
On the Construction of Universal Series�Parallel Functions for Logic

Module Design

F�Y� Young D�F� Wong

Computer Science Department Computer Science Department

The University of Texas at Austin The University of Texas at Austin

Austin TX ����� Austin� TX �����

Abstract

The structural tree�based mapping algorithm is an ef�
�cient and popular technique for technology mapping� In
order to make good use of this mapping technique� it is de�
sirable to design logic modules based on Boolean functions
which can be represented by a tree of gates �i�e� series�
parallel or SP functions�� In FPGA���� Thakur and Wong
�	
 studied this issue and demonstrated the advantages of
designing logic modules as universal SP functions� i�e� SP
functions which can implement all SP functions with a cer�
tain number of inputs� However� the universal SP func�
tions presented in �	
 were designed manually and an au�
tomatic generation of universal SP functions was still left
as an open problem� In this report� we present an algo�
rithm to generate� for each n � �� a universal SP func�
tion for implementing all n�input SP functions� We will
also present an e�cient Boolean matching algorithm for
matching functions to the universal SP functions that we
constructed� As it is important to have alternative uni�
versal SP functions from which logic�module designers can
choose a design taking other criteria �e�g� area� delay� or
power� into consideration� we developed an algorithm to
generate alternative universal SP functions� In particular�
we have found all the universal SP functions for n�input
SP functions� when n � ��

� Introduction

Recently� high�functionality logic modules based on uni�
versal logic modules �ULMs� have been reported ��� �� 	�
��
�� but current technology mappers cannot exploit all
the functionality o�erred
 Typically� the best mapping
algorithm for logic modules are discovered after the archi�
tecture design has been done
 In FPGA���� Thakur and
Wong ��� took a dual approach� they began with a known
mapping algorithm and designed logic modules for which
the mapping algorithm can perform well
 The structural
tree�based mapping algorithm is an e�cient and popular
technique for technology mapping
 Due to the decompo�
sition of unmapped logic networks into trees� matches will
be identi�ed only for those library cells that have a rep�
resentation in the form of a tree of gates
 The mapping
algorithm is optimal for libraries restricted to such func�
tions �which will be referred to as series�parallel or SP

functions�
 In order to make good use of this mapping
technique� Thakur and Wong ��� designed logic modules
as universal SP functions� i
e
 SP functions which can im�
plement all SP functions with a certain number of inputs

However� the universal SP functions presented in ��� were
designed manually and an automatic generation of univer�
sal SP functions was still left as an open problem

In this paper� we present an algorithm to generate� for
each n � �� a universal SP function for implementing all
n�input SP functions
 We will also present an e�cient
boolean matching algorithm for matching functions to the
universal SP functions we constructed
 As it is impor�
tant to have alternative universal SP functions from which
logic�module designers can choose a design taking other
criteria �e
g
 area� delay� or power� into consideration� we
developed an algorithm to generate alternative universal
SP functions with minimum number of inputs
 In par�
ticular� we have found all the universal SP functions for
n�input SP functions� when n � �

In Section �� we formally introduce the problem
 We
present an algorithm to construct universal trees �and
hence universal SP functions� in Section 	 and give the
boolean matching algorithm in Section

 Finally� in Sec�
tion �� we present an algorithm to generate alternative
universal SP functions and show all universal SP functions
for n�input SP functions� when n � �

� Formulation of Problem
We denote the complement of a boolean function f as

f �
 We now formally de�ne series�parallel �SP� functions
and the notion of a function f implements another function
g as follows�
De�nition � Any function of at most one input is an

SP function
 If f and g are two SP functions with disjoint
supports� then f � g and f � g are SP functions

De�nition � For any m � n� we say that

a function f�z�� z�� � � � � zm� can implement a function
g�x�� x�� � � � � xn� if f can be transformed to g by� �i� As�
signing a value from f�� �� x�� x��� � � � � xn� x

�
ng to each of the

z�� z�� � � � � zm� and �ii� optionally complementing the out�
put of f

Example � Let f � ��x� � x��x�� � x���x�x� and g� �

y�y�y� � y�
 Both f and g� are SP functions
 Putting

unlabelled tree of f

*

+

x1 x2

x3’

x4’

x5 x6

*
+

f = ((x1 + x2) x3’ + x4’) x5 x6

labelled tree of f

Figure �� An SP function and its labelled and unlabelled
tree representations

trees are isomorphic.

