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Considering Factor Analysis (FA) for each component of Gaussian Mixture Model (GMM), clustering and
local dimensionality reduction can be addressed simultaneously by Mixture of Factor Analyzers (MFA)
and Local Factor Analysis (LFA), which correspond to two FA parameterizations, respectively. This paper
investigates the performance of Variational Bayes (VB) and Bayesian Ying-Yang (BYY) harmony learning
on MFA/LFA for the problem of automatically determining the component number and the local hidden
dimensionalities (i.e., the number of factors of FA in each component). Similar to the existing VB learning
algorithm on MFA, we develop an alternative VB algorithm on LFA with a similar conjugate Dirichlet-
Normal-Gamma (DNG) prior on all parameters of LFA. Also, the corresponding BYY algorithms are
developed for MFA and LFA. A wide range of synthetic experiments shows that LFA is superior to MFA in
model selection under either VB or BYY, while BYY outperforms VB reliably on both MFA and LFA. These
empirical findings are consistently observed from real applications on not only face and handwritten
digit images clustering, but also unsupervised image segmentation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mixture models [1,2], such as Gaussian Mixture Model (GMM)
[3,4], have been widely used in many applications. By exploiting
the Factor Analysis (FA) [5] in each Gaussian component, the
correlated high dimensional data can be represented by fewer
latent factors without requiring O(d*) parameters for each Gaus-
sian covariance matrix, where d is the dimensionality of the data.
The mixture model can be regarded as a constrained GMM, and
has been studied under the name of Mixture of Factor Analyzers
(MFA) [2,6] or Local Factor Analysis (LFA) [7,8] in the literature.
MFA and LFA separately employ two parameterizations of FA,
shortly called as FA-a that takes the form of a free factor loading
matrix and an identity covariance matrix for the latent factors, and
FA-b that constrains the factor loading matrix to be a rectangular
orthogonal matrix, and allows a diagonal covariance matrix for the
latent variables, respectively in [9].

Learning MFA/LFA includes parameter learning for estimating
all the unknown parameters and model selection for determining
the component number k and the hidden dimensionalities {h,-}f: 1-
Parameter learning is usually implemented under the maximum
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likelihood principle by an Expectation-Maximization (EM) algo-
rithm [1,10,11]. A conventional model selection approach is
featured by a two-stage implementation. The first stage conducts
parameter learning for each ke M to get a set of candidate
models, where k = {k, {h;}} for MFA/LFA. The second stage selects
the best candidate by a model selection criterion, e.g., Akaike's
Information Criterion (AIC) [12]. However, this two-stage imple-
mentation suffers from a huge computation because it requires
parameter learning for each ke M. Moreover, a larger k often
implies more unknown parameters, and then parameter estima-
tion becomes less reliable so that the criterion evaluation reduces
its accuracy (see Section 2.1 in [13] for a detailed discussion).

To reduce the computation, an Incremental Mixture of Factor
Analyzers (IMoFA) algorithm was proposed on MFA in [14] with
the validation likelihood as the criterion to judge whether to split
a component, or add a hidden dimension, or terminate. Although
such an incremental procedure can save the costs to some extent,
it usually leads to a suboptimal solution [13,15].

Another road is referred to as automatic model selection, which
starts from a large enough k, and has an intrinsic force to drive
extra structures diminished, and thus automatically determines k
during parameter learning. An early effort is Rival Penalized
Competitive Learning (RPCL) on GMM [16,17]. Two Bayesian
related approaches can be implemented with a nature of auto-
matic model selection. One is Bayesian Ying-Yang (BYY) learning,
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proposed in [18] and systematically developed in the past decade
and a half [13,15,19,20], which provides a general statistical
learning framework that can handle both parameter learning
and model selection under a best harmony principle. BYY is
capable of automatic model selection even without imposing any
priors on the parameters, and its performance can be further
improved with appropriate priors incorporated according to a
general guideline. The other is Variational Bayes (VB) [6,21]. It
tackles the difficulty in computing the marginal likelihood with a
lower bound by means of variational method, and an EM-like
algorithm is employed to optimize this lower bound. The model
selection of VB is realized by incorporating an appropriate prior
distributions on the parameters.

Recently, a comparative study [4]| was delivered on automatic
model selection by BYY, VB and MML (Minimum Message Length)
for GMM with priors over the parameters. Also in [9], FA-b shows
better model selection performance than FA-a under BYY and VB,
although FA-a and FA-b have equivalent likelihood functions.

This paper is motivated for an empirical investigation on the
automatic model selection performances of BYY and VB, based on
MFA and LFA, which actually correspond to Mixture of FA-a and
Mixture of FA-b, respectively. There exists a VB algorithm [6] for
MFA with a Dirichlet prior on the mixing weights, Normal priors
on the columns of the factor-loading matrix, and Gamma priors on
precision parameters. Following [4], we consider a full prior on all
parameters and adopt a Normal prior over the mean vector in each
component of MFA. For short, DNG is referred to the above
Dirichlet, Normal, Gamma priors. By slightly modifying the one
in [6], we obtain a VB learning algorithm with the DNG prior,
shortly denoted as VB-MFA. Also, a similar conjugate DNG prior is
considered on the parameters of LFA.

Moreover, we develop three automatic model selection algo-
rithms, namely the VB algorithm on LFA, or VB-LFA for short, and
the BYY algorithms on MFA and LFA, shortly denoted as BYY-MFA and
BYY-LFA respectively. With the conjugate property of the priors, the
BYY harmony measure is computed by directly integrating out the
parameters with respect to the Yang posteriors, instead of using
Taylor approximations as in [9]. The handled marginal density of
observed variable in each component is tackled by a lower-bound
approximation with the help of additional variables, leading to
products of multiple Student's T-distributions.

