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According to the proof by Liu, Chiu, and Xu (2004) on the so-called one-
bit-matching conjecture (Xu, Cheung, and Amari, 1998a), all the sources
can be separated as long as there is an one-to-one same-sign correspon-
dence between the kurtosis signs of all source probability density func-
tions (pdf’s) and the kurtosis signs of all model pdf’s, which is widely
believed and implicitly supported by many empirical studies. However,
this proof is made only in a weak sense that the conjecture is true when the
global optimal solution of an independent component analysis criterion
is reached. Thus, it cannot support the successes of many existing itera-
tive algorithms that usually converge at one of the local optimal solutions.
This article presents a new mathematical proof that is obtained in a strong
sense that the conjecture is also true when any one of local optimal solu-
tions is reached in helping to investigating convex-concave programming
on a polyhedral set. Theorems are also provided not only on partial sep-
aration of sources when there is a partial matching between the kurtosis
signs, but also on an interesting duality of maximization and minimiza-
tion on source separation. Moreover, corollaries are obtained on an in-
teresting duality, with supergaussian sources separated by maximization
and subgaussian sources separated by minimization. Also, a corollary is
obtained to confirm the symmetric orthogonalization implementation of
the kurtosis extreme approach for separating multiple sources in parallel,
which works empirically but lacks mathematical proof. Furthermore, a
linkage has been set up to combinatorial optimization from a distribution
approximation perspective and a Stiefel manifold perspective, with algo-
rithms that guarantee convergence as well as satisfaction of constraints.

1 Introduction

Independent component analysis (ICA) aims at blindly separating the in-
dependent sources s from an unknown linear mixture x = As via y = Wx.
Tong, Inouye, and Liu (1993) showed that y recovers s up to constant scales
and a permutation of components when the components of y become
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component-wise independent and at most one of them is gaussian. The
problem is formalized by Comon (1994) as ICA. Although ICA has been
studied from different perspectives, such as the minimum mutual informa-
tion (MMI) (Bell & Sejnowski, 1995; Amari, Cichocki, & Yang, 1996) and
maximum likelihood (ML) (Cardoso, 1998), in the case that W is invert-
ible, all such approaches are equivalent to minimizing the following cost
function,

D(W) =
∫

p(y; W) ln
p(y, W)∏n
i=1 q (yi )

dy, (1.1)

where q (yi ) is the predetermined model probability density function (pdf)
and p(y, W) is the distribution on y = Wx. With each model pdf q (yi ) pre-
fixed, however, this approach works only when the components of y are
either all subgaussians (Amari et al., 1996) or all supergaussians (Bell &
Sejnowski, 1995).

To solve this problem, it is suggested that each model pdf q (yi ) is a flex-
ibly adjustable density that is learned together with W, with the help of
either a mixture of sigmoid functions that learns the cumulative distribu-
tion function (cdf) of each source (Xu, Yang, & Amari, 1996; Xu, Cheung,
Yang, & Amari, 1997) or a mixture of parametric pdf’s (Xu, 1997; Xu, Che-
ung, & Amari, 1998b). A learned parametric mixture–based ICA (LPMICA)
algorithm is derived, with successful results on sources that can be either
subgaussian or supergaussian, as well as any combination of both types.
The mixture model was also adopted in the ICA algorithm by Pearlmutter
and Parra (1996), although it did not explicitly target separating the mixed
sub- and supergaussian sources.

It has also been found that a rough estimate of each source pdf or cdf may
be enough for source separation. For instance, a simple sigmoid function
such as tanh(x) seems to work well on the supergaussian sources (Bell
& Sejnowski, 1995), and a mixture of only two or three gaussians may be
enough (Xu et al., 1998b) for the mixed sub- and supergaussian sources. This
leads to the so-called one-bit-matching conjecture (Xu et al., 1998a), which
states that “all the sources can be separated as long as there is an one-to-one
same-sign correspondence between the kurtosis signs of all source pdf’s and
the kurtosis signs of all model pdf’s.” This conjecture has been implicitly
supported by several other ICA studies (Girolami, 1998; Everson & Roberts,
1999; Lee, Girolami, & Sejnowski, 1999; Welling & Weber, 2001). Cheung
and Xu (2000) gave a mathematical analysis for the case involving only
two subgaussian sources. Amari, Chen, and Cichock: (1997) also studied
the stability of an ICA algorithm at the correct separation points via its
relation to the nonlinearity φ(yi ) = d ln qi (yi )/dyi , but without touching the
circumstance under which the sources can be separated.

Recently, the conjecture on multiple sources was proved mathematically
in a weak sense (Liu et al. 2004). When only skewness and kurtosis of
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sources are considered with Es = 0 and EssT = I , and the model pdf’s
skewness is designed as zero, the problem minW D(W) by equation 1.1 is as
simplified as

max
RRT =I

J (R), J (R) =
n∑

i=1

n∑
j=1

r4
i jν

s
j k

m
i , n ≥ 2, (1.2)

where R = (ri j )n×n = WA is an orthonormal matrix, and νs
j is the kurtosis of

the source s j , and km
i is a constant with the same sign as the kurtosis νm

i of
the model q (yi ).1 Then it is further proved that the global maximization of
equation 1.2 can be reachable only by setting R a permutation matrix up to
a certain sign indeterminacy. However, this proof still cannot support the
successes of many existing iterative ICA algorithms that typically imple-
ment gradient-based local search and thus usually converge to one of local
optimal solutions.

In the next section of this article, all the local maxima of equation 1.2 are
investigated using special convex-concave programming on a polyhedral
set, from which we prove the one-bit-matching conjecture in a strong sense
that it is true when any one of local maxima by equation 1.2 is reached.
Theorems have also been provided on separation of sources when there is
a partial matching between the kurtosis signs and on an interesting duality
of maximization and minimization. Moreover, corollaries are obtained to
state that the duality makes it possible to get supergaussian sources by max-
imization and subgaussian sources by minimization. Another corollary also
confirms the symmetric orthogonalization implementation of the extreme
approach of the kurtosis for separating multiple sources in parallel, which
works empirically but without mathematical proof (Hyvarinen, Karhunen,
& Oja, 2001).

In section 3, we discuss that equation 1.2, with R being a permutation
matrix up to certain sign indeterminacy, becomes equivalent to a special
example of the following combinatorial optimization:

min
V

Eo(V), V = {vi j , i = 1, . . . , N, j = 1, . . . , M}, subject to

Cc :
N∑

i=1

vi j = 1, j = 1, . . . , M, Cr :
M∑

j=1

vi j = 1, i = 1, . . . , N;

Cb : vi j takes either 0 or 1. (1.3)

1 The details refer to theorem 1 of Liu et al. (2004) for the specific expression km
i and

the proof that km
i is a constant with the same sign as the kurtosis νm

i of the model q (yi ).
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Figure 1: Convex set and polyhedral set.

This connection suggests investigating combinatorial optimization not only
from a distribution approximation perspective of finding a simple distri-
bution to approximate the Gibbs distribution induced from Eo(V), but also
a perspective of gradient flow searching within the Stiefel manifold, with
algorithms that guarantee convergence as well as constraint satisfaction.

2 One-Bit-Matching Theorem and Extension

2.1 An Introduction to Convex Programming. To facilitate mathemat-
ical analysis, we briefly introduce convex programming. A set in Rn is
said to be convex if x1 ∈ S, x2 ∈ S; we then have λx1 + (1 − λ)x2 ∈ S for
any 0 ≤ λ ≤ 1. Shown in Figure 1 are examples of convex sets. As an im-
portant special case of convex sets, a set in Rn is called a polyhedral set
if it is the intersection of a finite number of closed half-spaces, that is,
S = {x : a t

i x ≤ αi , f or i = 1, . . . , m}, where ai is a nonzero vector and αi

is a scalar for i = 1, . . . , m. The second and third imagestion Figure 1 are
two examples. Let S be a nonempty convex set. A vector x ∈ S is called an
extreme point of S if x = λx1 + (1 − λ)x2 with x1 ∈ S, x2 ∈ S, and 0 < λ < 1
implies that x = x1 = x2. We denote the set of extreme point by E , illustrated
in Figure 1.

Let f : S → R, where S is a nonempty convex set in Rn. As shown in
Figure 2, the function f is said to be convex on S if

f (λx1 + (1 − λ)x2) ≤ λ f (x1) + (1 − λ) f (x2) (2.1)

for x1 ∈ S, x2 ∈ S and for 0 < λ < 1. The function f is called strictly convex
on S if the above inequality is true as a strict inequality for each distinct
x1 ∈ S, x2 ∈ S and for 0 < λ < 1. The function f is called concave (strictly
concave) on S if − f is convex (strict convex) on S.

Considering an optimization problem minx∈S f (x), if x̄ ∈ S and f (x) ≥
f (x̄) for each x ∈ S, then x̄ is called a global optimal solution. If x̄ ∈ S and
if there exists an ε-neighborhood Nε(x̄) around x̄ such that f (x) ≥ f (x̄) for
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Figure 2: Convex and concave function.

each x ∈ S ∩ Nε(x̄), then x̄ is called a local optimal solution. Similarly, if
x̄ ∈ S and if f (x) > f (x̄) for all x ∈ S ∩ Nε(x̄), x �= x̄, for some ε, then x̄ is
called a strict local optimal solution. An optimization problem minx∈S f (x)
is called a convex programming problem if f is a convex function and S is
a convex set.

Lemma 1.

a. Let S be a nonempty open convex set in Rn, and let f : S → R be twice
differentiable on S. If its Hessian matrix is positive definite at each point in S,
the f is strictly convex.

b. Let S be a nonempty convex set in Rn, and let f : S → R be convex on S.
Consider the problem of minx∈S f (x). Suppose that x̄ is a local optimal solution
to the problem. Then (i) x̄ is a global optimal solution. (ii) If either x̄ is a strict
local minimum or if f is strictly convex, then x̄ is the unique global optimal
solution.

c. Let S be a nonempty compact polyhedral set in Rn, and let f : S → R be a
strict convex function on S. Consider the problem of maxx∈S f (x). All the local
maxima are reached at extreme points of S.

Statements a and b are common knowledge, and statement c is not
difficult to understand. As illustrated in Figure 2, assume x̄ is a local max-
imum but not an extreme point. We may find x1 ∈ Nε(x̄), x2 ∈ Nε(x̄) such
that x̄ = λx1 + (1 − λ)x2 for 0 < λ < 1. It follows from equation 2.1 that
f (x̄) < λ f (x1) + (1 − λ) f (x2) ≤ max[ f (x1), f (x2)], which contradicts that x̄
is a local maximum, while at an extreme point x of S, x = λx1 + (1 − λ)x2

with x1 ∈ S, x2 ∈ S and 0 < λ < 1 implies that x = x1 = x2, which does not
contradict the definition of a strict convex function made after equation 2.1.
That is, a local maximum can be reached at only one of the extreme points
of S.

(For details about convex programming, see, e.g., Bazaraa, Sherali,
Shetty, 1993.)

2.2 One-Bit-Matching Theorem. This section aims at showing that ev-
ery local maximum of J (R) on RRT = I by equation 1.2 is reached at R,
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which is a permutation matrix up to sign indeterminacy at its nonzero ele-
ments, as long as there is a one-to-one same-sign correspondence between
the kurtosis of all source pdf’s and the kurtosis of all model pdf’s.

The proving line is sketched by two key steps. First, we divide the set C
of constraint equations RRT = I into two nonoverlapped sets Cn ∪ Co . That
is, for RT = [r1, r2, . . . , rn] with r j = [r1 j , r2 j , . . . , rnj ]T , we have

Cn :
n∑

i=1

r2
i j = 1, j = 1, . . . , n, for normalization,

Co : r T
i r j = 0, i = 1, . . . , n − 1, j = i, . . . , n, for orthogonalization.

(2.2)

We find all the local maxima of max s.t. Cn J (R) by proving lemma 2. Second,
we consider how these local maxima will be affected by adding the con-
straint set Co . Local maxima of max s.t. Cn J (R) that do not satisfy Co will be
discarded. We find that adding Co will not bring any extra local maximum.
As a result, we conclude our aim by theorem 1.

We let pi j = r2
i j and turn max s.t. Cn J (R) into the following problem:

max
P∈S

J (P), J (P) =
n∑

i=1

n∑
j=1

p2
i jν

s
j k

m
i , P = (pi j )n×n, n ≥ 2,

S =

pi j , i, j = 1, . . . , n :

n∑
j=1

pi j = 1, f or i = 1, . . . , n, and every pi j ≥ 0


,

(2.3)

where νs
j and km

i are same as in equation 1.2 and S becomes a convex set or
precisely a polyhedral set. For every local maximum solution P = [pi j ] in
equation 2.3, we can get a subset of local maxima R = [ri j ] of max s.t. Cn J (R)
with ri j = 0 for pi j = 0 and either ri j = ±1 for pi j = 1.

We stack P into a vector vec[P] of n2 elements and compute the Hessian
HP with respect to vec[P], resulting in,

HP is a n2 × n2 diagonal matrix with each diagonal element being νs
j k

m
i .

(2.4)

Thus, whether J (P) is convex can be checked simply via all the signs of
νs

j k
m
i .
We use En×k to denote a family of matrices, with each En×k ∈ En×k being

an n × k matrix, with every row consisting of zero elements except that one
and only one element is 1.
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Lemma 2. When either νs
i > 0, km

i > 0,∀i or νs
i < 0, km

i < 0 ,∀i , every local
maximum of J (P) is reached at a P ∈ En×n.

Proof. We have every νs
j k

m
i > 0, and thus it follows from equation (2.4) and

lemma 1a that J (P) is strictly convex on the polyhedral set S. It further
follows from Lemma 1 c that all the local maxima of J (P) are reached at the
polyhedral set’s extreme points that satisfy

∑n
j=1 pi j = 1, f or i = 1, . . . , n,

that is, each local maximum P ∈ En×n.

Lemma 3.

a. Given p = [p1, . . . , pn] ∈ P = { p : p j ≥ 0, j = 1, . . . , n,
∑n

j=1 p j = 1}, a lo-
cal maximum of J ( p) =∑n

j=1 p2
jβ j is reached at:

i. p = [ek : 0] for k ≥ 1 with β j > 0, j = 1, . . . , k and β j < 0 , j = k +
1 , . . . , n, where the row vector ek ∈ E1×k and 0 is a row vector consisting of
n − k zeros.2

ii. One p ∈ P that is not in the form [ek : 0], when β j < 0 , j = 1 , . . . , n.3

b. For an unknown 0 < k < n with νs
i > 0 , km

i > 0 , i = 1 , . . . , k and νs
i <

0 , km
i < 0 , i = k + 1 , . . . , n, every local maximum of J (P) in equation 2.3

is reached at

P =
[

P1 0
0 P2

]
, P1 ∈ Ek×k, P2 ∈ E(n−k)×(n−k). (2.5)

Proof.
a. Let J (p) = J +(p+) + J −(p−) with p = [p+ : p−] and

J +(p+) =
k∑

j=1

p2
jβ j , J −(p−) =

n∑
j=k+1

p2
jβ j . (2.6)

J −(p−) ≤ 0 is strictly concave from lemma 1a because of β j < 0, and thus it
has only one maximum at p− = 0. Therefore, all the local maxima of J (p)
are reached at [p+ : 0] and determined by all the local maxima of J +(p+) on
the polyhedral set � = {∑k

j=1 p j = 1, p j ≥ 0, j = 1, . . . , k}. It follows from
lemma 1b that J +(p+) is strictly convex on � since β j > 0. It further follows
from lemma 1c that all its local maxima are reached at the extreme points
of �, that is, each local maximum is reached at p+ = ek .

2 In the rest of this letter, we use 0 to denote a matrix of all its elements in zeros without
explicitly indicating its dimension, including being either a row vector or a column vector.

3 To illustrate, we observe f (x, y) = −ax2 − by2, a > 0, b > 0 subject to x + y = 1, x ≥
0, y ≥ 0, A local maximum of f (x, y) is reached at x = b

a+b , y = a
a+b .
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Particularly for β j < 0, j = 1, . . . , n, it follows from lemma 1a that J (p) =∑n
j=1 p2

jβ j is strictly concave. However, its only maximum at p = 0 is not
reachable because the constraint

∑n
j=1 p j = 1. Instead, the maximum of

J (p) subject to this constraint is reached at one p ∈ P that is not in the form
[ek : 0].

b. Notice that the constraint
∑n

j=1 pi j = 1 is imposed on only the ith
row p(i) = [pi1, . . . , pin], and J (P) in equation 2.3 is additive. The problem
of finding the local maxima of J (P) s.t. P ∈ S is equivalent to separately
finding the local maxima

J (p(i)) =
n∑

j=1

p2
i jν

s
j k

m
i , subject to

n∑
j=1

pi j = 1, pi j ≥ 0, j = 1, . . . , n.

(2.7)

For each i ≤ k, we have βi j = νs
j k

m
i > 0, and j = 1, . . . , k and βi j < 0, j =

k + 1, . . . , n. Therefore, it follows from lemma 3a that p(i) = [e (i)
k : 0] with

e (i)
k ∈ E1×k , for i = 1, . . . , k. For each i > k, we have βi j < 0, j = 1, . . . , k

and βi j > 0, j = k + 1, . . . , n. Similarly, we have p(i) = [0 : e (i)
n−k] with e (i)

n−k ∈
E1×(n−k), for i = k + 1, . . . , n. In summary, we get P given by equation 2.5.

From every local maximum solution P = [pi j ] in lemmas 2 and 3b,
all the matrices R = [ri j ] with ri j = ±√pi j are local maxima R = [ri j ] of
max s.t. Cn J (R). In other words, all the local maxima of max s.t. Cn J (R) can
be summarized as follows:

R = {R = [ri j ] : ri j =
{

0, if pi j = 0,

±1 if pi j = 1.

}
. (2.8)

We will return to consider J (R) on RRT = I by equation 1.2 by adding the
orthogonal constraint Co in equation 2.2 to max s.t. Cn J (R). Local maxima
in R that do not satisfy Co will be discarded. Also, we show that adding in
Co will not bring any extra local maximum. Along this line, we can prove
the following theorem:

Theorem 1. Every local maximum of J (R) on RRT = I by equation 1.2 is reached
at R, which is a permutation matrix up to sign indeterminacy at its nonzero
elements, as long as there is a one-to-one same-sign correspondence between the
kurtosis of all source pdf’s and the kurtosis of all model pdf’s.
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Proof. We check every local maximum J (R) s.t. Cn, that is, every solution
in R by equation 2.8, whether it satisfies the orthogonal constraint Co in
equation 2.2. If not, it is discarded. If it does, it is put into the following
solution set,

P = {R : every R ∈ R that satisfies Co}, (2.9)

which is not empty and each P ∈ P is either a permutation matrix or a
variant with one or more nonzero elements switched to a negative sign.
We check whether every R∗ ∈ P is a local maximum of J (R) on RRT = I
by equation 1.2. Since R∗ is a local maximum J (R) s.t. Cn, there is a small
enough neighbor area NR∗ with R∗ ∈ NR∗ such that every R′ ∈ NR∗ , R′ �= R∗

satisfies Cn and J (R′) < J (R∗). If R∗ also satisfies Co , R∗ must belong to the
intersection NR∗ ∩ NCo , where NCo denotes the set of all the points that satisfy
Co . It further follows from equation 2.2 that NR∗ ∩ NCo is also a neighbor area
of R∗, within which we have J (R) < J (R∗) for every R ∈ NR∗ ∩ NCo , R �= R∗.
That is, each R∗ ∈ P by equation 2.9 is a local maximum of J (R) on RRT = I
by equation 1.2.

We show that adding Co to J (R) s.t. Cn will not create any extra local
maximum. Without Co , it is linked by pi j = r2

i j that the problem is equiv-
alent to separately finding the local maxima of J (p(i)) by equation 2.7 for
i = 1, . . . , n, respectively. These individual optimizations may occur within
the same n-dimensional space or across several different n-dimensional
spaces that may have certain overlap. With Co added in, these individual
optimizations are forced to be implemented in the n different n-dimensional
spaces that are orthogonal to each other. The effect of this process is equiva-
lent to forcing the valid local maxima of J (p(i)) by equation 2.7 to be located
on a more restricted polyhedral set. Without Co , it follows from lemma 3a
(i) that the valid local maxima of J (p(i)) by equation 2.7 should be located
on a polyhedral set as follows:

�i =

pi j = 0 for νs

j k
m
i < 0, pi j ≥ 0 for νs

j k
m
i > 0 and

∑
pi j ≥0

pi j = 1


 .

(2.10)

With Co added, �i becomes more restrictive, with one or more constraints
of type pi j ≥ 0 being further restricted into those of type pi j = 0. Since there
will be at least one P by equation 2.5 in an n × n nonsingular matrix, for
every i there will be at least one j with its corresponding pi j remaining
to be type pi j ≥ 0; that is, no situation stated by lemma 3a (ii) occurs.
Thus, the valid local maxima of J (p(i)) by equation 2.7 on a more restricted
polyhedral set is merely a subset of those local maxima before imposing the
extra restrictions. In other words, no extra local maximum will be created.
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Summarizing the above two aspects and noticing that km
i has the same

sign as the kurtosis νm
i of the model density qi (yi ), the theorem is proved.

Equation 1.2 is obtained from equation 1.1 by considering only the skew-
ness and kurtosis and with the model pdf’s without skewness. In such an
approximative sense, all the sources can also be separated by a local search-
ing ICA algorithm (e.g., a gradient-based algorithm) obtained from equa-
tion 1.1 as long as there is an one-to-one same-sign correspondence between
the kurtosis of all source pdf’s and the kurtosis of all model pdf’s. Moreover,
this approximation can be removed by an ICA algorithm obtained directly
from equation 1.2.

Under the one-to-one kurtosis sign-matching assumption, we can derive
a local search algorithm that is equivalent to maximizing the problem by
equation 1.2 directly. A prewhitening is made on observed samples such
that we can consider the samples of x with Ex = 0, ExxT = I . As a result,
it follows from I = ExxT = AEssT AT and EssT = I that AAT = I , that is,
A is orthonormal. Thus, an orthonormal W is considered to let y = Wx
become independent among its components by

max
WWT =I

J (W), J (W) =
n∑

i=1

km
i ν

y
i , (2.11)

where ν
y
i = Ey4

i − 3, i = 1, . . . , n, and km
i , i = 1, . . . , n are prespecified con-

stants with the same sign as the kurtosis νm
i . We can derive its gradient

∇W J (W) and then project it onto WWT = I , which results in an iterative
updating algorithm for updating W in a way similar to equations 3.17 and
3.18 at the end of section 3.3. Such an ICA algorithm actually maximizes
the problem by equation 1.2 directly by noticing y = Wx = WAs = Rs, R =
WA, RRT = I , and thus

ν
y
i =

n∑
j=1

r4
i jν

s
j , i = 1, . . . , n. (2.12)

That is, the problem by equation 2.11 is equivalent to the problem by equa-
tion 1.2. In other words, under the one-to-one kurtosis sign-matching as-
sumption, it follows from theorem 1 that all the sources can be separated
by an ICA algorithm in an exact sense as long as equation 2.12 holds.

However, theorem 1 does not tell us how such a kurtosis sign match-
ing is built, which is attempted via equation 1.1 through learning each
model pdf qi (yi ) together with learning W (Xu et al., 1996; Xu et al.,
1997; Xu et al., 1998b) as well as further advances given in Lee et al.
(1999) and Welling and Weber (2001) or by equation 103 in Xu (2003).
Still, it remains an open problem whether these efforts or the possibility of
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developing other techniques can guarantee such a one-to-one kurtosis sign-
matching either surely or in some probabilistic sense, which deserves future
investigations.

2.3 No Matching and Partial Matching. Next, we consider what hap-
pens when one-to-one kurtosis sign correspondence does not hold. We start
at the extreme situation with the following lemma:

Lemma 4 (no matching). When either νs
i > 0, km

i < 0,∀i or νs
i < 0, km

i > 0,∀i ,
J (P) has only one maximum that is not in En×n.

Proof. From equation 2.4 and lemma 1a, J (P) is strictly concave since
νs

j k
m
i < 0 for every term. Thus, it follows from lemma 1b that it has only one

maximum that is not at the extreme points of S.

Lemma 5 (partial matching). Given two unknown integers k, m with 0 <

k < m < n and provided that νs
i > 0 , km

i > 0 , i = 1 , . . . , k, νs
i km

i < 0 , i = k +
1 , . . . , m, and νs

i < 0 , km
i < 0 , i = m + 1 , . . . , n, every local maximum of J (P)

is reached at P by equation 2.5 with

P1 ∈ Em×k, P2 ∈ E(n−m)×(n−k), when νs
i < 0 , km

i > 0 , i = k + 1 , . . . , m;
P1 ∈ Ek×m, P2 ∈ E(n−k)×(n−m), when νs

i > 0 , km
i < 0 , i = k + 1 , . . . , m. (2.13)

Proof. When νs
i < 0, km

i > 0, i = k + 1, . . . , m, for each i ≤ m, we have
βi j = νs

j k
m
i > 0, j = 1, . . . , k and βi j < 0, j = k + 1, . . . , n, and it follows

from equation 2.7 and lemma 3a that p(i) = [e (i)
k : 0] with e (i)

k ∈ E1×k , for
i = 1, . . . , m. For each i > m, we have βi j < 0, j = 1, . . . , k and βi j >

0, j = k + 1, . . . , n, and we have p(i) = [0 : e (i)
n−k] with e (i)

n−k ∈ E1×(n−k), for
i = m + 1, . . . , n. Thus, we get P with P1 ∈ Em×k, P2 ∈ E(n−m)×(n−k).

The situation of νs
i > 0, km

i < 0, i = k + 1, . . . , m is just a swap of the
position (i, j). We can get P simply by matrix transposition.

Theorem 2. Given two unknown integers k, m with 0 < k < m < n, and
provided that νs

i > 0 , km
i > 0 , i = 1 , . . . , k, νs

i km
i < 0 , i = k + 1 , . . . , m, and

νs
i < 0 , km

i < 0 , i = m + 1 , . . . , n, every local maximum of J (R) on RRT = I

by equation 1.2 is reached at R =
[

� 0
0 R̄

]
subject to a 2 × 2 block permutation,

where � is a (k + n − m) × (k + n − m) permutation matrix up to sign inde-
terminacy at its nonzero elements, while R̄ is an (m − k) × (m − k) orthonor-
mal matrix with R̄R̄T = I , but usually not a permutation matrix up to sign
indeterminacy.
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Proof. Similar to the proof of theorem 1, we consider the effect of imposing
the orthogonal constraint Co in equation 2.2 to R by equation 2.8 with P by
equation 2.5 but P1, P2 by equation 2.13. We give more details for the cases
of νs

i < 0, km
i > 0, i = 1, . . . , k, for each i ≤ m, while the cases of νs

i > 0, km
i <

0, i = k + 1, . . . , m can be understood simply by matrix transposition.
Although the proof is similar to that for the proof of theorem 1, there

is a key difference. Considering the row rank, P1 ∈ Em×k is k < m, P2 ∈
E(n−m)×(n−m) is n − m, and thus P by equation 2.5 is k + n − m < n. Since a
permutation matrix remains a permutation matrix after any permutation,
without losing generality, we can say that the first k + n − m rows ofR are at
the rank k + n − m. Co will not only force the rest of the m − k columns of the
k + n − m rows to become 0 but also force every pi j ≥ 0 f or νs

j k
m
i > 0 in �i by

equation 2.10 to become type pi j = 0 in the rest of the m − k rows of R such
that the first k + n − m columns of the m − k rows also become 0. To keep Cn

in equation 2.2 satisfied, it has to be imposed on each row of the rest of the
m − k columns with all the (m − k) × (m − k) elements featured by νs

j k
m
i < 0.

As a result, we get R =
[

� 0
0 R̄

]
subject to a 2 × 2 block permutation. Being

the same as that in theorem 2, � is a (k + n − m) × (k + n − m) permutation
matrix up to sign indeterminacy, while for R̄, we have R̄R̄T = I from RRT =
I . Moreover, it follows from lemma 3a (ii) that the local maxima of J (p(i))
by equation 2.7 are reached at one p(i) not in E1×n. That is, R̄ is usually not
a permutation matrix up to sign indeterminacy.

In other words, there will be k + n − m sources that can be success-
fully separated in help of a local searching ICA algorithm when there are
k + n − m pairs of matching between the kurtosis signs of source and model
pdf’s. However, the remaining m − k sources are not separable. Suppose
that the kurtosis sign of each model is described by a binary random
variable ξi with 1 for + and 0 for −, that is, p(ξi ) = 0.5ξi 0.51−ξi . When
there are k sources with their kurtosis signs positive, there is a proba-
bility p(

∑n
i=1 ξi = k) of having a one-to-one kurtosis sign correspondence

even when model pdf’s are prefixed without knowing the kurtosis signs of
sources. Moreover, even when a one-to-one kurtosis sign correspondence
does not hold for all the sources, there will still be n − |
 − k| sources re-
coverable with a probability p(

∑n
i=1 ξi = 
). This explains not only why

early ICA studies (Amari et al., 1996; Bell & Sejnowski, 1995) work in some
cases while failing in other cases due to the predetermined model pdf’s,
but also why some existing heuristic ICA algorithms always work to some
extent.

2.4 Maximum Kurtosis versus Minimum Kurtosis. Interestingly, it can
be observed that changing the maximization in equations 1.2, 2.3, and 2.11,
into the minimization will lead to similar results, which are summarized in
lemma and theorem.
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Lemma 6.

a. When either νs
i > 0 , km

i > 0 ,∀i or νs
i < 0 , km

i < 0 ,∀i , J (P) has only one min-
imum that is not in En×n.

b. When either νs
i > 0 , km

i < 0 ,∀i or νs
i < 0, km

i > 0 ,∀i , every local minimum of
J (P) is reached at a P ∈ En×n.

c. For an unknown 0 < k < n with νs
i < 0 , km

i > 0 , i = 1 , . . . , k and νs
i >

0 , km
i < 0 , i = k + 1 , . . . , n, every local minimum of J (P) is reached at

P =
[

P1 0
0 P2

]
with P1 ∈ Ek×k, P2 ∈ E(n−k)(n−k).

d. For two unknown integers k, m with 0 < k < m < n with νs
i > 0 , km

i >

0 , i = 1 , . . . , k, νs
i km

i < 0 , i = k + 1 , . . . , m, and νs
i < 0 , km

i < 0 , i = m +
1 , . . . , n, every local minimum of J (P) is reached at P =

[
0 P1
P2 0

]
with ei-

ther P1 ∈ Ek×(n−m), P2 ∈ E(n−k)×m when νs
i > 0 , km

i < 0 , i = k + 1 , . . . , m or
P1 ∈ Em×(n−k), P2 ∈ E(n−m)×k when νs

i < 0 , km
i > 0 , i = k + 1 , . . . , m.

Proof. The proof is similar to those in proving lemmas 2 to 5. The key
difference is a shift in focus from the maximization of a convex function on
a polyhedral set to the minimization of a concave function on a polyhedral
set, with swaps between minimum and maximum, maxima and minima,
convex and concave, and positive and negative, respectively. The key point
is that lemma 1 remains correct after these swaps.

Similar to theorem 2, from the above lemma we get:

Theorem 3.

a. When either νs
i km

i < 0 , i = 1 , . . . , n or νs
i < 0 , km

i > 0 , i = 1 , . . . , k and νs
i >

0 , km
i < 0 , i = k + 1 , . . . , n for an unknown 0 < k < n, every local minimum

of J (R) on RRT = I by equation 1.2 is reached at a permutation matrix R up
to sign indeterminacy at its nonzero elements.

b. For two unknown integers k, m with 0 < k < m < n with νs
i > 0 , km

i >

0 , i = 1 , . . . , k, νs
i km

i < 0 , i = k + 1 , . . . , m, and νs
i < 0 , km

i < 0 , i = m +
1 , . . . , n, every local minimum of J (R) on RRT = I by equation 1.2 is reached

at R =
[

� 0
0 R̄

]
subject to a 2 × 2 block permutation. When m + k ≥ n, � is

an (n − m + n − k) × (n − m + n − k) permutation matrix up to sign inde-
terminacy at its nonzero elements, while R̄ is an (m + k − n) × (m + k − n)
orthonormal matrix with R̄R̄T = I , but usually not a permutation matrix up
to sign indeterminacy. When m + k < n, � is a (k + m) × (k + m) permuta-
tion matrix up to sign indeterminacy at its nonzero elements, while R̄ is an
(n − k − m) × (n − k − m) orthonormal matrix with R̄R̄T = I , but usually
not a permutation matrix up to sign indeterminacy.

In a comparison of theorems 2 and 3, when m + k ≥ n, comparing n −
m + n − k with k + n − m, more sources can be separated by minimization
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than maximization if k < 0.5n and by maximization than minimization if
k > 0.5n. When m + k < n, comparing k + m with k + n − m, more sources
can be separated by minimization than maximization if m > 0.5n, and by
maximization than minimization if m < 0.5n.

We further consider a special case that km
i = 1,∀i . In this case, equation

1.2 is simplified into

J (R) =
n∑

i=1

n∑
j=1

r4
i jν

s
j , n ≥ 2. (2.14)

From theorem 2 at n = m, we can easily obtain the following corollary:

Corollary 1. For an unknown integer 0 < k < n with νs
i > 0 , i = 1 , . . . , k and

νs
i < 0 , i = k + 1 , . . . , n, every local maximum of J (R) on RRT = I by equation

2.14 is reached at R =
[

� 0
0 R̄

]
subject to a 2 × 2 block permutation, where � is a

k × k permutation matrix up to sign indeterminacy at its nonzero elements, while
R̄ is an (n − k) × (n − k) orthonormal matrix with R̄R̄T = I , but usually not a
permutation matrix up to sign indeterminacy.

Similarly, from theorem 3 we also get:

Corollary 2. For an unknown integer k with 0 < k < n with νs
i > 0 , i =

1 , . . . , k and νs
i < 0 , i = k + 1 , . . . , n, every local minimum of J (R) on RRT = I

by equation 1.2 is reached at R =
[

R̄ 0
0 �

]
subject to a 2 × 2 block permutation,

where � is an (n − k) × (n − k) permutation matrix up to sign indeterminacy at
its nonzero elements, while R̄ is a k × k orthonormal matrix with R̄R̄T = I , but
usually not a permutation matrix up to sign indeterminacy.

According to corollary 1, k sources of supergaussian components are sep-
arated by maxRRT =I J (R), while n − k sources of subgaussian components
are separated by minRRT =I J (R) according to corollary 2. In implementation,
from equation 2.11, we get

J (W) =
n∑

i=1

ν
y
i . (2.15)

Then, from maxWWT =I J (W) we get k sources of super gaussian components
and from minWWT =I J (W) we get n − k sources of subgaussian components.
Thus, instead of learning one-to-one kurtosis sign matching, the problem
can be turned into one of selecting supergaussian components from y = Wx
with W obtained via maxWWT =I J (W) and of selecting subgaussian compo-
nents from y = Wx with W obtained via minWWT =I J (W). Though we know
neither k nor which components of y should be selected, we can pick those
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with positive signs as supergaussian ones after maxWWT =I J (W) and pick
those with negative signs as subgaussian ones after minWWT =I J (W). The
reason comes from ν

y
i =∑n

j=1 r4
i jν

s
j and the above corollaries. By corollary

1, the kurtosis of each supergaussian component of y is simply one of
νs

j > 0, j = 1, . . . , k. Although the kurtosis of each of the other components
in y is a weighted combination of νs

j < 0, j = k + 1, . . . , n, the kurtosis signs
of these will all remain negative. Similarly, we can find out those subgaus-
sian components according to corollary 2.

Anther corollary can be obtained from equation 2.11 by considering a
special case that km

i = sign[νy
i ],∀i :

max
WWT =I

J (W), J (W) =
n∑

i=1

∣∣νy
i

∣∣ . (2.16)

This leads to what is called a kurtosis extreme approach and extensions
(Delfosse & Loubation, 1995; Moreau & Macchi, 1996; Hyvarinen et al.,
2001), where studies began by extracting one source by a vector w and then
extracting multiple sources by either sequentially implementing the one-
vector algorithm such that the newly extracted vector is orthogonal to pre-
vious ones or implementing the one-vector algorithm on all the vectors of
W in parallel together with a symmetric orthogonalization at each iterative
step, as suggested by (Hyvarinen et al. 2001). In the literature, the success
of using one vector w to extract one source has been proved mathemati-
cally, and the proof can be carried easily to sequentially extracting a new
source with its corresponding vector w being orthogonal to the subspace
spanned by its previous ones. However, this mathematical proof is not ap-
plicable to the above symmetric orthogonalization-based implementation
of the one-vector algorithm in parallel with all the vectors of W. Actually,
what Hyvarinen et al., (2001) suggested can only ensure a convergence of
a symmetric orthogonalization-based algorithm but cannot guarantee that
this local searching-featured iterative algorithm will converge to a solution
that can separate all the sources, though experiments have usually been
successful.

When ν
y
i =∑n

j=1 r4
i jν

s
j holds, which is true only when the prewhitening

can be made perfectly, it follows from equation 2.16 that

min
RRT =I

J (R), J (R) =
n∑

i=1

n∑
j=1

r4
i j

∣∣νs
j

∣∣ , (2.17)

which is covered by lemma 2 and theorem 2. Thus, we can directly prove
the following corollary:
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Corollary 3. As long as ν
y
i =∑n

j=1 r4
i jν

s
j holds, every local minimum of the above

J (R) on RRT = I is reached at a permutation matrix up to sign indeterminacy.

Actually, it provides a mathematical proof on the success of the symmet-
ric orthogonalization-based implementation of the one-vector algorithm in
parallel on separating all the sources.

3 Combinatorial Optimization, Distribution Approximation, and
Stiefel Manifold

The combinatorial optimization problem by equation 1.3 has been encoun-
tered in various applications and still remains difficult to solve. Many efforts
have also been made in the literature of neural networks since Hopfield and
Tank (1985). As summarized in Xu (2003), these efforts can be roughly classi-
fied according to the features on dealing with Ccol

e , Crow
e , and Cb . Although

almost all the neural network motivated approaches are parallel imple-
mentable, they share one unfavorable feature: these intuitive approaches
have no theoretical guarantee on convergence to even a feasible solution.

Interestingly, focusing on local maxima only, equations 1.2 and 2.3 can be
regarded as special examples of the combinatorial optimization problem by
equation 1.3 simply by regarding pi j or ri j as vi j . Although such a linkage
is not useful for ICA, where we do not need to seek a global optimization, a
link from equation 1.3 to 1.2 and even 1.1 leads to two interesting questions.
Could we consider the combinatorial optimization by equation 1.3 from the
perspective of approximating one distribution by another simple model
distribution, as in equation 1.1? Can we replace the constraints Ccol

e , Crow
e ,

and Cb by the Stiefel manifold RRT = I for developing a more effective
implementation?

3.1 A Distribution Approximation Perspective of Combinatorial Op-
timization. Finding a global minimization solution of Eo(V) under a set
of constraints is equivalent to finding a global peak of the following Gibbs
distribution,

p(V, β) = e− 1
β

Eo (V)

Zβ

, Zβ =
∑

V

e− 1
β

Eo (V)
, (3.1)

subject to the constraints, since maxV p(V, β) is equivalent to
maxV ln p(V, β) or minV Eo(V). Usually this p(V, β) has many local maxi-
mums, so it is difficulty, to get the peak Vp. To avoid this difficulty, we use a
simple distribution q (V) to approximate p(V, β) on a domain Dv such that
the global peak of q (V) is easy to find and that p(V, β) and q (V) share the
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same peak Vp ∈ Dv , where Dv is considered using the following support of
p(V, β),

Dε(β) = {V : p(V, β) > ε, a small constant ε > 0}, (3.2)

under the control of a parameter β. For a sequence β0 > β1, . . . > βt , we
have Dε(βt) ⊂ . . . Dε(β1) ⊂ Dε(β0), which includes the global minimization
solution of Eo(V), since the equivalence of maxV p(V, β) to minV Eo(V) is
irrelevant to β. Therefore, we can find a sequence q0(V), q1(V), . . . , qt(V)
that approximates p(V, β) on the shrinking domain Dε(β). For a large βt ,
p(V, β) has large support, and thus q (V) adapts the overall configuration of
p(V, β) in the large domain Dε(β). As βt reduces, qt(V) concentrates more
and more on adapting the detailed configuration of p(V, β) around the
global peak solution Vp ∈ Dε. As long as β0 is large enough and β reduces
slowly enough toward zero, we can find the global minimization solution
of Eo(V). We adopt the following for implementing such a distribution
approximation:

min
p

K L(q , p), K L(q , p) =
∑

V∈Dv

q (V) ln
q (V)

p(V, β)
. (3.3)

Alternatively, we can also consider minp K L(q , p), which leads us to a
class of Metroplois sampling-based mean-field approaches. (For details,
see section II(B) in Xu, 2003.) Here, we consider only equation 3.3 with q (V)
in the following simple forms:

q1(V) = Z−1
1

∏
i, j

evi j ln qi j , 0 ≤ qi j ≤ ∞, Z1 =
∑
i, j

∏
i, j

evi j ln qi j ,

q2(V) =
∏
i, j

q vi j

i j (1 − qi j )1−vi j , 0 ≤ qi j ≤ 1, (3.4)

and from the constraints in equation 1.3, we have

Cc :
N∑

i=1

〈vi j 〉 = 1, j = 1, . . . , M, Cr :
M∑

j=1

〈vi j 〉 = 1, i = 1, . . . , N;

〈vi j 〉 =
{

qi j
Zi j

Z1
, for q1(V),

qi j , for q2(V),
Zi j =

∑
k �=i,l �= j

∏
k,l

evkl ln qkl , (3.5)

where 〈x〉 denotes the expectation of the random variable x. When N, M
are large, we have Zi j ≈ Z1, and thus 〈vi j 〉 ≈ qi j for the case of q1(V).
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Putting equation 3.4 into equation 3.3 and after certain derivations as
shown in Xu (2003), equation 3.3 becomes equivalent to

min
qi j

E({qi j }), subject to equation 3.5,

E({qi j }) = 1
β

Eo({qi j }) +
{∑

i j qi j ln qi j , for q1(V),∑
i j [qi j ln qi j + (1 − qi j ) ln (1 − qi j )]. for q2(V).

The case for q1(V) interprets the Lagrange transform approach with the
barrier

∑
i, j vi j ln vi j in Xu (1994) and justifies the intuitive treatment of

simply regarding the discrete vi j as an analog variable between the in-
terval [0, 1]. From this perspective, these analog variables are the param-
eters of the simple distribution that we use to approximate the Gibbs
distribution induced from the cost Eo(V) of the discrete variables. Subse-
quently, a discrete solution will be recovered from these analog parameters
of qi j .

Similarly, the case for q2(V) interprets and justifies the Lagrange trans-
form approach with the barrier

∑
i, j [vi j ln vi j + (1 − vi j ) ln (1 − vi j )] in Xu

(1995), where this barrier is intuitively argued to be better than the barrier∑
i, j vi j ln vi j because it gives a U shape curve. Here, this intuitive prefer-

ence can also be justified from equation 3.5 since there is an approximation
Zi j ≈ Z1 used for q1(V) while transforming vi j into qi j , but no approxima-
tion for q2(V). Moreover, both barriers are the special cases S(vi j ) = vi j and
S(vi j ) = vi j/(1 − vi j ) of a family of barrier functions equivalent to minimiz-
ing the leaking energy in the classical Hopfield network (Xu, 1995).

3.2 Lagrange-Enforcing Algorithms. A general iterative procedure was
proposed in Xu (1994) and then refined in Xu (1995) for minimizing E({qi j })
by considering the following Lagrange barrier costs:

E({qi j }) = 1
β

Eo({qi j }) +
M∑

j=1

λcol
j

[
N∑

i=1

qi j − 1

]

+ B(qi j ) +
N∑

i=1

λrow
i


 M∑

j=1

qi j − 1


 ,

B(qi j ) =
{∑

i j qi j ln qi j , q1(V),∑
i j [qi j ln qi j + (1 − qi j ) ln (1 − qi j )], q2(V).

(3.6)
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Following the derivation made in Xu (1994, 1995), it follows from ∂ E({qi j })
∂qi j

= 0
that

q e
i j =




1

e ai b j exp
(

1
β

∂ Eo ({qi j })
∂qi j

) , for q1(V),

1

1+ai b j exp
(

1
β

∂ Eo ({qi j })
∂qi j

) , for q2(V); ai = exp (λrow
i ) , b j = exp

(
λcol

j

)

(3.7)

when ∂ Eo ({qi j })
∂qi j

is irrelevant to qi j and ∂2 E({qi j })
∂2qi j

> 0. If other variables are fixed
at their old values, E({qi j }) is minimized at qi j = q e

i j , given by equation 3.7.
Thus, we can update

either q new
i j = q e

i j or q new
i j = q old

i j + η
(
q e

i j − q old
i j

)
, for a η > 0 small enough,

(3.8)

which will reduce E({qi j }) monotonically, since each q e
i j − q old

i j is the de-
scending direction of E({qi j }) along the coordinate qi j .

We can see that the constraints Cc, Cr are satisfied by q new
i j as long as they

are satisfied by both q old
i j and q e

i j . What needs to be done is to enforce

N∑
i=1

q e
i j = 1, j = 1, . . . , M;

M∑
j=1

q e
i j = 1, i = 1, . . . , N, (3.9)

which is achieved by an ENFORCING-LAGRANGE iteration loop, for ex-
ample, by iteratively solving the above N + M nonlinear equations with
respect to {ai }N

i=1, {b j }M
j=1 or equivalently finding {ai }N

i=1, {b j }M
j=1 that reaches

a global minimum (i.e., zero) of

P({qi j }) =
M∑

j=1

(
N∑

i=1

q e
i j − 1

)2

+
N∑

i=1


 M∑

j=1

q e
i j − 1




2

. (3.10)

As this ENFORCING-LAGRANGE loop converges, we have

∣∣∣∣∣∣
M∑

j=1

λcol
j

[
N∑

i=1

qi j − 1

]
+

N∑
i=1

λrow
i


 M∑

j=1

qi j − 1



∣∣∣∣∣∣ < ε (3.11)

for an arbitrarily small ε. Thus, the fact that equation 3.8 can reduce E({qi j })
monotonically is equivalent to being able to reduce 1

β
Eo({qi j }) + B(qi j )
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monotonically. When β becomes small enough, it is also equivalent to equa-
tion 3.8 reducing Eo(θ ) monotonically under equation 3.11, because B(qi j )
is bounded for qi j ∈ [0, 1].

In summary, we get the following iterative procedure that guarantees
convergence to a feasible solution that is a minimum of Eo({qi j }) and satisfies
Cc and Cr :

Step 0: Initialize {qi j } such that they satisfy the constraints Cc
e , Cr

e by equa-
tion 3.5,

Step 1: Get {q e
i j } by equation 3.7 and then call an inner ENFORCING-

LAGRANGE loop until it converges or terminates according to
a given checking criterion on the satisfaction of equation 3.11. It
results in a specific setting on ai , b j , j = 1, . . . , M, i = 1, . . . , N.

Step 2: Update q old
i j to q new

i j by using equation 3.8 either sequentially or in
parallel.

Step 3: Check whether the procedure converges according to a pregiven
criterion. If yes, stop; otherwise, go to step 1.

Based on the obtained {qi j }, we can get a discrete solution simply by a
threshold Th > 0 as follows:

vi j =
{

1, if qi j > Th,

0, otherwise,
and resolve a tie heuristically. (3.12)

Moreover, we can also consider explicitly the constraints Cc
e and get

vi j =
{

1, if j = arg maxk qik,

0, otherwise,
and resolve a tie heuristically. (3.13)

Similarly, we can also consider explicitly the constraints Cr
e , as well as both

Cc
e and Cr

e .

3.3 Stiefel Gradient Flow Algorithms. Alternatively, the study on
equation 1.2 via equation 2.3 motivates another way to handle the con-
straints Ccol

e , Crow
e , and Cb : let vi j = r2

i j , and then use RRT = I to guarantee
the constraints, Ccol

e , Crow
e as well as a relaxed version of Cb (i.e., 0 ≤ vi j ≤ 1).

That is, problem equation 1.3 becomes

min
RRT =I f or N≤M

Eo

({
r2

i j

}i=N, j=M

i=1, j=1

)
, R = {ri j }i=N, j=M

i=1, j=1 . (3.14)
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We consider the problems with

∂2 Eo(V)
∂vec[V]∂vec[V]T

is negative definite, (3.15)

or Eo(V) in a form similar to J (P) in equation 2.3,

Eo(V) = −
n∑

i=1

n∑
j=1

v2
i j a j bi , (3.16)

with ai > 0, bi > 0, i = 1, . . . , k and ai < 0, bi < 0, i = k + 1, . . . , n after an
appropriate permutation on either or both of [a1, . . . , an] and [b1, . . . , bn].
Similar to the study of equation 2.3, maximizing Eo(V) under the constraints
Ccol

e , Crow
e , and vi j ≥ 0 will imply satisfying Cb . In other words, the solutions

of equation 3.14 and equation 1.3 are the same. Thus, we can solve the hard
problem of combinatorial optimization by equation 1.3 using a gradient
flow on the Stiefel manifold RRT = I to maximize the problem by equation
3.14. At least a local optimal solution of equation 1.3 can be reached, with
all the constraints Ccol

e , Crow
e , and Cb guaranteed automatically.

To get an appropriate updating flow on the Stiefel manifold RRT = I ,
we first compute the gradient ∇V Eo(V) and then get G R = ∇V Eo(V) ◦ R,
where the notation ◦ means that[

a11 a12

a21 a22

]
◦
[

b11 b12

b21 b22

]
=
[

a11b11 a12b12

a21b21 a22b22

]
.

Given a small disturbance δ on RRT = I , it follows from RRT = I that the
solution of δRRT + RδRT = 0 must satisfy

δR = ZR + U(I − RT R), U is a m × d matrix and

Z = −Z is an asymmetric matrix. (3.17)

From Tr [GT
RδR] = Tr [GT

R{ZR + U(I − RT R)}] = Tr [(G R RT )T Z] + Tr [(G R

(I − RT R))TU], we get

Z = G R RT − RGT
R, U = G R(I − RT R), δR =




U(I − RT R) = U, (a)
ZR, (b)
ZR + U, (c)

Rnew = Rold + γtδR. (3.18)

That is, we can use one of the above three choices of δR as the updating
direction of R. A general technique for optimization on the Stiefel manifold
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that was elaborately discussed by Edelman, Arias, and Smith (1998) can
also be adopted for implementing the problem by equation 3.14.

4 Conclusion

The one-to-one kurtosis sign-matching conjecture has been proved in a
strong sense that every local maximum of maxRRT =I J (R) by equation 1.2
is reached at a permutation matrix up to a certain sign indeterminacy if
there is a one-to-one same-sign correspondence between the kurtosis signs
of all source pdfs and the kurtosis signs of all model pdf’s. That is, all the
sources can be separated by a local search ICA algorithm. Theorems have
been provided not only on partial separation of sources when there is a
partial matching between the kurtosis signs, but also on an interesting du-
ality of maximization and minimization on source separation. Moreover,
corollaries are obtained to state that seeking a one-to-one same-sign corre-
spondence can be replaced by using the duality; supergaussian sources can
be separated by maximization and subgaussian sources can be separated by
minimization. Furthermore, a corollary is obtained to provide a mathemat-
ical proof of the success of symmetric orthogonalization implementation of
the kurtosis extreme approach.

There still remain problems for study. First, the success of the efforts
based on equation 1.1 (Xu et al., 1996; Xu et al., 1997; Xu et al., 1998b; Lee
et al., 1999; Welling & Weber, 2001; Xu, 2003) can be explained as their abil-
ity to build up a one-to-one kurtosis sign matching. However, we still need
a mathematical analysis to guarantee that these approaches can achieve
this matching exactly or in some probabilistic sense. Second, a theoretical
guarantee on either the kurtosis extreme approach or the approach of ex-
tracting supergaussian sources via maximization and subgaussian sources
via minimization is true only when the prewhitening can be made perfectly.
It remains to be studied on comparison of the two approaches as well as
approaches based on equation 1.1. Also, comparison may deserve to be
made on convergence rates of different ICA algorithms.

Last, but not least, the linkage of the problem by equation 1.3 to equation
1.2 and equation 2.3, as well as equation 1.1, leads us to both a distribution
approximation and a Stiefel manifold perspective of combinatorial opti-
mization with algorithms that guarantee both convergence and satisfaction
of constraints, which also deserve further investigation.

Acknowledgments

The work was done in preparation for a possible RGC earmarked grant
(CUHK 417707E) to be supported by the Research Grant Council of the
Hong Kong SAR. A preliminary version of this work was presented as a
plenary talk at the Second International Symposium of Neural Networks
(Xu, 2005).



568 L. Xu

References

Amari, S., Chen, T.-P., & Cichocki, A. (1997). Stability analysis of adaptive blind
source separation. Neural Networks, 10, 1345–1351.

Amari, S. I., Cichocki, A., & Yang, H. (1996). A new learning algorithm for blind
separation of sources. In D. Toureteky, M. Mozer, & M. Hasselmo (Eds.), Advances
in neural information processing, 8 (pp. 757–763). Cambridge, MA: MIT Press.

Bazaraa, M. S., Sherall, H. D., & Shetty, C. M. (1993). Nonlinear programming: Theory
and algorithms. New York: Wiley.

Bell, A., & Sejnowski, T. (1995). An information-maximization approach to blind
separation and blind deconvolution. Neural Computation, 7, 1129–1159.

Cardoso, J.-F. (1998). Blind signal separation: Statistical principles. Proc. IEEE, 86(10),
2009–2025.

Cheung, C. C., & Xu, L. (2000). Some global and local convergence analysis on the
information-theoretic independent component analysis approach. Neurocomput-
ing, 30, 79–102.

Comon, P. (1994). Independent component analysis: A new concept? Signal Process-
ing, 36, 287–314.

Delfosse, N., & Loubation, P. (1995). Adaptive blind separation of independent
sources: A deflation approach. Signal Processing, 45, 59–83.

Edelman, A., Arias, T. A., & Smith, S. T. (1998). The geometry of algorithms with
orthogonality constraints. SIAM J. Matrix Anal. Appl., 20, 303–353.

Everson, R., & Roberts, S. (1999). Independent component analysis: A flexible nonlin-
earity and decorrelating manifold approach. Neural Computation, 11, 1957–1983.

Girolami, M. (1998). An alternative perspective on adaptive independent component
analysis algorithms. Neural Computation, 10, 2103–2114.

Hopfield, J. J., & Tank, D. W. (1985). Neural computation of decisions in optimization
problems. Biological Cybernetics, 52, 141–152.

Hyvarinen, A., Karhunen, J., & Oja, A. (2001), Independent component analysis. New
York: Wiley.

Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis
using an extended infomax algorithm for mixed subgaussian and supergaussian
sources. Neural Computation, 11, 417–441.

Liu, Z. Y., Chiu, K. C., & Xu, L. (2004). One-bit-matching conjecture for independent
component analysis. Neural Computation, 16, 383–399.

Moreau, E., & Macchi, O. (1996). High order contrasts for self-adaptive source sepa-
ration. International Journal of Adaptive Control and Signal Processing, 10, 1996.

Pearlmutter, B. A., & Parra, L. C. (1996). A context-sensitive genaralization of ICA. In
Proc. of Int. Conf. on Neural Information Processing, 151–157. Hong Kong: Springer-
Verlag.

Tong, L., Inouye, Y., & Liu, R. (1993). Waveform-preserving blind estimation of
multiple independent sources. Signal Processing, 41, 2461–2470.

Welling, M., & Weber, M. (2001). A constrained EM algorithm for independent
component analysis. Neural Computation, 13, 677–689.

Xu, L. (1994). Combinatorial optimization neural nets based on a hybrid of Lagrange
and transformation approaches. In Proc. of World Congress on Neural Networks (pp.
399–404). San Diego, CA.



One-Bit-Matching ICA Theorem and Distribution-Based Combinatorics 569

Xu, L., (1995). On the hybrid LT combinatorial optimization: New U-shape barrier,
sigmoid activation, least leaking energy and maximum entropy. In Proc. of Intl.
Conf. on Neural Information Processing (pp. 309–312). Beijing, China.

Xu, L. (1997). Bayesian ying-yang learning-based ICA models. In Proc. 1997 IEEE Sig-
nal Processing Soc. Workshop on Neural Networks for Signal Processing VII (pp. 476–
485). Piscataway, NJ: IEEE.

Xu, L. (2003). Distribution approximation, combinatorial optimization, and
Lagrange-barrier. In Proc. of International Joint Conference on Neural Networks 2003
(pp. 2354–2359). Piscataway, NJ: IEEE.

Xu, L. (2005). One-bit-matching ICA theorem, convex-Concave programming, and
Combinatorial optimization. In Advances in neural networks (pp. 5–20). Berlin:
Springer-Verlag.

Xu, L., Cheung, C. C., & Amari, S. I. (1998a). Further results on nonlinearity and
separtion capability of a liner mixture ICA method and learned LPM. In C. Fyfe
(Ed.), Proceedings of the International ICSC Workshop on Independence and Artificial
Neural Networks (pp. 39–44). Tenerife, Spain.

Xu, L., Cheung, C. C., & Amari, S. I. (1998b). Learned parametric mixture based ICA
algorithm. Neurocomputing, 22, 69–80.

Xu, L., Cheung, C. C., Yang, H. H., & Amari, S. I. (1997). Independent component
analysis by the information-theoretic approach with mixture of density. In Proc.
of 1997 IEEE-INNS International Joint Conference on Neural Networks (Vol. 3, pp.
1821–1826). Piscataway, NJ: IEEE.

Xu, L., Yang, H. H., & Amari, S. I. (1996, April). Signal source separation by mixtures:
Accumulative distribution functions or mixture of bell-shape density distribution func-
tions. Paper presented at the Frontier Forum, Institute of Physical and Chemical
Research, Japan.

Received January 18, 2005; accepted June 20, 2006.