+

*
y1 y2 y3

y4
*

y1’+

y4’y3y2’

so their unlabeled
NPN-equivalent,

g1 and g2 are

g1 = y1 y2 y3 + y4 g2 = (y2’ + y3 + y4’) y1’

unlabelled tree of g1 unlabelled tree of g2

Figure �� Isomorphismbetween the unlabelled trees of two
NPN�equivalent SP functions

x� � y��� x� � y��� x� � �� x� � y�� x� � y�� and x� �
� and taking the complement of the output in f gives
���y�� � y���� � y���y

�
� � ��

� � y�y�y� � y� � g�
 Therefore� f
can implement g�

De�nition � Two functions f and g are NPN�

equivalent if and only if f can be transformed to g by
some combination of input permutations� input comple�
mentations and output complementation

We call an SP function n�universal if it can implement
all SP functions with at most n inputs
 The goal of our
work is to construct n�universal SP functions for all n � �

It was proved in ��� that if a function f can implement an
SP function g� then f can implement every SP function
which is NPN�equivalent to g
 Therefore� to construct a
n�universal SP function� it su�ces to construct a func�
tion which can implement one function from each NPN�
equivalent class

Example � Let f � ��x� � x��x

�
� � x���x�x�� g� �

y�y�y� � y� and g� � �y�� � y� � y���y
�
�
 Putting y� � y��

y� � y��� y� � y� and y� � y� and taking the complement of
the output in g� gives �y�y

�
�y��y��

� � �y���y��y
�
��y

�
� � g�

Therefore� g� and g� are NPN�equivalent
 �From Example
�� we know that f can implement g�
 Since g� and g�
are NPN�equivalent� f should also be able to implement
g�
 This is true since putting x� � y��� x� � y�� x� � ��
x� � y�� x� � y�� and x� � � in f gives ��y���y����y���y

�
� �

� � �y�� � y� � y���y
�
� � g�

An SP function with m inputs can be represented by a
labelled tree with the following properties�

�
 The internal nodes are labelled AND ��� or OR ���
and have at least two children each
 The node labels
alternate between AND and OR on any path from the
root to the leaves

�
 The tree has m leaf nodes
 Each leaf node is labelled
by one of fx�� x��� � � � � xm� x

�
mg such that each variable

These two nodes are
removed during

g, so the
unlabeled

tree of f can

f can implement

the unlabeled

f = ((x1 + x2) x3’ + x4’) x5 x6

cuttings and contractions

implement

unlabelled tree of g

tree of g.

unlabelled tree of f
unlabelled tree of f after

cut

contraction.

g = y1 y2 y3 + y4

Figure 	� Illustration of the cutting and contraction oper�
ations

appears exactly once in some phase

The unlabelled tree of an SP function f is the tree ob�
tained by removing the node labels
 Figure � shows an SP
function and its labelled and unlabelled tree representa�
tions
 Clearly any SP function yields a unique unlabelled
tree �up to isomorphism�� but an unlabelled tree may cor�
respond to many di�erent SP functions �by labeling the
nodes di�erently�
 It was proved in ��� that two SP func�
tions are NPN�equivalent if and only if their unlabelled
trees are identical up to isomorphism
 This is illustrated
by an example in Figure �
 It follows immediately that
there is a one�to�one correspondence between the unla�
belled trees with m leaves and the NPN�equivalent classes
of all m�input SP functions
 We now de�ne two opera�
tions� cutting and contraction� on unlabelled trees�

Cutting� Two nodes a and b� such that a is a child of b�
are selected
 The entire subtree rooted at a and the
edge between a and b are removed