The performances of automatic model selection are extensively
compared on a wide range of randomly simulated data, via
controlling the hardness of tasks by varying the dimension of
data, the number of samples, the true number of components, and
the overlap degree of components. The simulated results show the
following empirical findings. First, LFA gets better performance
than MFA under either VB or BYY, which echoes the advantages of
FA-b over FA-a observed in [9]. Second, BYY outperforms VB on
both MFA and LFA, and in most cases BYY-LFA performs the best.
Also, we apply these algorithms to not only clustering face and
handwritten digit images, but also unsupervised image segmenta-
tion on real world images. The results are consistent with the
observations from simulated experiments.

The main contribution of this paper can be summarized in two-
fold. First, three algorithms, i.e, the algorithm of VB based LFA with
Dirichlet-Normal-Gamma (DNG) prior, denoted by VB-LFA, the
algorithm of BYY based LFA with DNG prior, denoted by BYY-LFA,
and the algorithm of BYY based MFA with DNG prior, denoted by
BYY-MFA are derived in detail. Second, based on the algorithms,
we empirically compared by extensive experiments the two types
of clustering of factor analysis models, i.e., LFA and MFA, as well as
two types of automatic model selection strategies, i.e., VB and BYY.

The remainder of this paper is organized as follows. Section 2
introduces MFA/LFA and their DNG priors. We introduce the
automatic model selection algorithms with the DNG priors by

BYY in Section 3, and by VB in Section 4. Experimental compar-
isons are conducted via a wide range of synthetic datasets and real
applications in Section 5. Finally, concluding remarks are made in
Section 6.

2. Models and priors
2.1. Model parameterizations

In a mixture model, the distribution q(x|®) of a d-dimensional
observed random variable x is a mixture of several local distribu-
tions q(x|i,®), with each named as a component:

k
q(X|®) = ‘21 aig(X|i,0;) with ©={a} U {0:}, 1
1=
where k is the component number, {¢;} are mixing weights with
Zf-‘: ;i =1 and each «; > 0, and 6; denotes parameters of the ith
component. Here and throughout this paper, q(-) is referred to as a
generative distribution, likelihood or prior, while p(-) is referred to
as a posterior distribution.

If each component is a Gaussian distribution, i.e., q(X|i,®) =
G(X|p;, Zy;) with mean p; and covariance matrix Zy;, q(X|®) by
Eq. (1) becomes the widely used Gaussian Mixture Model. For a
full matrix XZ,;, there are 0.5d(d+1) free parameters to be
estimated, whose accuracy is difficult be guaranteed for a small
sample size. One way for tackling this problem is to impose certain
constraints on X,; with a Factor Analysis model, i.e.,

qx1y,i,0;) = GXIAY +p;, W),  qYi,0;) = G(Y|0, Zy),
qx|i,0;) = /Q(le, 1,0:)q(y1i, 6;) dy = G(X|;, AiZyA] + W), ()

where we introduce a hidden factor y in an h;-dimensional
subspace with h; < d, and constrain ¥; to be diagonal. FA actually
factorizes Z; to be Z,; = Aizy,,»Al-T +W¥; with fewer free parameters.

To reduce the indeterminacies of the FA by Eq. (2), two parameter-
izations of FA are typically used, called as Mixture of Factor Analyzers
(MFA) [2,6] and Local Factor Analysis (LFA) [7,8] respectively, with their
corresponding mixture models by Eq. (1) summarized in Table 1. The
two FA parameterizations have equivalent likelihood functions by
Eq. (2), and thus they have the same model selection performance in a
two-stage implementation with AIC or BIC [22]. However, it was found
that they result in different model selection performances under BYY
[23], and a recent study [9] provided systematic empirical findings on
how parameterizations affect model selection performance under not
only BYY but also VB. Moreover, the differences of two parameteriza-
tions on model selection performance have been further analytically
investigated in Section 2.2 of [20]. In this paper, we proceed to
investigate the automatic model selection performances of MFA/LFA
under BYY and VB.

Moreover, when each diagonal covariance ¥; in Table 1 is
constrained to be spherical, i.e., ¥;=w;l;, MFA and LFA will
degenerate to Mixture of PCA [11] and Local PCA [8], respectively.

Table 1
MFA v.s. LFA: similarity and difference. MFA and LFA are actually mixtures of FA-a
and FA-b in [9], respectively.

Model: MFA (mixture of FA-a) LFA (mixture of FA-b)

Parameters 6;:  {App;, Wi} (Ui, Ay, i, Wi}

Same: W; is d x d diagonal W, is d x d diagonal

Different: A; is general d x h; U; is orthogonal, i.e, UTU; =1y,
A; is diagonal, A; =diag[4;, ..., 4]

q(yli,0;): G(yl0,1;) G(yl0,Ay)

qxly.i,6;): GXIAY +pi, i) GX|U;y +p;, ¥i)

q(xi, 6y): G(Xu; AAT + ;) G(xp;, UiAUT + )
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Additionally, MFA/LFA can be reformulated by introducing a
binary variable set Z = {z;}}_, corresponding to the i.i.d. samples
Xn = (X}N_ ;. In each z;, we have each ith element z; € {0,1} and
Yk_ .z =1, and z; = 1 iff X, is generated from the ith component.
The generative process of an observation X; is thus interpreted as
three steps: (1) sample z; from a Multinomial distribution
described by a =[ay, ..., ]", i.e., z: ~ Multinomial(a); (2) generate
hidden variable y from a Gaussian subspace, i.e., y ~ [];q(yli, 0;)";
(3) generate X, from a Gaussian conditional on y, ie., X;~
T1:q9(Xly. i,0;)*. Therefore, we have the following joint probability:

Nk
qXn.Y,Z|0) = H] _H1 [aiq(Xcly, i,0)q(Y i, 0. 3)
t=1i=

Given a set of observations Xy, supposing that the component
number k and the local hidden dimensionalities {h;} are given, one
widely used method for parameter estimation is the maximum-
likelihood learning, which can be effectively implemented by the
well-known Expectation-Maximization (EM) algorithm [1]. Model
selection on LFA/MFA is to appropriately determine both the
component number k and the local hidden dimensionalities
{h,—}f—‘: ;, or shortly to determine the tuple k = {k, {h,-}f-‘: 1}, on which
the maximum likelihood principle fails to give a good guide [13].

