
Fast Buffer Planning and Congestion Optimization in
Interconnect-driven Floorplanning

Keith W.C. Wong and Evangeline F.Y. Young
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, New Territories, Hong Kong

E-mail: wcwong2,fyyoung@cse.cuhk.edu.hk

Abstract— In this paper, we study and implement a
routability-driven floorplanner with congestion estimation and
buffer block planning. We assume that buffers should be in-
serted at flexible intervals from each other for long enough wires.
Under this buffer insertion constraint, our floorplanner will esti-
mate congestion by computing the best possible buffer locations
for each net and perform probabilistic analysis based on the so-
lution. Dynamic programming is used such that estimations can
be done very effectively. Nets are topologically grouped to con-
sider bus-based routing and to facilitate the estimation process.
We compare our results with those in paper [16] which are the
latest results for this problem, and show that our approach can
perform better in both quality and runtime.

I. INTRODUCTION

Floorplanning plays an important role in physical design of
VLSI circuits. It plans the shapes and locations of the modules
on a chip, and the result of which will greatly affect the per-
formance of the final circuit. In the past, area was the major
concern in floorplan design. Advances in the deep sub-micron
technology have brought many changes and challenges to this.
As technology continues to scale down, the sizes of transistors
and modules are getting smaller and a significant portion of
circuit delay is coming from interconnects. In some advanced
systems today, as much as 80% of the clock cycle is consumed
by interconnects [6]. Area minimization has become less im-
portant while routability became the major concern in floor-
planning and many other designing steps.

Traditional floorplanners did not pay enough attention to
congestion optimization. This will result in a large expansion
in area or even an unroutable design failing to achieve timing
closure after detailed routing. There are several previous works
addressing these interconnect issues in floorplan design. In the
paper [5], a floorplan is divided into grids and congestion is
estimated at each grid, assuming that each wire is routed in
either L-shape or Z-shape. Cong et al. define in their paper
[7] the term feasible region of a net, and buffers are clustered
into blocks in these feasible regions along the channel areas.
Sarkar et al. [15] add in the notion of independence to feasible
regions so that these regions for different buffers of a net can
be computed independently. Tang and Wong [17] propose an

optimal algorithm to assign buffers to buffer blocks assuming
that only one buffer is needed per net. Dragan et al. [9] use
a multi-commodity flow-based approach to allocate buffers to
some pre-existing buffer blocks. Alpert et al. [2] make use of
tile graph and dynamic programming to perform buffer block
planning. Finally, Lou et al. [11] apply probabilistic analysis
to estimate congestion and routability, and they show that their
estimations correlate well with post-route congestion. How-
ever their congestion model does not take into account buffer
insertion.

Buffer insertion is one of the most popular and effective
techniques [6] to achieve timing closure. In current practices,
buffers are inserted after routing. However, buffers also take
up silicon resources and cannot be inserted wherever we want.
A good planning of the module positions during the floorplan-
ning stage so that buffers can be inserted wherever needed in
the later routing stages will be useful. Besides, buffer itself
contributes delay and area, and their locations should be care-
fully planned. In our floorplanner, we will compute the best
possible buffer locations for each net and estimate congestion
based on the solution. We adopted the variable interval buffer
insertion constraint introduced in the paper [16], i.e., buffers
are constrained to be inserted for long enough wires such that
the distance between adjacent buffers is lying within a range
[L, U ] given by the user. This constraint in buffer location
provides flexibility for the later routing stage and allows users
to specify their constraints accordingly. The probabilistic ap-
proach in paper [16] is not efficient enough to be useful prac-
tically. In our work, dynamic programming is used to com-
pute the buffer locations of a net, then probabilistic analysis is
performed to estimate congestion. To further improve the ef-
ficiency of our floorplanner and to consider bus-based routing,
we employ a net grouping technique. Grouping of nets with
related topology and circuit properties into buses can improve
the efficiency of the design process and allow faster conver-
gence of solution. We compare our results with those in paper
[16] and can show that our approach in congestion estimation
is more accurate and efficient.