Contraction� An internal node b� which has parent a and
a single child c� is selected
 Node b is removed
 If c is
an internal node� the children of c are made children
of a and c is removed
 If c is a leaf� it becomes a child
of a

Let t and t� be two unlabelled trees
 We say that t

implements t� if t� can be obtained by applying a sequence
of cutting or contraction operations to t
 Let f and g

be two SP functions and let t and t� be their respective
unlabelled trees
 It was proved in ��� that f implements g
if and only if t implements t�
 �For example� in Figure 	�
we have f implements g� and the unlabelled tree of f can
also implement the unlabelled tree of g�
� As a result� the
following two problems are equivalent

Logic Module Design Problem� Given an integer

n � �� �nd an SP function f with the minimum number
of inputs which can implement all SP functions with at
most n inputs

Universal Tree Design Problem� Given an integer

n � �� construct an unlabelled tree Tn with the minimum
number of leaf nodes which can implement all unlabelled
tree with at most n leaves

Since the above two problems are equivalent� we will
work on the second one from now onwards
 Unless oth�
erwise stated� all trees in the following are unlabelled
 A

n-1 Tn-1T n/2T n/2

(a) n = 3 (b) n = 4, 5 (c) n = 2 or n > 5

T

Figure
� Construction of universal trees

tree is n�universal if it can implement all unlabelled trees
with at most n leaf nodes
 The size of a tree is de�ned as
the number of leaf nodes

� Constructing Universal Trees
��� Construction

The universal tree Tn for n�leaf trees is constructed re�
cursively from Tb n

�
c and Tn���

Algorithm U�TREE� Construct a tree Tn which is n�universal�
Input� A positive integer n�
Output� A tree Tn which is n�universal�
Construction�

�� If n � �� construct Tn as a single node tree�

�� Else if n � �� construct Tn as in Figure �	a
�

�� Else if n � ���� construct Tn as in Figure �	b
�

�� Otherwise� construct Tn as in Figure �	c
�

��� Proof of Correctness

It is obvious that T� and T� are correct� so we consider
n � � only
 Let t be a tree with n leaves
 Let t�� t�� ���� tj
be the subtrees at the root of t where j � �
 We consider
the following three cases�

Case �� One subtree has only one leaf while the other has
n� � leaves

It is obvious that Tn can implement t in this case

Case �� There exists one subtree g of m leaves where � �
m � bn

�
c

This case does not apply to n � 	 since bn
�
c � � when

n � 	
 Let t � g denotes the set of subtrees at the
root of t save g
 Since g has more than one leaf� t� g

has less than n � � leaves
 Thus we can implement
t � g by Tn�� �Figure ��� and implement g by Tb n

�
c

�or by the left subtree at the root of the tree shown
in Figure
�b� when n �
� ��

Case �� Otherwise

There must be at least two single�leaf subtrees� g� and
g�� at the root of t
 When n � 	� it is the case when
the root has three single�leaf children and it is obvious
that T� can implement this
 Consider the case when
n � 	
 Let t � g� � g� denotes the set of subtrees at
the root of t except g� and g�
 Since g� and g� has one
leaf each� t� g��g� has less than n�� leaves
 Hence
we can implement t�g��g� by Tn��� and implement
g� and g� by Tb n

�
c �or the left subtree at the root of

the tree shown in Figure
�b� when n �
� ��

a

be implemented by T.

Tn-1

(a) Use T n-1

n/2T

a

d

b c

t-g

g

g

c

t-g

a

(c) t is obtained

Since t-g has less than
n-1 leaves, this can

n-1

to implement t-g (b) cut(b,d) and contract(b)