2.2. The conjugate Dirichlet-Normal-Gamma priors

Considering the parameters with appropriate prior distribu-
tions can provide helpful learning regularization and also improve
model selection performance [13]. Such empirical studies have
been conducted on GMM with either the improper Jeffreys prior or
the conjugate Dirichlet-Normal-Wishart prior under BYY, VB and
MML [4], and also on FA with Normal-Gamma prior under BYY
and VB [9]. This section considers similar prior distributions on
parameters @ =a U {Hi}f‘zl of MFA or LFA in Table 1, where the
Dirichelet distribution D(«|A, &) takes the form,

T (rk[ (1?-'1), @

1:11—‘(‘5}%) =1

with the constraints 4 =[4;, ..., 4], Y4 =1, ¥4 = 0.

For MFA, we consider a Dirichlet prior on the mixing weights
a=[ay,...,a]", a Normal prior on each component's mean vector
u;, an independent Gamma prior on the diagonal elements of

D(a|4,&) =

Table 2

The Dirichlet-Normal-Gamma priors on MFA and LFA with hyper-parameters
E=1{A,&p) U (E)F_,. Priors on MFA/LFA are described in the two big columns
respectively, whose differences are highlighted with gray color. The “distr.”
columns indicate the distribution types for clarity, with “D” for Dirichlet, “N” for
Normal, and “G” for Gamma, respectively.

MFA LFA

O=a U (0});, 0; = {Ai,p, Wi}
@i =¥"; A% jth column vector of A;

O=a U {0};, 0; = Uy, Ay, u;, W)
vi=A7 ' @i =Y

8 = {m;, {af;, by}, (a5, b)) 8 = {m;, {af;, by, (aj;, by )
prior distr. prior distr.
k k

q(©) =q(a) ‘l'Il q(0) DNG 4(0)=4q(@) ‘l'Il q(0) DNG

1= 1=
q(a) =D(ali. &) D q(a) =D(ali, &) D
q(0;) = q(u)q(@)a(Ai) NG q(0) = q(u)q(@)q(vi) NG
q(u;) = Gu;\my, 14 /) N qp;) = Gu;lmy, 14 /) N

d : d :
ae)=T1 (! af. bf) G ae) =TI rllag.bf) G
i= i=

h; . A h; .
q(Ails) = Hl GA10.14/c)) N qw) = H1 refia,by) G
i= i=

hi .
a) = TI 7' 1ag, by d
j=1

@; =% 1, where qo,@ is the jth diagonal element in ¢;. Moreover, a
hierarchical Normal-Gamma prior is assigned on each jth column
A" of A;, where A a priori comes from a zero-mean Normal
distribution with a covariance lI/g;, and ¢; further follows a
Gamma prior. We use I'(-|a,b) to denote the Gamma distribution
with a shape parameter a >0 and an inverse scale parameter
b > 0. The whole q(®) is shortly denoted as DNG with details given
in the left of Table 2. A DNG prior was considered on MFA under
VB in [6] without q(u;). Based on the observations in [4] that a full
prior helps to improve model selection performance, in this paper
we consider the full DNG prior with q(g;).

For LFA, we consider a similar DNG prior on © in the right of
Table 2, with the parts different from MFA highlighted by gray
color. Therein, each orthogonal matrix U; is considered without
any prior, instead of adopting the q(U;) used in [9] because it is
irrelevant to U; and thus not helpful for automatic model selection.
The differences in q(®) actually come from the parameterizations.
Therefore, the q(®) for LFA is also called DNG prior in this paper
without ambiguity. For both MFA and LFA, the DNG prior is
conjugate [6,11] to the generative process described in Eq. (3).

In the sequel, we may use short notations af :[a:./’],...,a;’{’j]T,
by =[bf;,....b5l", af =[af), ....,a5 1, bf =[bf,...b5 1", af =[ay, ...,
a, 1" and by =[bj;, ..., bj, ]" for expression convenience.

3. BYY algorithms for learning LFA versus MFA
3.1. Bayesian Ying-Yang (BYY) harmony learning

Firstly proposed in [18] and systematically developed over a
decade and a half [13], Bayesian Ying-Yang (BYY) harmony learn-
ing theory is a general statistical learning framework that can
handle both parameter learning and model selection under a best
harmony principle, which provides a favorable new mechanism
for model selection.

The BYY harmony learning is featured by seeking the best
harmony between the Ying- Yang pair in a BYY system. The BYY
system consists of Yang machine and Ying machine, respectively
corresponding to two types of decompositions, namely Yang
pRX)p(X) and Ying q(X|R)q(R), where the observed data X is
regarded as generated from its inner representation R = {Y, ®} that
consists of latent variables Y and parameters @, supported by a
hyper-parameter set E. The harmony measure is mathematically
expressed as follows [13,15,19]:

H(pl|q.E) = / PRIX)PXOXIR)GR)AX dR. 5)

Maximizing H(p||q, E) leads to not only a best matching between
the Ying-Yang pair, but also a compact model with a least
complexity. Different from VB model selection that bases on an
appropriate prior q(®|Z) (see Section 4 for the details of the prior
in VB), BYY harmony learning by Eq. (5) bases on q(R)=
q(Y|®)q(®|E) to make model selection, where q(Y|®) plays a role
that is not only equally important to q(®|E) but also easy
computing, and q(®|E) is still handled in a way similar to VB.
Moreover, maximizing H(p||q, ) is implemented with the help of
the general two-stage iterative procedure shown by Fig. 6 in [19]
(also see Egs. (6) and (7) in [8]). The first stage estimates Z (usually
via estimating ©) by an optimization of continuous variables,
while the second stage involves a discrete optimization on one
or several integers that index candidate models. Here, we only
consider the first stage where automatic model selection actually
performs, though the second stage may be also considered to
further improve the model selection performance with much more
computing costs.
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BYY harmony learning leads to improved model selection via
either or both of improved model selection criteria and algorithms
with automatic model selection. Such a merit can be intuitively
understood as follows [13]:

H(plIg) = / pX)ln g(X) dX = H(plip) — KL(pl|q). ®)

Thus, besides the Kullback-Leibler divergence, a system entropy
term H(p||p) is also incorporated into the BYY objective function.
By contrast, VB tries to maximize the marginal likelihood by
minimizing only the Kullback-Leibler divergence. It is the term
H(p||p) that makes the BYY harmony learning possess automatic
model selection ability, even there is no prior on the parameter.
More specifically, to estimate some mixture model such as the
MFA, with the help of H(p||p) the BYY harmony learning takes the
following E-step which compared with the conventional EM
algorithm has an extra term A as follows [13]:

pjr =Dyl + 4. (7)

By such a regularization term 4;; (see also (A.9) in Appendix A),
the updating on the jth component shares somewhat a similar
updating to the rival penalized competitive learning (RPCL)
[16,17], and thus realizes automatic model selection.

On MFA and LFA with the DNG priors in a conjugate manner,
there is still no detailed automatic model selection algorithm
available for implementing BYY harmony learning, and thus this
section targets at developing such algorithms.

3.2. BYY algorithm for learning LFA with DNG prior

For LFA, we consider the Ying machine as q(X,R)=qX,Y,
Z|10)q(®), with R={Y,Z, 0}, q(X,Y,Z|®) given in Eq. (3) and q(®)
given in the right of Table 2. In the Yang machine, we consider p(X)
as the empirical distribution, i.e., p(X) = 8(X—Xy), and the Yang-
pathway p(R|X) as

PRIXy) =p(OIZ,Y, Xn)P(YIZ, Xn)P(ZXn),
k h; .
POIY.Z.Xn) = p(@iZXy) [T {pwiz,xw) T1 pe7'IY.Z.Xw)
i= j=

< S
X ‘H1p(€0,‘ IY,Z,Xyn) |,
ji=
k N . »
p(YIZ,Xn) = ~H1 H]p(y\l,xf)z",
=1t=

k N
p@Xw)= II T1 plix™. ®)

Particularly, in accordance with the variety preservation prin-
ciple (see Section 4.2 in [13]), the details of p(®|Y,Z, Xy) are
further designed as the following posteriors in the DNG form by
utilizing the conjugate property:

P(@/Z. Xy) = D(@ld*. £+ N),
N -1
POuIZ. Xoy) = c<u,-mi: [ﬂm ( ) z,-t)diag(a;”@bz”)} )
t=
. . 1N B}
pOV.Z X0 =1 (Wiey+g T zbf ).
t=1
) ) 1X 4
P2 X0 =1 (o1 5 X 20bi). ©
t=

where {1*, m}, b;;”, b;‘;"'} are free hyper-parameters to be optimized.
Therein and throughout this paper, we use symbols “@” and “©”
to denote the Hadamard (element-by-element) division and pro-

duct respectively.

The p(i|x;) in Eq. (8) is constructed as the Bayesian posterior of
q(X¢, 1), i.e., p(i|X¢) oc q(X¢, i), where the q(x,1) is computed by

qXe, i) = /Q(Xt,il@)Q(@)) de = 4iq(X[i), (10)

Qi) = / 4% 1i,0)q(0;) d; = / QXY 1,699V, 11.6)q(0)) dy, do;.
(11

with 0; = {u;,v;, @;}. However, it is difficult to directly compute the
above integral over {6;,y,} for an analytical q(x;|i). Therefore, q(x;|i)
is sequentially approximated by lower-bounds according to Jen-
sen's inequality, i.e.,

qxli) > / d(X1i.0)q(60;) d6; = / GXili. 21, @) a@)q(@:) do do,
(12)

which leads to the marginal q(x|i) as a product of several Student's
T-distributions in Eq. (A.1) in Appendix A, where

G(keli,0) = exp{ / G ¥ ) In wdy} (13)
Cyl¥i 2D
GOeli. i) = exp{ | G =) in L’(X'w’q(’”du} (14)
: G(ﬂi\ﬂitszi )

and (§;. 2, ﬁ}‘t,i‘i‘x} are assistant variables which can be updated
by maximizing the above lower bounds with the details referred to
Appendix A.

Similarly for p(y|i,X;), we can also obtain a product of multiple
Student's T-distributions, which however makes the subsequent
integrals in the harmony measure difficult. We further approx-
imate it by the following Gaussian according to the property of
Student's T-distribution [24]:

PYIXe, i) ~ GYIW;(Xe — i), IT;),
W; =mU/D;, D;=diagl@’+}1)0(b! +} diag(i?y))],
11; = [UIDU; + diag(at@b!)] ', (15)

where /i, and f:?y can be updated for a better approximation given
the parameters. The details are referred to Appendix A.

Putting Eq. (8) into Eq. (5), the harmony measure on LFA
becomes

HIP (U, 2) = / SP(OIZ.Y. X )p(YIZ Xy)p(ZIX)
Infg(Xy|Y. Z. ©)q(Y|Z. ©)q(ZI®)q(@|D)] dY dO. (16)

By further substituting the details of Egs. (9)-(15) into Eq. (16), we
obtain the following lower-bound:

H*A(U;), 8) = HA(U;), 8, 2%), (17)

where the detailed expression of H"A({U;},E,E%) is given by
Eq. (A.5) in Appendix A. The best harmony principle is approxi-
mated by maximizing H*({U;}, E, 2*) with respect to the prior
hyper-parameters E = {4, &, (m;}, 3, {ag, by, {afjf, b}j-}} and the poster-
ior hyper-parameters * = {A*, {m}}, {b};'}, {b:;"’}}. The derived algo-
rithm is sketched in Table 3 and shortly denoted as BYY-LFA, with
details referred to Appendix A.