The paper is organized as follows. We will formulate the
problem in section II and give an overview of our approach in
section III. The method for congestion estimation will be dis-
cussed in section IV. An approach to compute the bounds in



the buffer insertion constraint will be suggested in section V.
Our net grouping approach will be explained in section VI,
with the floorplanner implementation details follow in sec-
tion VII. Finally, experimental results will be shown in sec-
tion VIII before a conclusion and some discussions are given
in the last section.

II. PROBLEM FORMULATION

We assume that wires are routed over-the-cell and buffers
can only be inserted in un-occupied spaces between the logic
modules. Given a lower and upper bound �L� U � for the vari-
able interval buffer insertion constraint, a set of m nets and a
set of n modules where each module Mi has an area Ai and
a lower and upper aspect ratio bound �ri� si�, we want to ob-
tain a non-overlap packing of these modules such that the area
of the packing, the interconnect cost and the congestion cost
are small, every net satisfies its buffer insertion constraint and
every module satisfies its area and aspect ratio constraint.

III. FLOORPLANNER OVERVIEW

We use the stochastic technique of simulated annealing with
sequence pair representation [13] for our floorplanner. Unlike
traditional floorplanners, we will consider the buffer require-
ments of each net and estimate the wiring congestion in the
evaluation of each intermediate solution. In each iteration of
the annealing process, we will select the best possible buffer
locations for each net using dynamic programming and esti-
mate the wiring congestion between adjacent pairs of selected
buffers by probabilistic analysis. We assume that a net will be
routed in its shortest Manhattan distance with multi-bends. A
floorplan solution will be evaluated according to the total chip
area, interconnect length, congestion and number of blocked
nets (a net that cannot be routed in its shortest Manhattan dis-
tance while satisfying all the buffer requirements). The con-
gestion model and estimation process will be explained in the
following sections in details.

IV. CONGESTION ESTIMATION

We divide a floorplan into a 2-dimensional array of fixed-
size grids. By dividing the floorplan into grids, the conges-
tion information at every location of the whole floorplan can
be obtained. The congestion estimation process is performed
net by net. For each net i, we will select the best possible
buffer locations that satisfy the buffer insertion constraint. This
buffer selection process can be done efficiently by dynamic
programming. After computing the buffer locations for a net,
we will estimate the congestion due to this net by considering
all the source-buffer pair, buffer-buffer pairs and buffer-sink
pair along the route. The congestion information at each grid
will be updated, which will affect the buffer insertion process
of the other nets. The whole process is repeated until all the
nets are routed and analyzed. An example is shown in figure 1.
(The coordinates shown in the grids are the positions of the

previous buffers if a buffer is inserted in that grid.) Suppose
that we are now routing a net from the source at (0, 6) to the
sink at (8, 0). The dynamic programming procedure will be in-
voked to compute the best possible buffer locations. Suppose
that the buffers at locations (5, 2) and (4, 5) are selected. We
will compute the congestion caused by the connections from
the source at (0, 6) to the first buffer at (4, 5), from the first
buffer at (4, 5) to the second buffer at (5, 2) and from the sec-
ond buffer at (5, 2) to the sink at (8, 0).

Starting
grid

Ending
grid

6

1

2

3

4

5

0

543210 876

(5,2)

(4,5)

(0,6)

source

: Grid with congestion
cost update

Fig. 1. Congestion estimation after buffer locations of a net are determined.

A. Computation of Buffer Locations

In our floorplanner, we assume that every net must satisfy
the variable interval buffer insertion constraint, i.e., buffers
are constrained to be inserted for long enough wires such that
the distance between adjacent buffers is lying within a range
�L� U � where L and U are given by the user. The computation
of buffer locations must satisfy these constraints. This can be
achieved by dynamic programming by scanning the grids lying
within the rectangle bounded by the source and the sink one by
one from the source to the sink. At each grid location �x� y�,
we will check whether �x� y� is a feasible buffer position. If
�x� y� is a feasible buffer location, we will compute the loca-
tion of its best possible previous buffer assuming that a buffer
will be inserted at �x� y�. When we reach the sink, we will
be able to backtrack the sequence of the best possible buffer
locations from the sink to the source.