Figure �� Use Tn�� to implement t� g

We can show that the size f�n� of the universal tree Tn
constructed by U�TREE is n

lg n

� � f�n� � n
lg n��

�

��� Comparison with Lower Bounds

We have proved the following theorem which gives a
lower bound on the size of a universal tree�
Theorem � The size of a n�universal tree is at least

bn
�
cX

i��

b
n

i
c�

bn��
�

cX

i��

b
n � �

i
c � b

n

�
c � b

n� �

�
c � �

Table � compares the size of the universal trees con�
structed by U�TREE with the lower bound from Theo�
rem �

n Size from U�TREE Lower Bound
� � �
� � �
� � �
� � �
� �
 �

� �� ��
� �� ��
� �� ��
� �� ��

Table �� Comparison between U�TREE and the lower
bound

� Boolean Matching
In boolean matching� we are given two boolean func�

tions f and g
 We want to know whether function g

can implement function f and to construct f from g in
case it is possible
 In this section� we describe a polyno�
mial time algorithm which� when given a boolean func�
tion f expressed as a tree t and a universal tree Tn con�
structed by U�TREE� can determine whether Tn can im�
plement t by some sequence of cuttings or contractions
in O�m logD� time where m is the number of leaves in t

andD is the largest fan�in in t
 This problem is non�trivial
whenm � n
 The construction will also be found if the an�
swer is yes
 In this section� we only consider the universal
trees Tk�s constructed by U�TREE
 We need the following
two claims in the algorithm
 The proof of Lemma � is
simply by induction and we will not shown it here

Lemma � If i � j� Ti can implement Tj �

Lemma � Given t with d subtrees at the root� Let
Tn� � Tn� � � � � � Tnd be the smallest universal trees to imple�
ment these subtrees� �According to Lemma �� they are well
de�ned�� If Tz is the smallest universal tree to implement
t� then p � z � p� �d where p � maxf�y� x� �g� x is the
largest ni and y is the second largest ni�

Proof Consider a tree t rooted at a node v
 Assume
that v has d children subtrees� g�� g�� � � � gd and that g� and
g� are the largest and the second largest children subtrees
respectively
 Let Tx and Ty be the smallest universal trees
to implement g� and g� respectively
 We want to show
that p � z � p��d where Tz is the smallest universal tree
to implement t and p � maxf�y� x� �g
 We consider two
di�erent cases�

Case �� x� � � �y� so p � x� �

We want to show that x� � � z � �x� �� � �d

Consider Tz where z � x � �
 The two subtrees at
the root are Tz�� and Tb z

�
c
 Since z � x � �� neither

Tz�� nor Tb z
�
c can implement g�
 Thus z � x� �

Consider Tz where z � �x�����d
 The two subtrees
at the root are Tz�� and Tb z

�
c
 If we expand Tz��

to Tz�� and Tb z��
�

c� cut the subtree Tb z��
�

c and do

contraction� we get Tz��� Tb z
�
c�� and Tb z

�
c at the root

We can repeat this process d times and obtain d� �
subtrees at the root� Tz����d� Tb z

�
c�d� Tb z

�
c�d��� � � ��

Tb z
�
c
 Since z � �x�����d� z����d � x and b z

�
c�

d � bx��
�
c � y
 Thus the Tz����d can implement g�

and the Tb z
�
c�d can implement g�
 Since g� is already

the second largest subtree in t� g�� g�� � � �� gd in t can
be implemented by the remaining d subtrees in Tz

Case �� �y � x� �� so p � �y

We want to show that �y � z � �y � �d

Consider Tz where z � �y
 The two subtrees at the
root are Tz�� and Tb z

�
c
 Since z � �y� Tb z

�
c can�

not implement g�
 The only possibility is to expand
Tz�� giving Tz��� Tb z

�
c�� and Tb z

�
c
 However nei�

ther Tb z
�
c�� nor Tb z

�
c can implement g� and the only

possibility is to expand Tz��
 Repeating the same ar�
gument� we �nally get a subtree just large enough to
implement g� but none of the others can implement
g�
 Thus z � �y