The above checking on whether to discard dimension j in
component i is actually observing whether the jth diagonal
element of A; tends to zero and thus the corresponding dimension
of y can be discarded. Following Section 2.2 of [20], e.g., its Eq.
(36), this checking can be further improved by the nature of the
co-dim matrix pair of each FA model.
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Table 3
BYY algorithm on LFA with DNG prior (BYY-LFA).

—

Jpyy (1) = — 00}
repeat

Ying—step : With Vy,H"™ by Eq. (A.8), update each U; via
UM = U2 vy, A — U2 (v HEAY U2,
Update E* = (2¥, m},b}",b}”} in a gradient way by Eq. (A.7).

®fori=1,...,k do
if 27 or 4;—0 then discard component i, let k=k—1;
forj=1,...,h; do
b

if another 5 runs pass then let r =+ 1: calculate Jgyy (1) = H** by Eq. (A.5);
13 until Jgyy (1) —Jpyy(r—1) < efgyy(r—1), with e=10"5;

Initialization: Randomly initialize the model with large enough number k of components and hidden dimensionalities {h;}; set =0 and the harmony measure

Yang—step : Update assistant variables {§;.£}} by Eq. (A.3), {ﬁ.i‘,-‘x) by Eq. (A.2), and {ﬁ{[,i‘.’;y) by Eq. (A.4). Calculate p(i|x;) by Eq. (A.1), e;; and €; by Eq. (A.6).
H-step : In a gradient way, update {4,¢&, f} U {m;} by Eq. (A.10),{a?,b}} by Eq. (A.11), and {af,b} by Eq. (A.12).

. by : s L . B
12 {1f PSSy ST or a—,,,—>0 then discard dimension j in component i, let h; = h; —1;

3.3. BYY algorithm for learning MFA with DNG prior

Learning on MFA can be made in a similar way. The main
differences come from the parameterizations on the factor loading
matrix and the factor covariance matrix, and their corresponding
prior distributions, as shown in Tables 1 and 2.

The Ying machine is represented by replacing the counterparts
of LFA with the ones of MFA, i.e., getting q(X,Y,Z|®) in Eq. (3) by
the left column of Table 1 and q(®) by the left part of Table 2. In
Yang machine, we still consider the empirical distribution
p(X) = 6(X—Xy), but the Yang-pathway p(R|X) is factorized in a
form slightly different from Eq. (8):

PRIXy) = POIZ Xn)P(Y|Z X, (ADPEIXn),
k d G
POIZ.Xn) = p(alZ.X) TT § PelZ. X - TT o2 X)
i= ji=

h; . .
- TI DA 1Z, Xn)p(c) 12, an},
j=1

k N
p(Y|1Z, Xy, {Ai) = TI H] P(YIL X, Aj)e, (18)
i=1t=
where p(Z|Xy) is expressed in the same form as the one in Eq. (8).
We proceed to the detailed expressions of p(®|Z, Xy) according to
the conjugate property of the DNG priors on MFA. Particularly,
Eq. (8) is modified accordingly by replacing p(u?)\Y, Z,Xy) with the
following equations:
) e N -1

PA|Z, Xy) = G <A§*”|AE*“, [agj /b5l + (El zit) diag(af@b}”)} >

; d
p(e)1Z.Xy) = r(gﬁ”\afjﬁ b?}g)’ 19

where {A_E*}),bzg,b?}”} are free hyper-parameters to be determined.

Similar to Eq. (10), the p(i|X;) is constructed by the Bayesian
posterior, i.e., p(i|X;) oc q(X;,i). The q(x¢|i) for MFA can also be
approximated via Egs. (12)-(14), where §(X¢|i,¥;, @;) is substituted
by q(x:|i,A;,@;), and then Eq. (12) is computed by integrating
qx:|i, A;, )q(&;)q(@;) with respect to A;, &;, @;, leading to a different
q(X¢|i) which is also a product of multiple Students T-distributions.
Moreover, the p(y|i, X, {A;}) is approximated by Eq. (15) with slight
modifications: replacing U; and diag@’@b;) with A; and Iy,
respectively.

Putting the above specifications of Ying-Yang machine into
Eq. (5), we obtain a lower-bound HM™%(g,=*) analogous to
HMA({U;}, E, %), and also a corresponding BYY-MFA algorithm to

maximize HYf(g, %) via modifying the counterparts of BYY-LFA
according to Egs. (18) and (19). Readers are referred to [25] for
details.

It should be noted that the p(0;|Y,Z,Xy) is considered to have
a conjugate Normal-Gamma form, whereas it was approximated
by a 2nd order Taylor expansion in [9] (see Eqgs. (13)-(17) and
Table B1 in [9] for details), although the prior q(@;) on each
component's parameters 6; in Table 2 is the same as those in [9].
Therefore, when the mixture model in Eq. (1) degenerates to only
one Gaussian component represented by FA in [9], i.e., k=1, the
BYY-LFA and BYY-MFA here actually provide alternative BYY
learning algorithms for FA-a and FA-b, being different from the
algorithms derived in [9].

4. VB algorithms for learning LFA versus MFA

With proper incorporation of prior knowledge on model para-
meters, Bayesian model selection is implemented via the max-
imum marginal likelihood, which is obtained by integrating out
the latent variables Y and the parameters O, ie., qXy)=
Ja(Xn.Y|©)q(®) dY dO. However, the involved integration is
usually very difficult. Variational Bayesian [6,21] tackles this
difficulty via constructing a tractable lower bound for the log
marginal likelihood by means of variational methods, and an EM-
like algorithm is employed to optimize this lower bound. More
precisely, the lower bound is given as follows:

o a1 AKX, YIO)QOIE)
E¥ E)= 0,YE) In-———"—-"—"""dY d®
I8~ [ p.¥i= In IS
7 e DOY[E)
—In g(Xn|E —/ 0,Yi=9) In 2O YIE) iy e, 20
axniz)— [ p@. Y= In FEGCE L 20)

where Y represents all hidden variables, e.g., {Y,Z} in Eq. (3) for
MFA/LFA, q(®|E) is a prior on parameters ® with hyper-parameters
E, and p(®,Y|E%) is a variational posterior with hyper-parameters
E* to approximate the exact Bayesian posterior p(®,Y|Xy,E) oc
q(Xn,Y|®)q(®|=). It follows from Eq. (20) that the lower bound
Jyg(E*, E) is tight to In q(Xy|ZE) when p(0,Y|E*) =p(0,Y|Xy, E). For
computational convenience, q(®|€) is usually chosen to be con-
jugate priors, and p(®,Y) is usually assumed to be afactorized form
p(©,Y) =pY)[]ip(®;) with ® = | J;0;, so that maximizing Jys makes
the variational posterior p(®) to be conjugate, i.e., in the same
form as the corresponding prior.

There is already a VB learning algorithm on MFA proposed in
[6], where the prior on 6; is q(6;) = q(@;)q(A;), without considering
the prior on g;. In this paper, the DNG prior in Table 2 considers a
Gaussian distribution q(u;) for u;. Then, the corresponding VB
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algorithm (shortly denoted as VB-MFA) can be obtained through
slightly modifying the one in [6] by replacing g; with m} when
updating other parameters, and additionally update the following
variational posterior for y;:

P(u) = Gy, =) oc Ep[In[g(Xy, Y. Z|©)q(O)]], 21

where E,[-] denotes expectation with respect to the current
estimate of all variational posteriors p(Y|Z)p(Z)p(®) except p(u;).

There is no VB algorithm available for LFA with DNG prior, yet
there is a VB algorithm presented in [9] on FA-b, a degenerated
case of LFA with k=1. Following [6], the joint posterior is assumed
to be approximately factorized as the following variational poster-
ior:

p(Y,Z,0|Xn) ~ p(Y|Z)p(Z)p(®),
k h; . d .
PO)=p@ I] [P(uf) T P s p((,,p)} 22)
1= 1= ]=

and then the variational lower bound becomes

q9X.Y,Z|©)q(®)

A _ [ yzpa 1{7
A / P Zp@p©) In| SIS

} dY dz dX de. (23)

Table 4
Four series of experiments for MFA/LFA model selection.

Starting case (N,d,k*,p)=(300,10,3,0.1)

Series 1 Vary N € {300,290, 280, ..., 100} and fix d, k*, 8
Series 2 Vary d € {10,12,14,...,30} and fix N, k*,
Series 3 Vary k* €{3,4,5,...,15} and fix N.d, g

Series 4 Vary ge{0.1,0.2,...,1.5} and fix N,d, k*

Its maximization leads to the following conjugate form:
k N kK N e
p@) = 4H1 tH]pig‘, p(Y1Z)= -H1 tHI GV 27,
1= = 1= =

pl@) = D(@|A*, &),  pu) = Gl imi, ),

pe)=re{ @ . by, pel) = 1a. b’ (24)

An EM-like algorithm is given in Appendix B, for maximizing [\

with respect to the variational parameters {{p;.,¥7}.. = }’f:l that

1
describe the posterior distribution on Y U Z, and the variational
hyper-parameters * = {*, &, {m¥, £}, {a¥¥ bj]‘-”}u,{a*'” b?“”}u} that

i X i i Vi
describe the posterior on @.

5. Experimental results

Since the values of the hyper-parameters Z are usually
unknown and it is not good to assign one for all data by guess,
the algorithms are implemented to adjust & under their own
learning principles. Moreover, it has been demonstrated in [4] that
the performance of VB will be improved when the {m;} of Table 2
are constrained to be the same, i.e., Vi, m; = m, with the number of
free hyper-parameters reduced, and thus VB is here implemented
with m; = m too. Still, no constraints are imposed on {m;} for BYY
algorithms.

5.1. Comparisons on four series of simulations

Each dataset is generated according to MFA or LFA in
Tables 1 and 2. For each component i, we set the hidden
dimensionality hi =5, and the mixing weight a; = 1/k*, where
k* denotes the true component number. The remaining para-
meters are randomly generated according to the Normal-Gamma

distributions given in Table 2, with aj; = b5 =3, a; =10, bj; = 200,
and a;; = b;;f =10, Vi,j.

To cover a wide range of experimental conditions, we vary the
values of the sample size N, the observed data dimensionality d,
the true component number k* and the overlap degree g of
Gaussian components, where increasing g indicates that the
degree of separation of the components changes from large to
small. Generally speaking, it becomes more difficult in model
selection as N decreases, d increases, k* increases, and g increases.

We consider four series of experiments specified in Table 4.
Starting from a same point in the 4-dimensional factor space, each
series varies one factor of (N,d, k", ) while fixing the remaining
three. For each specific setting, 500 datasets are generated
independently, and all algorithms are initialized with a same
component number 25 and a same hidden dimensionality 9. We
compare the resulted k U {h;}¥_, with the true k* U {h;“}f:] with
each hf = 5. The model selection accuracies are reported in Fig. 1
as percentages of correctly obtaining k =k* and h; = 5(Vi) out of
500 independent runs.

Fig. 1 shows that all algorithms perform well at the starting
case, and then decline as the experimental environment deterio-
rates. Particularly, we observe:

1. LFA is shown to be superior to MFA in model selection, under
either BYY or VB. This observation is consistent to the empirical
findings on FA in [9]. Specifically, the superiority of LFA is less
obvious in the cases of small N, or large k*, 8, because both LFA
and MFA get bad performance on these extreme cases. The
reason may be due to the fact that y in MFA processes an
identity covariance matrix, which can be taken as a special case
of that of LFA. Thus, LFA is more flexible than MFA to
accommodate different types of data. Moreover, the LFA is
better than MFA in terms of providing one additional room for
model selection via estimating A. Compared with adding priors,
G(y|0,A) is more reliable and easier to be estimated from data.