A.1 Cost of Grids for Buffer Insertion

In order to find the best possible buffer locations, we need to
define the availability of a grid for buffer insertion. This is
computed based on the routability (congestion) of that grid, the
amount of empty space in it and the number of buffers already
inserted there. For the grid at �x� y�, it is computed as:

resource�x�y� � p� � �congestion at �x�y�� � (1)

p� �
no� of bu�ers inserted in �x� y�

max� no� of bu�ers allowed in �x� y�

where p� and p� are parameters for adjusting the importance
of the buffer resources and the routing congestion in the cost
function. Then we can define the cost of inserting a buffer at
grid �x� y� as:

cost�x�y� � resource�x�y� � min
�a�b��R�x�y�

�cost�a� b�� (2)



where R�x� y� is the set of grids �a� b� such that �a� b� is at
a distance d from �x� y� where d��L� U � and �a� b� is lying
on a path of shortest Manhattan distance from the source to
�x� y�. We do not consider path congestion in the selection of
buffer locations here because path congestion will be taken into
account in the cost function of the annealing process. Notice
that when a grid is totally covered by some logic modules or is
reserved for some other routing purposes like VCC, GND and
CLK, the space for buffers in that grid will be zero and will
never be chosen as a buffer location. These grids are called
blocked grid and an illustration is shown in figure 2.

Blocked
grids

Some spaces are
assumed to be left
between modules

Fig. 2. Illustration of blocked grids.

A.2 Dynamic Programming

The buffer locations are computed by dynamic programming.
Given the source and sink of a net, we will visit the grids in
the bounding rectangle of the net one by one from the source
to the sink. At each grid �x� y�, we will first check whether the
grid �x� y� can be a feasible buffer location for this net. If grid
�x� y� is a feasible location for buffer insertion, we will com-
pute its cost, cost�x� y�, according to equation 2. Notice that
the cost of any grid �a� b� in R�x� y� should have already been
computed when we reach the grid at �x� y� and we can thus
compute cost�x� y� immediately. By computing cost�x� y�, we
are indeed finding out the location of the best possible previous
buffer if a buffer is inserted at �x� y�. This best previous buffer
location will be computed and stored at �x� y� and will be used
to backtrack the sequence of buffer locations at the end when
the sink is reached. An example is illustrated in figure 3. In
this example, we assume that the source (0,6) is on the upper-
left side of the sink (8,0) and the bound in the variable interval
buffer insertion constraint is [3, 5]. When we reach the grid
at (5,2), the shaded area is the feasible region for the previous
buffer location, i.e., the region R��� ��.

A.3 An Example

An example based on the case in figure 1 is shown in fig-
ure 4. In figure 4, suppose that the scanning process in the
dynamic programming reaches the grid at (5,2). The num-
bers in the grids of the shaded region are the costs of the grids
(INF means a very large cost value). Those grids with larger
vacant area, fewer buffers inserted and less congested routing
will have lower costs. We will first check whether buffer inser-
tion is allowed at (5,2). Since the shortest Manhattan distance
from the source to (5,2) is 10 grid units, buffer is allowed to
be inserted (by table lookup in our implementation). Then, we

: Blocked grid

: Feasible location for the previous buffer of that at grid (5, 2)

Starting
grid

Ending
grid

6

1

2

3

4

5

0

543210 876

Boundary for previous
buffer location selection

Boundary for previous
buffer location selection

Fig. 3. Feasible locations for the previous buffer of that at grid (5,2) when
�L� U � � ��� ��.

will compute cost��� �� and the optimal location of the previ-
ous buffer if a buffer is inserted at (5,2). The number shown in
grid (5,2) is an initial value obtained by dividing the number
of buffers already inserted there by the maximum number of
buffers allowed. To compute cost��� ��, we can scan the grids
in the shaded region R��� �� one by one. We start the scanning
process from the furthest grid. The first grid scanned is (4,6)
and the cost of (5,2) is updated to 20+10=30. We will keep
the lowest cost and the corresponding previous buffer location.
When the scan reaches the grid at (2,4), the cost can be lower
to 5+10=15 and thus (4,6) is replaced by (2,4) as the best pre-
vious buffer location. After all the grids are scanned, we can
obtain (2,2) as the optimal location of the previous buffer and
the cost of (5,2) is updated to 3+10 = 13.

Once we reach the sink, we can backtrack the whole se-
quence of buffer locations for this particular net. First, we can
obtain the best previous buffer location �x�� y�� for the sink.
Then we can obtain the best previous buffer location �x�� y��
for �x�� y��. In this way, we can find out all the buffer loca-
tions recursively until the source is reached. For those grids
with buffers inserted, the maximum number of buffers allowed
will be reduced by one, and the number of buffers already in-
serted will be incremented by one. Nets that cannot reach the
source from the sink during the backtracking phase are counted
as blocked nets.

: Blocked grid

: Feasible area for the previous buffer of that at grid (5,2)

Starting
grid

Ending
grid

6

1

2

3

4

5

0

543210 876

20

75 3

125565

INF205

7158INF

63

46 10

Fig. 4. Selection of the optimal previous buffer location for grid (5,2) when
�L� U � � ��� ��.



A.4 Congestion Estimation

After computing the buffer locations of a net, we will compute
the congestion information by breaking the net into a set of
sub-nets consisting of all the source-buffer pair, buffer-buffer
pairs and the buffer-sink pair. For each sub-net, we assume
that every multi-bend route of shortest Manhattan distance is
feasible and the congestion at each grid �x� y� due to a sub-net
k is computed as:

congestion�x�y� k�

�
no� of possible routes for k passing �x� y�

total no� of possible routes for k
(3)

We will then sum up the congestion due to each sub-net in
the circuit to obtain the congestion information at grid �x� y�:

congestion�x�y� �
X

sub�net k

congestion�x� y� k� (4)

V. BUFFER LOCATION BOUND

In our floorplanner, the bound �L� U � in the variable inter-
val buffer insertion constraint can be input by the user. In our
current implementation, we compute these values based on the
Elmore delay model. If a wire with a load capacitance CL and
a load resistance RL is divided into n segments, and a buffer is
inserted between each pair of adjacent segments, the delay of
the wire can be expressed as:

D �

nX
k��

�RBk�� �c�lk � cf lk �CBk � �

r�lk�
c�lk
�

�
cf lk
�

� CBk � � dB � (5)

where c�, r� and cf are unit wire capacitance, resistance and
fringing capacitance respectively, lk is the length of wire seg-
ment k, RB, CB and dB are resistance, capacitance and in-
trinsic delay of a buffer respectively. The paper [3] suggested
that for a two-pin net, the distance between any two adjacent
buffers should be equal in order to optimize the wire delay. To
simplify the computation, we assume that the driver resistance
RD � RB and the load capacitance CL � CB, and the opti-
mal delay occurs when buffers are evenly distributed in a wire
of uniform wire width. To obtain the upper bound value U ,
we need to compute the length of a wire segment such that the
delay when no buffer is inserted �Dnb� will be larger than that
when a buffer is inserted at the middle of the wire �Dwb�.

Mathematically, we have

Dnb � Dwb

Rewrite into Elmore delay expressions, we have

l �

r
	�RBCB � dB�

r��c� � cf�
(6)

The above computation implies that it is worthwhile to in-
sert a buffer if the wire segment length l is longer thanq

��RBCB�dB�
r��c��cf �

. Since the delay without buffer insertion is

smaller if the wire length is less than U , we can set

U �
jq

��RBCB�dB�
r��c��cf �

�d
k

grid units.

where d is the grid unit length. A buffer will be inserted in the
middle if the wire segment is longer than U . Lower bound L

is computed as

L �
l
�
�

q
��RBCB�dB�
r��c��cf �

�d
m

grid units.

For the source and the sink, since we assume that RD � RB

and CB � CL, the wire segment from the source or to the sink
can be treated in the same way as the other wire segments.

VI. NET GROUPING

In most floorplanners, routability is measured with net-
based models. The continuous decrease in feature size has al-
lowed more and more transistors to be fabricated on one single
chip. An enormous amount of communication between dif-
ferent components has resulted. Grouping of nets with related
topology and circuit properties into buses can improve the ef-
ficiency of the design process and allow faster convergence of
solution. In additions, it is required in some designs to have
certain groups of nets to have the same electrical characteris-
tics and bus-based design can handle these requirements more
effectively [14].