Consider Tz where z � �y � �d
 The two subtrees
at the root are Tz�� and Tb z

�
c
 If we expand Tz���

we get Tz��� Tb z
�
c�� and Tb z

�
c at the root
 We can

repeat this process d times and obtain d� � subtrees
at the root� Tz����d� Tb z

�
c�d� Tb z

�
c�d��� � � �� Tb z

�
c

Since z � �y � �d� z � � � �d � �y � � � x and
b z
�
c�d � y
 Thus the Tz����d can implement g� and

the Tb z
�
c�d can implement g�
 Since g� is already the

second largest subtree in t� g�� g�� � � �� gd in t can be
implemented by the remaining d subtrees in Tz
 �

Tn-1

(a) Replace T n-1 by Tn-2

and T (n-1)/2

2

a

1

2

6

T
T

: a

5

Tn-2

n-3

Gives Tn-3

(c) Replace T n-2 by Tn-3

n/2 -1

t

and T (n-2)/2 .
and T n/2 -1 at the root.

We can repeat the same process to Tn-3 .

t Tn-2

2
1

a

3

T
(n-1)/2T

n-1T

b

t
4

n-2 t

a

2

(b) Cut edge 4. Contract at node b.
Gives Tn-2 at the root.

Decompose Tn-1

Figure �� Decomposing a universal tree

��� Boolean Matching Algorithm

According to Lemma �� we can determine whether Tn
can implement an m�leaf tree t by �nding the smallest in�
dex k such that Tk can implement t
 The algorithm works
bottom�up from the leaves to the root
 Assuming that we
know already the smallest universal trees to implement the
dv children subtrees of a node v� we can do binary search on
Tp� � � � � Tp��dv to �nd the smallest universal tree to imple�
ment the tree rooted at v� where� according to Lemma �� p
is maxf�y� x��g� x is the largest index among the univer�
sal trees for v�s children subtrees and y the second largest

This can be done by the following algorithm MATCH
 We
can apply this algorithm recursively from the leaves up to
the root until we �nd the smallest Tk to implement the
entire tree t at the root
 In the following� decomposing a
universal tree means the sequence of steps shown in Figure
� to obtain smaller universal trees at the same level

Algorithm MATCH

Input� A tree t with d subtrees t�� t� � � � � � td at the root such
that Tn� � Tn� � � � � � Tnd are the smallest universal trees to implement
these subtrees� An integer n�

Output� Check if Tm can implement t� If yes� give construction�

�� Let A � fn�� n�� � � � � ndg�

�� Let B � fm� �� bm
�
cg�

�� While A is not empty

	a
 Let i be the largest index in A� corresponding to subtree
ti at the root of t�

	b
 Let j be the largest index in B with the same parity of i�

	c
 Let k be the largest index in B with the opposite parity
of i�

	d
 If 	j � i
 and 	k � i
� exit and output FAIL

	e
 Else if 	j � i
�

i� Decompose Tj into smaller universal trees until get�
ting Ti� Use this Ti to implement ti�

ii� Let B� be the set of indices of the universal trees
obtained by decomposing Tj �

iii� B � B � fjg�B� � fig

iv� Output the construction�

	f
 Else if 	k � i
 and 	b k
�
c � i
�

i� Decompose Tk into smaller universal trees until get�
ting Ti��� Use this Ti�� to implement ti�

ii� Let B� be the set of indices of the universal trees
obtained by decomposing Tk�

iii� B � B � fkg�B� � fi� �g

iv� Output the construction�

	g
 Else if 	k � i
 and 	b k
�
c � i
�

B = { 6, 5, 4 }

t

t
t

t

t1

2
3

4

5

T

T T
T

T8

6
3

3

3

y = 6
x = 8

p = max { x+1, 2y } = 12

where Tz is the smallest universal tree to implement t
12 + 2d = 22z12Thus

t

(i)

A = { 8, 6, 3, 3, 3 }

12 6

B = { 12, 6 }

68 5 4

A = { 8, 6, 3, 3, 3 }

(ii)

5 6
4

A = { 6, 3, 3, 3 }
B = { 8, 6, 5, 4 }

(iii)

5 4

(iv)

B = { 5, 4 }
A = { 3, 3, 3 } A = { 3, 3, 3 }

B = { 4, 3, 2 }

3 2 4

(v)