2. On either LFA or MFA, BYY greatly outperforms VB for all the
cases except the one k=7 in series 3. Although VB-LFA
benefits from the superiority of using LFA instead of MFA,
BYY-MFA is still more robust than VB-LFA against the deteriora-
tion of the environment, while BYY-LFA is the best in general.

Regarding the time-cost, due to space limit we are not able to
present the detailed results. It was observed that the BYY in
general involves a heavier computational load than VB because it
involves more gradient calculations. However, the complexities of
both algorithms are comparable to each other (around O(N?)),
since the main computation of both of them arises from the matrix
multiplication.

5.2. Face and handwritten digit images clustering

We test the clustering performances of the four algorithms on
three real datasets: the ORL' face image database, the USPS?
handwritten digits, and the MNIST®> handwritten digits. The ORL
contains with 10 grayscale images for each 40 human subjects, and
all images are of a size 64 x 64. We project them to 65 dimensions
by PCA so that 90% energy in the covariance is reserved. The USPS
and MNIST digit databases both contain grayscale images of “0”
through “9”. In USPS, each image is of a size 16 x 16 and thus 256-
dimensional, and there are 1100 images for each digit. In MNIST,
each image is of a size 28 x 28 and thus 784-dimensional, and

! Downloaded from “http://www.cl.cam.ac.uk/research/dtg/attarchive/facedata
base.html”.

2 Downloaded from “http://cs.nyu.edu/ ~roweis/data.html”.

3 Downloaded from “yann.lecun.com/exdb/mnist/”.
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Fig. 1. The correct selection rates by MFA/LFA automatic model selection algorithms in the four series of simulations.

each digit has 12,000 images. To study model selection on a small
sample size, we randomly pick 1200 images for each digit in
MNIST.

After MFA/LFA learning in an unsupervised way, all samples are
partitioned into different clusters with each component being a
cluster. Since we do not know the true component number in
these real world databases, we use two metrics to evaluate the
clustering performance: (1) Rand index (RI) [26]; (2) normalized
mutual information (NMI) [27]. Both metrics compare the clus-
tered partition with a ground truth partition, which is formed by
letting each class (i.e., each person in ORL and each digit in USPS/
MNIST) be a cluster. Both RI and NMI take value in [0, 1] and equal
to 1 when two partitions are identical, and a higher value means
greater similarity between the obtained clusters and the ground
truth [28]. It should be also noted that, since an appropriate model
selection helps improve the generalization ability, a high RI/NMI
score is related to but does not necessarily come from an appro-
priately determined component number.

After 10 independent runs for each algorithm, the average RI
and NMI scores by using each algorithm are reported in Table 5. As
shown, on both MFA and LFA, BYY outperforms VB in terms of both
RI and NMI scores. Moreover, LFA provides better results than MFA
under BYY or VB. Out of all algorithms, BYY-LFA performs the best.

5.3. Unsupervised image segmentation
We also apply the algorithms to unsupervised image segmen-

tation on the Berkeley segmentation database of real world
images”. Based on the fact that any feature of a single pixel may

4 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds|.

Table 5
Clustering performance by MFA/LFA algorithms on ORL, USPS and MNIST databases.

Index per algorithm ORL USPS MNIST
Rand index (RI)

BYY-MFA 0.90 0.87 0.87
BYY-LFA 0.92 0.91 0.90
VB-MFA 0.86 0.84 0.86
VB-LFA 0.89 0.88 0.89
Normalized mutual information (NMI)

BYY-MFA 0.91 0.88 0.89
BYY-LFA 0.93 0.91 0.91
VB-MFA 0.89 0.87 0.85
VB-LFA 0.91 0.88 0.88

not be sufficient for segmentation, we choose the VZ features
proposed in [29,30] to take into account the neighborhood and
texture information. A VZ feature for each pixel is constructed by
vectorizing the color information of all pixels in a w x w-sized
window centered at the pixel. Here, we set w=7 to construct
147-dimensional feature vectors from the LAB color space. Usually,
the VZ features are further projected to 8 dimensions by PCA, e.g.,
in [4,29,30], when the dimensionality is too high. Since MFA/LFA
can simultaneously perform clustering and local dimensionality
reduction, we use the 147 features directly without PCA prepro-
cessing as PCA may result in some information loss.

For every image, the trained MFA/LFA model assigns each
image pixel to the cluster (represented by a component) of
maximum posterior probability. Since the true component number
is unknown, we evaluate the resulted segmentations by the
Probabilistic Rand (PR) index [31], which takes values between
0 and 1. A higher PR score indicates a better segmentation with a
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Table 6

Average PR scores of 5 runs on the 100 testing images of Berkeley image segmentation database by MFA/LFA algorithms on the 147-dimensional features. The “ GMM" results
are obtained by GMM automatic model selection algorithms on the 8-dimensional VZ features in [4].

GMM from [4] MFA/LFA
VB-DNW BYY-DNW VB-MFA VB-LFA BYY-MFA BYY-LFA
0.803 0.851 0.819 0.845 0.864 0.878

original image

BYY-MFA

BYY-LFA

VB-MFA

VB-LFA

PR=0.923

PR=0.904

Fig. 2. Two image segmentation examples from Berkeley segmentation database by MFA/LFA automatic model selection algorithms. The segments are illustrated by the
highlighted green boundaries. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

higher percentage of pixel pairs in the segmentation having the
same labels as in the ground truth segmentation. A good model
selection performance is closely related to, but not necessarily
implies, a high PR score. We directly compare the segmentation
performance of the four algorithms without any post-processings

such as region merging and graph cut [32], although these
techniques may further improve the segmentations.

Table 6 gives the average PR scores by 5 runs on all of the 100
testing images of the Berkeley image segmentation database.
Shown in Fig. 2 are two examples chosen from the database. On
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both MFA and LFA, the BYY algorithm shows a higher average PR
score than VB, which is consistent with their model selection
performances on simulated data. Also, the BYY-LFA algorithm
performs the best and is able to detect the objects of interest
from a confusing background.