In order to consider bus-based routing, we developed an ef-
ficient net grouping approach in our floorplanner. A bus is
formed by bundling together the nets that start and end at the
same grid. This approach has led to a significant reduction
in the complexity of the floorplanning process since a much
smaller number of net groups will be resulted. Our grouping
method is divided into two levels. In the first level, we group
the nets that connect the same set of modules together (fig-
ure 5). After the first stage grouping, multi-pin nets are then
decomposed into sets of two-pin nets by the minimum span-
ning tree (MST) approach. The first level grouping can avoid
repetitive decomposition of the same multi-pin net in the an-
nealing process. Each two-pin net is then represented by a pair
of coordinates of its source and sink. The second level group-
ing will group together all those two-pin nets having the same
pair of source and sink coordinates.

In the computation of congestion information, we will route
those grouped nets together in sub-groups. For example, if
we have a group of 100 nets having the same pair of source
and sink coordinates, we will route them in sub-groups of K,
instead of routing all of them together, where K is a certain
percentage of the total number of nets in that group. This per-
centage is called the net grouping factor and is input by the
users.

VII. IMPLEMENTATION DETAILS

A. Positioning of the I/O pins

During the floorplanning stage, the positions of the I/O pins
are not fixed, so we need to locate the I/O pins before counting



Net no.

6

5

4

3

2

1

Modules

1,2,3,4,5

1,2,3,4,5

1,3

2,5

2,5

2,5

Net no. Modules
Number of
same net

3

2

1 1,2,3,4,5

1,3

2,5

2

3

1

(a) (b)

Fig. 5. (a) Input netlist (b) Grouped netlist after the first stage grouping.

the number of possible routes. In order to distribute the I/O
pins into the grids appropriately, intersection-to-intersection
method is used. Consider a net connecting two modules, A
and B, we will first draw a line connecting the centers of these
two modules. The two intersecting points between this line and
the boundaries of the modules will be found and the I/O pins
will be placed into the grids of the intersection points.

B. Multi-pin Nets Handling

In order to handle multi-pin nets, we need to decompose
a multi-pin net into a set of two-pin nets. There are several
methods to decompose a multi-pin net into two-pin nets such
as using the minimum spanning tree (MST) method, or the rec-
tilinear steiner tree (RST) method. MST runs faster but it may
over-estimate the congestion because of the overlapping net
segments. However, this conservative estimation will not af-
fect the resultant packing significantly because the total length
of an MST can be reduced at most by �	 to 
	 by remov-
ing all the overlapping net segments to obtain a corresponding
RST [10]. Since the runtime of an RST algorithm is usually
much longer than that of an MST algorithm, MST is a bet-
ter choice for estimation purposes in the early floorplanning
stage. As a result, we apply MST to handle multi-pin nets in
our floorplanner.

C. Cost function of the floorplanner

We employ the following cost function in our floorplanner:

Cost � Area� � �Wire� � �Max weight�

� �Blocked net

where Area is the area of the minimum bounding rectangle of
the packing, Wire is the total wire length of the interconnec-
tions in grid unit, Max weight is the average number of wires
in the top 10% most congested grids, and Blocked net is the
number of blocked nets in the packing. The values of �, � and
� are set before the annealing process to maintain a balanced
weighing between the importances of all the terms.

VIII. EXPERIMENTAL RESULTS

We tested our floorplanner using three MCNC building
block benchmarks, ami33, ami49 and playout. The number of
modules and nets in these benchmarks are (33,123), (49,408)

TABLE I
PARAMETERS USED IN THE ELMORE DELAY COMPUTATION.

Parameters Value

wire resistance (�/mm) 0.075

wire capacitance (fF/mm) 0.118

wire fringing capacitance (fF/mm) 0.0641

intrinsic repeater delay (ps) 36.4

load capacitance/buffer capacitance (fF ) 23.4

driver resistance/buffer resistance (�) 180

and (62,1161) respectively. The areas of the modules are
scaled up uniformly to demonstrate the effects of buffer in-
sertions. All the experiments were performed using an Intel
1.4 GHz processor with 256 MB memory. The values used for
the parameters described in the Elmore delay model are based
on the ���
�m technology (see table I) [1, 15]. A simple global
router is used to route the output for evaluation. In the global
router, multi-pin nets are decomposed into two-pin nets based
on the MST method and the two-pin nets are routed one after
another by dynamic programming. There are limitations on
the number of wires in each grid (wiring capacity). If a net
can be routed from its source to its sink in shortest Manhattan
distance without violating the buffer insertion constraint and
the wiring capacity constraint, the net is said to be routable,
otherwise, it is called an unroutable net. For each net, we will
try to minimize the maximum congestion along its route, min-
imize the number of buffers used and maximize the amount of
remaining buffer resources.