2 4

B = { 4, 2 }
A = { 3, 3 }

(vi)

Decompose T12 Remove 8 from A and B

Decompose T5

Remove 6

Remove 3 Remove 4 from B
Remove 3 from A

(b) Check if z = 14

(i)

A = { 8, 6, 3, 3, 3 }

13 7

B = { 13, 7 }

9 76 5

B = { 9, 7, 6, 5 }
A = { 8, 6, 3, 3, 3 }

(iii)

6 5 7

A = { 6, 3, 3, 3 }

(iv)

B = { 7, 6, 5 }

5 7

B = { 7, 5 }
A = { 3, 3, 3 }

5 5 3

B = { 5, 5, 3 }
A = { 3, 3, 3 }

(v)

(ii)

5 5

B = { 5, 5 }
A = { 3, 3 }

(vi)

53
2

(vii)

B = { 5, 3, 2 }
A = { 3, 3 }

2 5

A = { 3 }
B = { 5, 2 }

(viii)

2 2
3

A = { 3 }
B = { 3, 2, 2 }

Success

(ix)

Fail

Decompose T13
Remove 8 from A
Remove 9 from B Remove 6

Decompose T7 Remove 3 Decompose T5

Remove 3 Decompose T5 Remove 3

(a) Check if z = 13

The original tree

Figure �� Running the algorithm MATCH on an example

i� Decompose Tk into smaller universal trees until get�
ting Ti� Use this Ti to implement ti�

ii� Let B� be the set of indices of the universal trees
obtained by decomposing Tk�

iii� B � B � fkg�B� � fig

iv� Output the construction�

	h
 A � A� fig

	i
 End fwhileg

�� End fMATCHg

An example is shown in Figure �
 In the algorithm� A
keeps a set of indices of the subtrees which we need to im�
plement while B is a set of indices of the available subtrees

The while�loop examines the subtrees corresponding to the
indices in A in a non�increasing order
 In each iteration�
the largest index i in A is picked and we want to check
whether there is an available subtree whose index is at
least i
 Thus we pick the largest odd index and the largest

even index from B
 If both are smaller than i� we know
that ti cannot be implemented by any available subtree

Otherwise� we prefer implementing ti by Tj � whose index
j has the same parity as i� because decomposing Tj will
give Ti exactly
 However if j � i� we must use Tk� whose
index k has the opposite parity as i
 If bk

�
c � i we can

still implement ti exactly by decomposing Tk to give Ti

Otherwise we must waste some resources by implementing
ti by Ti�� obtained by decomposing Tk
 This process re�
peats until either there is a subtree in A which cannot be
implemented or A is empty
 Since we examine the indices
in A in decreasing order� we will not mistakenly decom�
pose a universal tree in B which is needed in some later
steps

the time to check whether a universal tree Tj can im�
plement a tree rooted at v� given the smallest universal
trees to implement v�s children subtrees

From the above algorithm� we know that the time to
check whether a universal tree Tj can implement a tree
rooted at v� given the smallest universal trees to implement
v�s children subtrees� is O�dv� where dv is the in�degree of
v
 Thus the total time spent at node v will be log dv �
O�dv� where the logarithmic term comes from the binary
search� and the total time for the whole boolean matching
algorithm is

P
v O�dv logdv� � O�m logD� where D be

the largest fan�in in t

� Alternative Universal Trees
During the design process� it is advantageous to have al�

ternative universal trees so that the designers have options
to choose from
 The �nal choice may be based on func�
tionality� area� delay� power or any other considerations

When n is small �� � n � ��� we can generate all optimal
�smallest number of leaves� n�universal trees Since algo�
rithm � constructs universal trees recursively from smaller
ones� we can generate many alternatives for large n from
those alternatives for small n

��� Algorithm Outline
The following algorithm generates all optimal n�

universal trees given an arbitrary integer n

Algorithm ALL�U�TREE

Input� An integer n
Output� Generate all n�universal trees with the smallest number

of leaves�

�� Generate a list of all n�leaf trees in L��

�� Let m be the size of the smallest possible n�universal trees�
Generate all m�leaf trees in L��

�� L � fg�

�� For each tree t in L��

	a
 Count the number of nodes at the odd levels and the even
levels of t to see if it can possibly be an n�universal tree�
If it is impossible� go back to the beginning of this loop
and check the next tree in L��

	b
 L� � fg�

	c
 Consider all possible combinationsof cutting and not cut�
ting at each edge of t�

i� Do cutting in t�

ii� Do contraction in t�

iii� Rewrite the binary representation of t in such way
that subtrees are arranged in a non�increasing order
of their binary representations�

iv� Put t in L��

	d
 Remove duplicates in L��

	e
 Compare L� with L�� If L� � L�� put t into L�

�� Output L�

In step
�a�� we prune the search tree by counting the
number of nodes at the odd levels and the number of nodes
at the even levels �root is at level �� because of the follow�
ing theorem�

Theorem � A n�universal tree must have at least n �Pbn��
�

c
i�� bn��

i
c nodes at the odd levels and at least n� � �

Pbn
�
c

i�� b
n
i
c nodes at the even levels�

The proof is very similar to that of Theorem �
 In step

�c�� we consider all possible combinations of cutting and
not cutting at the edges of t
 This number looks tremen�
dous but it can be reduced signi�cantly if we notice that
cutting an edge allows us to neglect all the edges inside
the removed subtree

��� Results

Table � shows the number of optimal n�universal trees
when � � n � �
 We see that there can be many di�erent
choices among the universal trees and they di�er in many
aspects like number of levels� number of gates� number of
wires� number of fan�in of the gates and� the most impor�
tant of all� the number of functions covered �functionality�

Figure � shows the structure of the optimal universal trees
which can cover a large number of functions for n from one
to six

To convert a tree back to a corresponding SP function�
we can choose either an AND or OR at the root of the
tree� alternate these labels between levels and assign a
variable to each leaf node such that each variable appears
exactly once in some phase� e
g
 a possible SP function
corresponding to the �rst tree in the list of T� in Figure �
is ���x� � x���x� � x���x� � x�x

�
��

n � Opt� Universal Trees � Functions covered
� � �
� � �
� � �
� �� �����
� �
 ����
�
� ��� �������

Table �� Number of optimal universal trees

Implements 5 trees

T4(iv)

1T(i) (ii) T2 (iii) T3

T5(v)

Implements 102 trees Implements 101 trees

Implements 107 trees Implements 106 trees Implements 103 trees

Implements 21 trees Implements 21 trees Implements 20 trees Implements 20 trees

Implements 23 trees Implements 22 trees Implements 22 trees

Implements 1 tree Implements 2 trees

Implements 827 trees

T(vi) 6

Implements 811 trees

Implements 815 treesImplements 815 treesImplements 818 trees

Implements 853 trees Implements 844 trees

Figure �� Optimal universal trees of high functionality

References
��� C� Lin� M� Marek�Sadowska� and D� Gatlin� Universal logic gate

for FPGA design� Proceedings of the IEEE�ACM International
Conference on Computer Aided Design� �����

��� Y�N� Patt� Optimal and near�optimal universal logic modules
with interconnected external terminals� IEEE Transactions on
Computers� ��	�

��
���
�� �����

��� F�P� Preparata� On the design of universal boolean functions�
IEEE Transactions on Computers� �
	�
��������� �����

��� S� Thakur and D�F� Wong� On designing ULM�based FPGA
logic modules� Proceedings of SCM�SIGDA FPGA���� pages
���� �����

��� S� Thakur and D�F� Wong� Universal logic modules for series�
parallel functions�Proceedings of ACM�SIGDA FPGA���� pages
������ �����

��� Z� Zilic and Z�G� Vranesic� Using BDDs to design ULMs for
FPGAs� Proceedings of ACM�SIGDA FPGA���� pages ����
�
�����

