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Abstract—In floorplan design it is useful to allow
users to specify placement constraints in the final
packing. Clustering constraint is one kind of place-
ment constraint in which a given set of modules are
restricted to be geometrically adjacent to one another.
The wiring cost can be reduced by putting modules
with a lot of connections closely together. Design-
ers may also need this type of placement constraint
to suit different functionality of the modules. In this
paper, a method addressing clustering constraint in
slicing floorplan is presented. A linear time algorithm
is devised to locate neighboring modules in a normal-
ized Polish expression and re-arrange the module in
order to satisfy the constraints. Experiments were
performed on some benchmarks and the results are

promising.

I. INTRODUCTION

Floorplan design is the problem of planning the position
and shapes of the modules at a very early designing stage
in order to optimize the circuit performance after circuit
partitioning. During this floorplanning phase, the circuit
performance like layout area, interconnect cost, heat dissi-
pation and power consumption, etc, should be minimized.

There are two types of floorplans: slicing and non-
slicing. A slicing floorplan is one that can be obtained
by recursively partitioning a rectangle into two parts by
either a vertical line or a horizontal line. The advantage
of using slicing floorplan is that it has simple representa-
tion such as slicing tree and Polish expression [1, 2]. A
non-slicing floorplan is a floorplan which is not necessarily
slicing. Several representations, sequence-pair [3], bound-
sliceline-grid(BSG) [4], O-tree [5], B*-tree [6] and Corner
Block List [7], have been proposed for solving the place-
ment problem in non-slicing floorplan. There are many
other floorplanners for fixed blocks or flexible blocks [8, 9]
and many of them are based on a slicing floorplanner de-
veloped in [2].

There are several aspects that a floorplanning algorithm
has to deal with: the shapes of the modules, routability,
area and delays. All these are essential for optimization
of the circuit performance. With the scaling down of the
IC technology, the number of transistor that can be built
into a standard size chip has increased rapidly. It is im-

portant to optimize the circuit performance in the early
designing stage. Timing-driven floorplanner aims at han-
dling this problem [10, 11]. [12] proposed a hybrid floor-
planning method using partial clustering and module re-
structuring. This method allows clusters to be placed as
rectangles only subtrees in a slicing tree. The moves in
the annealing process are limited and the deadplace in the
final packing is usually large.

Placement constraints in floorplan design are useful for
specifying the placement relationship between the mod-
ules according to their functionality in order to improve
the circuit performance like interconnect cost and delay,
etc. Some previous work on placement, constraints in slic-
ing floorplan [13, 14] have been done. In this paper, clus-
tering constraint is considered in which some modules are
required to be placed next to each other. The cost of rout-
ing can be reduced by imposing clustering constraints to
modules which are heavily connected. The method we
used can determine the neighboring positions of a target
module in a Polish expression and swap the constrained
modules to these positions in order to satisfy the con-
straints. Our method can also be extended to handle
more than one cluster in the floorplan.

This paper is organized as follows. Problem definition
is given in section 2. In section 3, a slicing floorplanner
which our method based on will be described. In section
4, detailed descriptions of the clustering method will be
given. The results will be shown in section 5.

II. PROBLEM DEFINITION

A floorplan with n modules (1, 2, ..., n) is an envelop-
ing rectangle R subdivided by horizontal and vertical line
segments into n or more non-overlapping rectilinear re-
gions such that each region R; must be large enough to
accommodate the corresponding module i.

In most iterative methods, a floorplan is evaluated by
a function A + AW, where A is the area and W is the
wirelength. The overall aspect ratio of the floorplan is
also required to be within a given range. The aspect ratio
of each module will be limited so that the delay inside
each module will not be too long. For each rectangular
module 7, there are three input values A;, r; and s;. where
A; is the area of module, r; and s; are the minimum and
maximum aspect ratio of the module respectively. Let



Fig. 1. An example of the clustering constraint

w; and h; be the width and height of the module, then
Ai = wihi and r; S Z}—Z S Si.

In this paper, clustering constraint is considered in
floorplan design. Given a set of modules ¢ and a sub-
set of modules A C ® we want to pack the modules in ®
such that the modules in A will be geometrically adjacent
to each other. Figure 1 shows an example of the cluster-
ing constraint. Modules E,F and H are the subset of
modules to be clustered and they have to be placed adja-
cent to each other in the final packing. The floorplanning
problem with clustering constraints is defined as follows:
Problem FP/CC Given a set of n modules ® =
{mi,ma,...,m,} and m; = (A;,ri,s;) fori = 1,...n
where A; is the area of modules, r; and s; are the mini-
mum and mazimum aspect ratio of modules i respectively.
Let A be a subset of modules in ®, pack the modules in ®
to minimize the total area and interconnect cost such that
the following three conditions are satisfied.

1. Every M; in A should be geometrically adjacent to at
least one My € A where k # i.

2. Each module satisfies its area and aspect ratio con-
straint.

3. The aspect ratio of the whole packing is within a give
range [r,s].

III. BASIC SLICING FLOORPLANNING ALGORITHM

Our work is based on a well-known slicing floorplan-
ner [2]. A slicing floorplan can be represented by a tree
structure. Leaf nodes of the tree are the basic modules
and the internal nodes are either labelled with + or *,
known as operators, to represent a horizontal cut or a
vertical cut. An example is shown in Figure 2. the tree in
postorder, a Polish expression is produced which is used
to represent the floorplan structure in the algorithm. A
normalized Polish expression is a Polish expression with
no identical operator between an internal node and its
right child.

Simulated annealing is used to optimize the cost of the
floorplan. The neighbors of each solution have to be de-
fined such that the optimal solution is reachable. Three
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Fig. 2. Slicing Tree

moves M1, M2 and M3 are used. M1 swaps two adja-
cent operands, M2 interchanges the operators in a chain
(a chain is a substring in the expression with consecu-
tive operators) and M3 swaps two adjacent operand and
operator.

IV. FLOORPLANNING WITH CLUSTERING CONSTRAINT

In this paper, we consider clustering constraint in slic-
ing floorplan. One method to solve this problem is by
adding a term to the cost function of the annealing process
as a penalty for violating the constraints. This method
was tested but the result is poor and the constraints will
usually be violated in the final packing. A better ap-
proach will be introduced in which clusters are maintained
throughout the annealing process.

A method is devised to locate all neighbors of a target
module. A target module M, is picked from the subset A.
A set of My’s neighboring modules II; is obtained by the
algorithm. For each M; € II;, if M; ¢ A, we will swap M;
with M; where M; € A\II;. This algorithm maintains the
clustering constraint throughout the annealing process.

An overview of the algorithm is given as follows:

Main Program
begin
While T > threshold do
begin
Move by either M1, M2 or M3
Call procedure Clustering
Compute Cost
If Cost is reduced
Accept the move
Else

Prob = min(1,e~2</T) where A, = change of cost.

17
If random(0,1) < Prob then
Accept the move
Else
Reject the move
end
end

A. Locating Neighboring Modules

An algorithm is devised to locate all neighboring mod-
ules of a target module in the normalized Polish expres-
sion. Note that we can locate the neighbors in linear time
by just looking at the Polish expression and no real pack-
ing is needed.



Fig. 3. An example of the neighboring structure

A target module M; € A is selected. A set II; is found
such that M; is surrounded by the modules in II; in the
packing. An example is shown in figure 3. In this example
M; = F and II; = {A,B,C,D,E,G,H}. Note that the
modules found (e.g. D and E) may not be next to M.

For each module M; in the slicing floorplan, M; is sur-
rounded by four cuts which correspond to four operators
in the normalized Polish expression. If those four opera-
tors are found in the Polish expression, the neighboring
structure can be located and II; can be found.

For a Polish expression a = ajas...a,, we define a
valid sub-expression = QpQgy1 -..Qgtm Where £ > 1
and n > k+m as a sub-expression in «a such that aj must
be an operand and the number of operands is equal to the
number of operators plus one in 8. A valid sub-expression
indeed represents a sub-tree in the whole slicing tree.

The two operators correspond to cuts of different
orientations. Let (, § and ~ be valid sub-expressions in
the Polish expression. Some terms are defined as follows:

Below If v = ¢d+, Below(4, ()
Above If v = §¢+, Above(d, ()
Left If v = (6%, Left(d,¢)
Right If v = §Cx, Right(6,()
Given a target module M, the algorithm

Find_Surrounding finds four valid sub-expressions a,b, ¢
and d such that Below(d1,a), Above(d2,b), Left(ds,c)
and Right(ds,d) where ¢is are valid sub-expressions
containing M;.

Algorithm: Find_Surrounding(M;,«)

Input:ax = a1 a2 . ap is a Polish

expression of the original packing.
t is the index of the target module,
ie., ax = M,

Output: a is a valid sub-expression such that Below(d1,a)
b is a valid sub-expression such that Above(d2,b)
¢ is a valid sub-expression such that Left(ds,c)
d is a valid sub-expression such that Right(d4,d)
where 0; for ¢ =1...4 is the shortest valid
sub-expression containing M;
such that the a, b, ¢ and d above can be found.

1 first=end =1

2 While a,b,c,d are not found and first>1 and end< 2n —1

3 begin

4 If Qepg+1 1s an operator

5 begin

6 Find k£ such that

7 € =Cfirst—k Ofirst—k+1 - Ofirst—1

Fig. 5. D does not belong to II; where M; is F

8 is the shortest valid sub-expression

9 If Qepg+1 is + and @ is not found yet

10 a=e

11 Else if aepg41 is * and ¢ is not found yet
12 c=e

13 first = first — k; end=end + 1

14 end

15 Else

16 begin

17 Find k£ such that

18 € = Qend+1 Qend+2 - Qend+k

19 is the shortest valid sub-expression

20 If Qepd+k+1 is + and b is not found yet

21 b = e

22 Else if Qepgik+1 is * and d is not found yet
23 d=e

24 end=end+k+1

25 end

26 end

The complexity of this algorithm is O(n). Figure 4 il-
lustrates the steps of the algorithm. a, b, c and d are valid
sub-expressions representing a sub-tree in the slicing tree.
For the example in Figure 3, a = G,b = BC*ED +x*,¢c =
A,d = H and M; = F. The shortest sub-expression
can be obtained by counting the number of operators and
operands. Note that not all the basic modules in a,b,c
and d belong to the neighboring module set IT; of M;. If a
sub-expression b is above My, then only the modules at the
bottom of the supermodule corresponding to b belong to
IT;. Figure 5 shows an example that b = BC'« ED + x but
D does not belong to II; in this case. A recursive proce-
dure shown below is used to find II; efficiently give a, b, ¢
and d. This procedure is only for sub-expression below
the target module, .e., a. Procedures for sub-expressions
above, to the left and to the right of the target module
can be done similarly.

Procedure: Marking_Neighbor_Below(first, end)
Input: first is the first index of is valid
sub-expression a
end is the last index of a
where first < end
Output: II is the set of module at the supermodule
represented by a
1 If first = end
2 II = I U afipst
3 Else
4 begin
5 Find k such that
5 € = Qend—k®end—2 -+ - Xend—1
6 where e is the shortest sub-expression
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Fig. 4. An example to illustrate algorithm 1 Find_Surrounding

7 If Qepq is *

8 marking_neighbor(first, end — k — 1))
9 marking_neighbor(end — k,end — 1)
10 Else if ae¢pq is +

11 marking_neighbor(end — k,end — 1)
12 end

B. Constraint Satisfaction

In the annealing process, all the constraints have to be
satisfied to make the floorplan feasible. Modules in the
constraint set A will be swapped with the neighbor set
II; until the conditions A C {M;} UII; is satisfied.

In the first iteration, M; is randomly selected from A.
An intersect set T is defined to be ANTL;. If |A| > |Y|+1,
swapping is needed to satisfy the clustering constraints.
If |A] > || + 1, there is not enough space for swap-
ping, the whole process will be repeated recursively by
selecting another module which is already in the cluster as
the new target module until all the constraints are satis-
fied. All three moves in the simulated annealing can affect
the neighboring structure and give an infeasible packing.
However we will swap operands in the Polish expression
to maintain a feasible one.

There is only one case in move M1 that does not affect
the neighboring structure of the packing, i.e., if two ad-
jacent operands to be swapped are both in A or both in
® — A. Modification is not required in this case and the
clustering constraint will not be violated after the move.

The following algorithm describes the swapping strat-
egy such that the clustering constraints are satisfy
throughout the annealing process.

Algorithm : Clustering(a, A)
Input:a = a1z ..., is a Polish expression of the problem.

A is the set of modules having clustering constraint.

1 For each M; € A

(c)

ca d b
IJ*F+E‘ * +K*

first end

2
3 Call Find_Surrounding(M;,a)

4 Call Marking_ Neighbor_Below(first(a), end(a))
5 Call Marking_ Neighbor_Above(first(b), end(b))
6 Call Marking_Neighbor_Left(first(c), end(c))
7 Call Marking Neighbor_Right(first(d), end(d))
8

T, =ANII;
9 If |T[+1<|A]
10 clustering constraints satisfied
11 Return
12 end
13 count = 0
14 While count < |A|—1
15 begin
16 Take i where |Y;| is maximum and M, is not marked
17 If |IL;| > |A] -1
18 begin
19 For each M) € ANTL; find M; € I; NA;
20 swap(M;, My,)
21 count = |A| -1
22 end
23 Else
24 begin
25 For each M; € ANTI; find My € I; NA;
26 swap(M;, M})
27 count = count + |IL;|
28 end
29 Mark M;
30 end

If |II;| < |A| —1 (lines 26-31), the number of positions
in II; are not enough for swapping all the constrained
modules into the neighboring positions. The other tar-
get module will be selected from II; and the process is
repeated until all the constraints are satisfied. The algo-
rithm can handle even large cluster size.

C. Multi-clustering Extension

Multi-clustering constraint allows us to have more than
one cluster in the final packing. The algorithm described



above can only handle one cluster. Multi-clustering con-
straints can be resolved similarly. The major problem of
addressing multi-clustering constraint is that the neigh-
boring sets, can overlap. Infeasible packing will be re-
sulted if modules are swapped randomly.

For example, given two clustering sets A; and As. A
target module is found in each set M;, and M;,. Let
IT;, and II;, be the corresponding neighboring sets. If a
module My, where M;, € II;, and M € Il;,, exists the
neighboring sets M}, should be removed from either II;,
or Ht2-

While locating the neighboring modules, the module
found earlier is probably nearer to the target module.
Hence, it is better to swap into those positions first. This
property make sure that the modules under clustering
constraints will be placed as close to each other as possi-
ble.

D. Cost Function

The cost function is defined as A + AW + SC where A
is the total area of the packing, W is the half perimeter
estimation of the wirelength, and C' is a penalty for the
clustering constraint. The penalty term C is the sum
of center to center distances between the modules within
the same cluster. The penalty term helps to produce a
packing in which the modules under clustering constraints
will be packed closely together. A and j are constants that
control the weight of importance between the three terms.

V. EXPERIMENTAL RESULTS

Our method is tested with three MCNC building blocks
examples (ami33, ami49 and playout). Ami33 has 33
modules and 123 nets. Ami49 has 49 modules and 408
nets. Playout has 62 modules and 1161 nets. In the
first set of experiment, we pick 20% of the modules ran-
domly in each benchmark to have clustering constraint,
i.e., ami33, ami49 and playout have 7, 10 and 12 modules
respectively. For each benchmark, we repeat the experi-
ment three times by selecting different modules into the
constrained set. The results are given in Table I.

In the second set of experiment, we tested our method
with multi-clustering constraints. In each benchmark
problem, we picked 3, 4 and 5 clusters and each cluster has
2 to 7 modules. The results are given in Table II. A con-
trol experiment is performed without clustering constraint
for each data set and the results are shown in Table III.
The temperature decreases with a constant rate (0.9), and
the number of iterations at one temperature step is one
hundred times the number of modules. All experiments
were done using UltraSPARC-IT 400MHz processor.

Figure 6 and 7 shows a result packing of three clusters
in ami33 and a result packing of four clusters in ami49 re-
spectively. Figure 8 and 9 shows the improvement in
interconnection by imposing clustering constraints. In
Figure 8, we observed from the data set that modules

15, 18, 19, 20, 21, 24, 25 are heavily connected with each
other, so we impose clustering constraint between them.
Figure 9 shows the result packing without imposing any
clustering constraints One can see that the interconnect
cost is much smaller in Figure 8.

TABLE I
RESULTS OF TESTING WITH ONE CLUSTER FOR THE MCNC
EXAMPLES
Cluster |% Dead- [Wirelength Time
Data Set  |n Size space (nm)x 109 (sec)
ami33-ccl |33 |7 1.62 0.1598 19.1
ami33-cc2 |33 |7 2.80 0.1600 18.4
ami33-cc3 |33 |7 2.74 0.1661 22.6
ami49-ccl |49|10 4.65 3.3379 53.4
ami49-cc2 |49 |10 3.53 3.2226 53.2
ami49-cc3 |49 |10 4.04 3.0970 51.9
playout-ccl |62 |12 8.44 0.1770 146.5
playout-cc2 |62 |12 7.43 0.1862 147.8
playout-cc3 |62 |12 6.57 0.1868 146.4
TABLE II
RESULTS OF TESTING WITH MULTI-CLUSTER FOR THE MCNC
EXAMPLES
# of Clusters % Wirelength | Time
Data Set n . Dead- 6
(Cluster Size) (nm)x 10 (sec)
space
ami33-mcl [33[3(4,4,3) 2.35 0.1632 21.0
ami33-mc2 |33 |4(3,3,3,2) 3.16 0.1597 21.4
ami33-mc3 |33 (5(3,2,2,2,2) 2.17 0.1602 21.9
ami49-mcl (49 [3(6,5,5) 3.83 3.3092 57.8
ami49-mc2 |49 |4(4,4,4,4) 2.77 3.3412 56.7
ami49-mc3 |49 |5(4,3,3,3,3) 3.99 3.4328 57.1
playout-mc1 |62 |3(7,7,6) 8.28 0.1800 156.9
playout-mc2 (62 |4(5,5,5,5) 7.18 0.1773 154.6
playout-mc3 (62 |5(4,4,4,4,4) 5.87 0.1728 151.8
TABLE III
RESULTS OF THE CONTROL EXPERIMENTS
Data Set |n |% Deadspace |Wirelength(nm)x108 |Time (sec)
ami33 331(2.45 0.1615 12.7
ami49 4913.00 3.2894 37.5
playout |62 (4.35 0.1729 124.4
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