We have used a net grouping factor of 50%, 40% and 30%
for the benchmark ami33, ami49 and playout respectively.
(These net grouping factors are obtained from experiments.)
We will compare the performance based on the number of un-
routable nets and the congestion of the floorplan output. Un-
routable nets refer to the nets that go over places running out of
routing resources or have unsuccessful buffer insertion. Con-
gestion indicates the average number of wires passing through
the top 10% most congested grids (of area ��	�m�). Every set
of results shown in the following tables is an average obtained
by running the experiment eight times.

A. Comparisons with other floorplanners

Table II shows the results of three floorplanners: the floor-
planner with area and wire length optimization only (tradi-
tional floorplanner, FP1), the floorplanner presented in paper
[16] (FP2), and our floorplanner using dynamic programming
and with net grouping.

From table II, we can see that both our floorplanner and the
one in paper [16], with a slight penalty in area (about 1% in-
crease in deadspace), have a better routability compared with
the traditional floorplanner.

For the floorplanner in paper [16] (FP2), although it is
slightly better in congestion compared with our floorplanner
(less than 1% better on average), we have fewer unroutable



routes (about 37% improvements on average), which is a more
important factor in satisfying the timing requirements of a de-
sign. On the other hand, the run time of our floorplanner is
much faster than that of FP2, from about 2.1 times (ami49) to
3.8 times faster (playout).

TABLE II
COMPARISON ON ROUTABILITY WITH DIFFERENT FLOORPLANNING

METHOD.
Run- Wire- Dead- Unrout- Congest-

time length space able ion (���

(s) (����m) (%) Net No. �m�� )
� ami33 33 modules, 123 nets, grouping = 50%

FP1 146.00 20.640 11.56 14.75 2.27

FP2 678.45 20.587 11.80 9.63 2.21

Ours 290.69 23.212 12.39 3.88 2.13

ami49 49 modules, 408 nets, grouping = 40%

FP1 170.74 399.75 10.13 13.13 0.128

FP2 789.46 379.80 10.80 10.0 0.124

Ours 369.18 384.55 11.24 6.75 0.127
� playout 62 modules, 1611 nets, grouping = 30%

FP1 552.68 306.76 11.75 163.88 25.60

FP2 3498.23 290.56 10.38 115.88 24.44

Ours 912.21 274.74 11.74 94.5 24.94
� Data sets ami33 and playout are scaled up 10 times in area.

TABLE III
COMPARISON ON EXECUTION TIME OF THE FLOORPLANNER WITH AND

WITHOUT NET GROUPING.
Runtime Runtime

Circuit Grouping % without net with net

grouping (s) grouping (s)

ami33 50 351.24 290.69

ami49 40 439.62 369.18

playout 30 3074.07 912.20

B. Net Grouping

Table III shows the results on the run time of the floorplan-
ner with and without net grouping. It can be observed that there
are significant improvements on the run time by using the net
grouping method. For ami33 and ami49, the run time improve-
ments are both about 17%, and that of playout is about 70%.
The net grouping method is effective in run time improvement.

IX. CONCLUSION AND DISCUSSIONS

A routability-driven floorplannner is presented. Buffer lo-
cations are determined by dynamic programming according to
the buffer resources and wiring congestion of the floorplan.
Probabilistic analysis is applied to measure the routability of a
floorplan solution after buffer locations are picked. To further
speed up this sophisticated method and to handle bus-based
routing, we have developed a net grouping method. Experi-
mental results show that our floorplanning method can reduce
congestion and the number of unroutable nets efficiently with
only a small penalty in area.

In this work, we assume that all the nets are routed in their
shortest Manhattan distances and a net will be blocked if none
of its shortest routes can satisfy the buffer requirements. How-
ever, we can extend our technique to consider the case that a
slight detour with good buffering to achieve acceptable timing.
This can be done by considering a larger rectangular region, in-
stead of the bounding rectangle from the source to the sink, and
by modifying the dynamic programming accordingly to select
buffer locations. Besides, the dynamic programming approach
can be extended by routing the nets in a random order to re-
move the effects of the net order dependency.

REFERENCES

[1] S. I. Association, SRC Design Sciences Concept Paper, 1997.
[2] C. J. Alpert and A. Devgan, “Wire Segmenting for Improved Buffer In-

sertion”, Proceedings of the ACM/IEEE Design Automation Conference,
pp. 588-593, 1997.

[3] C. J. Alpert and J. Hu and S. S. Sapatnekar and P. G. Villarrubia, “A
Practical Methodology for Early Buffer and Wire Resource Allocation”,
Proceedings of the ACM/IEEE Design Automation Conference, pp. 189-
194, 2001.

[4] H. M. Chen and D. F. Wong and W. K. Mak and H. H. Yang, “Faster
and More Accurate Wiring Evaluation in Interconnect-centric Floorplan-
ning”, Great Lakes Symposium on VLSI, pp. 62-67, 2001.

[5] H. M. Chen and H. Zhou and F. Y. Young and D. F. Wong and H. H. Yang
and N. Sherwani, “Integrated Floorplanning and Interconnect Planning”,
Proceedings IEEE International Conference on Computer-Aided Design,
pp.354-357, 1999.

[6] J. Cong, “Challenges and Opportunities for Design Innovations in
Nanometer Technologies”, SRC Design Sciences Concept Paper, 1997.

[7] J. Cong and T. Kong and D. Z. Pan, “Buffer Block Planning for
Interconnect-driven Floorplanning”, Proceedings IEEE International
Conference on Computer-Aided Design, pp. 358-363, 1999.

[8] T. Cormen and C. Leiserson and R. Rivest, Introduction to Algorithms,
The MIT Press, 1990.

[9] F. F. Dragan and A. B. Kahng and I. Mandoiu and S. Muddu and A.
Zelikovsky, “Provably Good Global Buffering using an Available Buffer
Block Plan”, Proceedings IEEE International Conference on Computer-
Aided Design, pp. 104-109, 2000.

[10] J. M. Ho and G. Vijayan and C. K. Wong, “A New Approach to the
Rectilinear Steiner Tree Problem”, Proceedingsof the ACM/IEEE Design
Automation Conference, pp. 161-166, 1989.

[11] J. Lou and S. Krishnamoorthy and H. S. Sheng, “Estimating Routing
Congestion using Probablistic Analysis”, Proceedings of International
Symposium on Physical Design, pp. 112-117, 2001.

[12] J. Lillis and C. K. Cheng and T. T. Y. Lin, “Optimal Wire Sizing and
Buffer Insertion for Low Power and a Generalized Delay Model”, IEEE
Journal of Solid-State Circuit, Vol. 31, pp. 161-166, March, 1989.

[13] H. Murata and K. Fujiyoushi and S. Nakatake and Y. Kajitani,
“Rectangle-Packing-Based Module Placement”, Proceedings IEEE In-
ternational Conference on Computer-Aided Design, pp. 472-479, 1995.

[14] F. Rafiq and N. Sherwani and M. Chrzanowska-Jeske and Hannah H.
Yang, “Integrated Floorplanning with Buffer/Channel Insertion for Bus-
Based Microprocessor Designs”, Proceedings of International Sympo-
sium on Physical Design, pp. 56-61, 2002.

[15] P. Sarkar and C. K. Koh, “Routability-driven Repeater Block Planning
for Interconnect-centric Floorplanning”, IEEE Transactions on CAD of
Integrated Circuits and Systems, Vol. 20, pp. 660-671, 2001.

[16] C. W. Sham and E. F. Y. Young, “Routability Driven Floorplanner with
Buffer Block Planning”, Proceedings of International Symposium on
Physical Design, pp. 50-55, 2002.

[17] X. P. Tang and D. F. Wong, “Planning Buffer Locations by Network
Flows”, Proceedings of International Symposium on Physical Design,
pp. 186-191, 2000.


