, u = 6T% and p = A/p, it follows
from Eqs. 53 and 54 that

p(1=nf) = n—=n)=0

and
p (nf_l - n;‘f) — (% — Me41) = 0.
This gives
dk—1
Te=n=pdaT.
This completes the proof. O

Let¢; = L1 (mp @ @, mp) and & = L (g—1, Tx) for k > 2. Then

d*—d dk+l g
pT — )0 d—1
We write
By =[C+ (1 —¢) diag(De)|® T
and

By H(DI)
1® (T%) B> DRI
Q= 1®(T%) By (D&

Then the level-dependent QBD process is irreducible and transient, since

G >0>6>--->0,

[Bi+o(D®Dle=— (1 — &) [(De)®el —e®@T 50
and

[1 ® (Toa) B+ (D® 1)] e=— (@ — &) [(De) @ e] £ 0.

In what follows we will express the fixed point (mg, 71, T2, - - - ). To that end, we need
to provide the UL-type of RG-factorization of the QBD process Q according to Chapter 1
in Li (2010) or Li and Cao (2004). Applying the UL-type of RG-factorization, we can give
the maximal non-positive inverse of matrix Q, which leads to the matrix-product solution
of the fixed point (7p, Ty, T, - - - ) by means of the R- and U-measures.

@ Springer



170 Discrete Event Dyn Syst (2016) 26:147-182

Let the matrix sequence { Ry, k > 1} be the minimal nonnegative solution to the nonlinear
matrix equations

i1 (D® 1) + ReBeys + ReRiw [1 @ (1) ] =0,

and the matrix sequence {Gg, k > 2} be the minimal nonnegative solution to the nonlinear
matrix equations

I® (T"a) + BiGy 4 &41 (D ® I) Gyy1 Gy = 0.

Let the matrix sequence {Uy, k > 0} be

Uk = Bisr + [z (0@ D] [~V ] [10 (7%)]
= Big1 + Reat [1 ® (Toa)]
= Bis1 + (G2 (D ® D] Gy,
Hence we obtain
Ro=t(D®1) (U~
and
Gy = (—Up)™! [1 ® (Tooz)] .

Based on the R-measure {Ry,k >0}, G-measure {Gy,k > 1} and U-measure
{Ux, k > 0}, we can get the UL-type of RG-factorization of the matrix Q as follows

Q=U—-Ry)Up( -Gy,

where
0 Ry
0 Ry
RU = 0 R2 s
Up = diag (Uy, Uy, Us, ...)
and
1
G, I
GL = Gz 1

Using the RG-factorization, we obtain the maximal non-positive inverse of the matrix Q
as follows

= =G Ut — Ry, (55)

max
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where
1 x© xP xP ...

rox®xi..
(I—Rp)~' = rox® .,
1

!
X;E) =RiRi+1Riv2 - Ripp—r, k= 112 0;
Up' = diag (v U Uy L)

I

vV o1

@ v@
-G '=| L Y I

3) v3 O

v? v v

v =GiG1_iGia - Gigqr, 1= k= 1.
The following theorem illustrates that the fixed point (g, 71, T2, - - - ) is matrix-product.

Theorem 6 If p < 1, then the fixed point © = (Tg, Ty, T3, . ..) is given by

Ty = w,
m=0@®a)(D®I)(~Up~! (56)
and for k > 2
W= (@®a)(D®I) (—Up) ™' RoRy -+ Re—a. (57)

Proof 1t follows from Eq. 54 that
B, DI
1©(T%) B GO

(1, M2, M3, .. ) I®(T0a) B (DI

=—((@®x)(D®I),0,0,...).
This gives
(M, o, m3,..) =— (G (@®a) (D®1),0,0,..) (I —Gr) Uy (I — Ry) L.

Thus we obtain
m=0@ea) (DRI (—Uy™
and fork > 2
=0 (@®a) (D) (U™ RoRy -+ Rea.
This completes the proof. o
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To further understand the fixed point, we consider a special block-structured supermarket
model with Poisson inputs and PH service times. In this case, we can give an interesting
explicit expression of the fixed point.

Note that C = —A, D = A, itis clear that w = 1 and wp = 1. It follows from Egs. 49 and
50 that

1 — (me)
MO —mp) =M T 4T = 0
1 — (me)
and fork > 2
d d
Te_ie)d — (mpe
(1 — M) (ie—re)” = (Tee)” +mT + e T0 = 0.

(Ttk—1€) — (Tke)

Thus we obtain

_ d d_ d
(M, T, m3,...)00 =A@ —nl)ﬂ,(m —TCQ)M,... , (58)
1 —(me) (m1e) — (Mze)
where
-T
—T% —-T
@ =
—T% —T
Since
(-1

(ea) (=T)"'  (=T7)7!
o= () (=T)7! (ea)y (-T)7!  (-T)7!
(ea) (=T)7! (e) (=T)7! (eat) (=T)7' (-=T)7!

It follows from Eq. 58 that

_ d _ d
- [1 falz@me (—T)“} AL i D) e (59)
1= (me) 1= (me)

and fork > 2

d d d d
T— — (7 Te— —(n
| 1 ) T g | (1) T )yt g (<7 (e
(Mg —1€) — (T e) (tk—1€) — (Tce)
(60)
. — d — — d— . d —
Note that the matrices I +7“11—(Ztnllee)) (=7T)"" and I—i—k% (=T) ' fork >2
are all invertible, it follows from Eqgs. (59) and (60) that

B d B d -1
T = [xil T 1y 4 A (1) (Ttle)d:| [1 palzme” (—T)_1:| .
1 — (me) 1 —(me)
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and for k > 2

_[ (mi—10)? — (mee)?
o =|A—

_7—1 -1 d
(Mg—1€) — (Tie) o (=17 +ha (=T) (Tcke):|

d_ d -1
X|:I+7\I(Ttk—1€) (Te) (_T)—1i| .

(Tt —1€) — (Tee)
Thus we obtain
-1
m = Mo ()7 e (<17 ] [1 40 <1y ©1)
and fork > 2

akt1_g
d—1

-1
nk=[xzkw<—T>—l+M<—T>—1p ][1+Mk<—r>—1]. (62)

Remark 4 For this block-structured supermarket model, the fixed point is matrix-product
and depends on the R-measure {Rx, kK > 0}, see Egs. (56) and (57). However, when the input
is a Poisson process, we can give the explicit expression of the fixed point by Egs. (61)
and (62). This explains the reason why the MAP input makes the study of block-structured
supermarket models more difficult and challenging.

6.3 The double limits

In this subsection, we discuss some useful limits of the fraction vector u™) (t) as N — oo

and t — +4-o00. Note that the limits are necessary for using the stationary probabilities of the

limiting process to give an effective approximate performance of this supermarket model.
The following theorem gives the limit of the vector u(¢, g) as t — +o0, that is,

lim u(z,g) = lim lim u™(, g).
t—>+00 t—+00 N—oo

Theorem 7 If p < 1, then for any g € Q
lim u(z,g) =m.
t—400

Furthermore, there exists a unique probability measure ¢ on 2, which is invariant under
the map g — ul(t, @), that is, for any continuous function f : @ — Randt > 0

/ f(@do(g) = / fu(t, g)do(g).
Q Q

Also, ¢ = 8y is the probability measure concentrated at the fixed point .

Proof 1t is seen from Theorem 6 that the condition p < 1 guarantees the existence of
solution in €2 to the system of nonlinear Egs. (48) to (50). This indicates that if p < 1,
then as t — o0, the limit of u(z, g) exists in 2. Since u(z, g) is the unique and global
solution to the infinite-dimensional system of differential vector Eqs. (22) to (26) fort > 0,
the vector lim;_, 4o u(?, ) is also a solution to the system of nonlinear Eqgs. (48) to (50).
Note that 7 is the unique solution to the system of nonlinear Egs. (48)to (50), hence we
obtain that lim,_, ; o u(#, g) = . The second statement in this theorem can be immediately
given by the probability measure of the limiting process {U(¢),t > 0} on state space 2.
This completes the proof. o
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The following theorem indicates the weak convergence of the sequence {¢y} of station-
ary probability distributions for the sequence {U™) (1), t > 0} of Markov processes to the
probability measure concentrated at the fixed point 7.

Theorem 8 (1) If p < 1, then for a fixed number N = 1,2,3, ..., the Markov process
{U(N)(t), t > 0} is positive recurrent, and has a unique invariant distribution @y .
(2) {pn} weakly converges to 8y, that is, for any continuous function f : Q — R

i Eg @)1= @.

Proof (1) From Theorem 3, this supermarket model of N identical servers is stable if
p < 1, hence this supermarket model has a unique invariant distribution p.

(2) Since Q is compact under the ordinary metric p (u, w’), so is the set P () of prob-
ability measures. Hence the sequence {¢y} of invariant distributions has limiting points. A
similar analysis to the proof of Theorem 5 in Martin and Suhov (1999) shows that {¢y }
weakly converges to 8y and limy_, o0 Eyy [ f(g)] = f (®). This completes the proof. o

Based on Theorems 7 and 8, we obtain a useful relation as follows
lim lim a™ (@, g = lim lim «™ (@, g =n.
t—>+00 N—oo ( g) N—o00 t—>+00 ( g)
Therefore, we have
lim ™, g) =m,

N—o0

t——+00
which justifies the interchange of the limits of N — 0o and t — 4-00. This is necessary in
many practical applications when using the stationary probabilities of the limiting process
to give an effective approximation for the performance analysis of this supermarket model.

7 Performance computation

In this section, we provide two performance measures of this supermarket model, and use
some numerical examples to show how the two performance measures of this supermarket
model depend on the non-Poisson MAP inputs and on the non-exponential PH service times.

7.1 Performance measures

For this supermarket model, we provide two simple performance measures as follows:

(1)  The mean of the stationary queue length in any server The mean of the stationary
queue length in any server is given by

oo o0 k_
ElQil=) me=)y pT. (63)
k=1 k=1

(2)  The expected sojourn time that any arriving customer spends in this system Note that
u(()N) (0) > 0 and u(()N) (0) e = 1, it is clear that
: (N) : (N)
1 == 1 D = .
t_)lgloo uy (1) t_)lToo uy  (Mexp{(C+ D)t} =w
For the PH service times, any arriving customer finds k customer in any server whose prob-

ability is given by (w ® ¢ — 1) Ly (v ® v, 1) e for k = 0 and (7t — Tg4+1) Lg (T, Tt ) €
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for k > 1. When k > 1, the head customer in the server has been served, and so its service
time is residual and is denoted as X . Let X be of phase type with irreducible representa-
tion (o, T). Then X is also of phase type with irreducible representation (6, T'), where 6
is the stationary probability vector of the Markov chain 7' 4 T%. Clearly, we have

EX]=a(-T) e, E[Xgl=6(-T)"e.

Thus it is easy to see that the expected sojourn time that any arriving customer spends in
this system is given by

ElTjl=(w®a—1m)Lg(w®@a, ) eE [X]

+ > (M = Tgr) La (i, Ty ) e {E [Xg]+ KE [X])
k=1

=[1-meo!| EX1+ Y [uer! — (usre) | (E1Xp1+ KE [X])

k=1
= (me)! [E[Xg] - E[X]1+ E[X] [1 +y (nke)d} (64)
k=1
From Egs. 63 and 64, we obtain
E[T) = E[XI{1+E[03]} + p* {E[Xr] — E[X]}, (65)

where
E[Q;] =) (me)
k=1

is the mean of stationary queue length of any server which is seen by an arriving customer.
Specifically, if E [Xr] = E [X] (for example, the exponential service times), then
E[T,=EX1{1+E[0}]}, (66)

which is the Little’s formula in this supermarket model from the sojourn time setting.

45

ElQ)
E[Q,]

Fig.3 E[Qq] vsnfor (m,d) = (2,2), (3,2), (4,2) and (2, 10)
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It is seen from Eq. 63 that E [Q,] only depends on the traffic intensity p = A/u, where
A = wDe and u = —aT~'e; and from Eq. 64 that E [T;] depends not only on the traffic
intensity p but also on the mean E [XR] of the residual PH service time, where E [Xg] =
6 (—T)~" e. Based on this, it is clear that the performance computation of this supermarket
model can be given easily for more general MAP inputs and PH service times, although
here our numerical examples are simple.

7.2 Numerical examples
In this subsection, we provide some numerical examples which are used to indicate how the

performance measures of this supermarket model depend on the non-Poisson MAP inputs
and on the non-exponential PH service times.

A=[1:0.25:3],T=[-5 3;2 -7],0=[1/2,1/2]

8 T T T T T T
=k = d=1,exponential

N i
= P = d=2,exponential
== d=2,PH

E[Qd]

n

1 1.25 1.5 1.75 2 225 25 2.75 3

n

A
A=[1:0.25:3],T=[-5 3;2 —7],0=[1/2,1/2]
25 ‘ ‘ ‘ ‘

- * = d=1,exponential

~f— d=1,PH

= P = d=2 exponential L/
2+ d=2,PH B

! !

L L L L
1 1.25 1.5 1.75 2 2.25 25 2.75 3
A

Fig. 4 Performance comparison between the exponential and PH service times
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Example one: The Erlang service times In this supermarket model, the customers arrive
at this system as a Poisson process with arrival rate NA, and the service times at each
server are an Erlang distribution E[m, n]. Let A = 1. Then p = m/n. When p < 1,
we have n > m. Figure 3 shows how E [Q4] depends on the different parameter pairs
(m,d)=(2,2),(3,2), (4,2) and (2, 10), respectively. It is seen that E [ Q] decreases
as d increases or as 7 increases, and it increases as m increases.

Example two: Performance comparisons between the exponential and PH service times
We consider two related supermarket models with Poisson inputs of arrival rate NA: one
with exponential service times, while another with PH service times. For the two super-
market models, our goal is to observe the influence of different service time distributions
on the performance of this supermarket model. To that end, the parameters of this system

are taken as
11 -5 3

Under the exponential and PH service times, Fig. 4 depicts how E [Q4] and E [T,]

depend on the arrival rate A € [1, 3] with A < u, and on the choice numberd = 1, 2. It is
seen that £ [Qy] and E [T,] decrease as d increases, while E [Q4] and E [T;] increase
as A increases.
Example three: The role of the PH service times In this supermarket model with d =
2, the customers arrive at this system as a Poisson process with arrival rate NA, and
the service times at each server are a PH distribution with irreducible representation
@T (@), a=(1/2,1/2),

T(1)=<2_5 3_7) T(2)=<_24 _37) T(3)=(_24 _47).

It is seen that some minor changes are designed in the first rows of the matrices T (i) for
i=1,2,3.Let A= 1.Then

p (1) =0.2931, p(2) = 0.3636, p (3) = 0.4250.

This gives
p)y<p@)<p@3).

Fig.5 E [T4(i)] vs the transition 0.6 .
rate matrices T (i) fori = 1,2,3 —tp— T(1)

055

05}

045} + 4

04t \ ]
osr m

0.25 1 1 ! 1 1 L
0

ET,)
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EIQ,]

EIT,)

Fig. 6 The role of the MAP inputs

Figure 5 indicates how E [T;] depends on the different transition rate matrices T (i) for
i=1,2,3,and

E[Ta (D] < E[Tq (2)] < E[T4 (3)].
It is seen that E [T,] decreases as d increases.
Example four: The role of the MAP inputs In this supermarket model, the service time
distribution is exponential with service rate & = 1, and the arrival processes are the MAP
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of irreducible matrix descriptor (C (N), D (N)), where

_(-5-3 5 (o0
C‘( 7 —7—2A>’D_(ozx'

It is easy to check that w = (7/12, 5/12), and the stationary arrival rate A* = wDe = .
Ifu=1and p =A*/u =A< 1,then A € (0, 1).

Figure 6 shows how E [Q4] and E [Ty] depend on the parameter A of the MAP under
different choice numbers d = 1, 2, 5, 10. It is seen that £ [Q,] and E [T,] decrease as d
increases, while E [Qg] and E [T;] increase as A increases.

8 Concluding remarks

In this paper, we analyze a more general block-structured supermarket model with non-
Poisson MAP inputs and with non-exponential PH service times, and set up an infinite-
dimensional system of differential vector equations satisfied by the expected fraction vector
through a detailed probability analysis, where an important result: The invariance of envi-
ronment factors is obtained. We apply the phase-structured operator semigroup to proving
the phase-structured mean-field limit, which indicates the asymptotic independence of the
block-structured queueing processes in this supermarket model. Furthermore, we provide
an effective algorithm for computing the fixed point by means of the generalized matrix-
analytic method. Using the fixed point, we provide two performance measures of this
supermarket model, and use some numerical examples to illustrate how the two perfor-
mance measures depend on the non-Poisson MAP inputs and on the non-exponential PH
service times. From many practical applications, the block-structured supermarket model is
an important queueing model to analyze the relation between the system performance and
the job routing rule, and it can also help to design reasonable architecture to improve the
performance and to balance the load.

Note that this paper provide a clear picture for how to use the phase-structured mean-
field model as well as the generalized matrix-analytic method to analyze performance
measures of more general supermarket models. We show that this picture is organized as
three key parts: (1) Setting up system of differential equations, (2) necessary proofs of
the phase-structured mean-field limit, and (3) performance computation of this supermar-
ket model through the fixed point. Therefore, the results of this paper give new highlight
on understanding influence of non-Poisson inputs and of non-exponential service times on
performance measures of more general supermarket models. Along such a line, there are a
number of interesting directions for potential future research, for example:

analyzing non-Poisson inputs such as renewal processes;
studying non-exponential service time distributions, for example, general distributions,
matrix-exponential distributions and heavy-tailed distributions; and

e discussing the bulk arrival processes, such as BMAP inputs, and the bulk service
processes, where effective algorithms for the fixed point are necessary and interesting.

Up to now, we believe that a larger gap exists when dealing with either renewal inputs
or general service times in a supermarket model, because a more challenging infinite-
dimensional system of differential equations need be established, a more complicated
mean-field limit need be proved, and computation of the fixed point will be more interesting,
difficult and challenging.
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