Moreover, compared with the results in [4] by GMM algorithms
on the PCA preprocessed 8-dimensional VZ samples, learning
MFA/LFA based on the original 147-dimensional samples provides
further improvements for both BYY and VB. This may show that it
is advantageous to jointly perform clustering and local subspace
modeling in image segmentation.

6. Concluding remarks

This paper has presented a comparative investigation on the
relative strengths and weaknesses of VB and BYY in automatic
model selection on MFA and LFA with the conjugate DNG priors.
The algorithm in [6] for VB on MFA is slightly modified. Moreover,
not only the algorithm for VB on LFA is developed, but also the
algorithms for BYY on MFA and LFA are proposed.

Through synthetic experiments, we have the following empiri-
cal findings. First, LFA performs better than MFA for both VB and
BYY, which echoes the advantages of FA-b over FA-a observed in
[9]. Second, BYY outperforms VB on both MFA and LFA. Overall, the
BYY-LFA algorithm performs the best in most cases. These obser-
vations are reconfirmed by applications on not only face and
handwritten digit images clustering, but also unsupervised image
segmentation on real world images.
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Appendix A. The BYY-LFA algorithm

The q(x|i) is approximated by Eq. (12) with the following
product of multiple Student's T-distributions:

p12exp <d+h )lzﬂ 1728172

qxeli) ~ .
@n)"? exp{i e[} + G —my) Gy —mnT]}

N v 1
. i) -1 (aj +§)

=1 v (a’ +1/2)
ey by +5 dingE 49,950
d b2 i . ra’+1
. ( ij ( ij (a’.’fZJ)rl/Z)’ (A1)
=11 [b;; +%anj] d
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+U;E/U7, and the notations y,,, £7, i, E" are assistant variables

for approximations and updated by
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Vi =2{U] diag@’@b)x; —my), E{ =[U]diag@/@b!)U;+diag@ob)] "', (A.3)

i, = [diag@?ob?)x +pmy], £ =[diag@’ob?)+ply .

(A4)

The H'A({U;}, 2, %) in Eq. (17) is expressed as

d
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+ Z Ri"A(&, &%),
i=1

L (U}, E.8%) = — h; InQn)+ P (AF(E+N) - P(E+N)
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with the prior hyper-parameters E = {4, ¢, {m;}, 3, {ajj,b”} {a;‘,bg’}}

and the posterior hyper-parameters &* = {A*, {m}}, {b,fj.”}, {b?;-‘”}}, and
we adopt the following denotations for convenience. Table 3 gives
an algorithm to maximize the above lower bound in gradient, i.e.,
BYY-LFA.

v v 1 N 4 sk » ] N .
af =aj+5 Z p(ixp)1,, a=al +5 > p(ilxe)lg,
=1 t=1
e =X —fi}, € =X —UW,e; —m;
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Update Z*. The gradient V,H"™ for 9 e 2* is calculated by
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Update: {U;} The gradient w.r.t. U; is calculated by
N
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where Pgs(-) denotes the Gram-Schmidt process which outputs an
orthogonal matrix, &;; describes the difference between local
harmony measure on (i,t) and the weighted average with

1 2)
Sie =8y 46 s
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The gradient for 9 € {A, &, {m;}, g} is given by
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For hyper—parameters {ay, bfj} of the Gamma prior on {;}:
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For hyper-parameters {ajf,bjf} of the Gamma prior on {g;}, we
have
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v;%)(z H=Inb?+¥@ +11,) - v@’)—Inbf+1 diag@Q;)],

<-?;,> =Inb! —-Inb’+@’ -1y © ¥'@’)—b!ob}*,
a1 (1) @1 | 0 R
Vhy’H OCZ; p(l|Xt)[Vb? (i, t)+ it - Vb”’]+ai @b! — E “’n R
V(l)(l t) = diag[2(I; — U;W)e el W' diag(w)W;
—2(I4—UW))e;el; diag(w;’)U;W;
~Uini(diag(w)+U] diag(@?’)U)W;]
! +} diagE})),
v;,%?(z ) =a’@b! — @’ +119)o[b? +1 diag(Q;)]. (A12)

VB algorithm to maximize the variational lower bound in Eq. (23) on LFA with DNG prior (VB-LFA).

Initialization: Randomly initialize the model with large enough number k of components and hidden dimensionalities {h;}; set =0 and the variational function

1
Jup(®) = —

2  repeat
3 |E-step: Given E and 2*, for each i and t, estimate p;., ¥j and = by Eq. (B.1).
4 | M-step: Given p;, yi = and E, update E* and {U;} by Eq. (B.2);
5 |H_step: Given pir. Vir. 27 and 2*, update prior hyper — parameters £ by Eq. (B.3).
6 |gfori=1,. . kdo
7 if A} or 4;—0 then discard component i, let k=k—1;
8 for j— 1,....h; do
!:0 Llf " or; ” aO then discard dimension j in component i, let h; =h;—1;

if another 5 runs pass then let z=7+1; calculate Jyz(7) by Eq. (23);
1

until Jyp(z) —Jyp(r— 1) < fyp(zr— 1), with e = 10~ in our implementation
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Appendix B. The VB-LFA algorithm

E-step update py, ¥;; and {Z*}:

k
1/2 1/2
pitzrit/ /(Z rjt/ )"
j=

h; d
Tie = exp{Z‘I’(é*l}“)+h,- + X [P@) - Inbjl+ ¥ [¥(a;”)—In b
j=1 ji=1
—tr{diag(a}’ @b;")[(X — Uiy}, — m})(x, —U;y;; —mj)"

+I¥ 4 UZP U - trdiag@ ob )Yy + )] }

yi =[U diag@}”ob;")U; +diag@@b!)]~ 'U! diag@}’@b}")(x; —m}),

=¥ = U] diag(@®@b!*)U; +diag@@b;*)] . (B.1)

M-step update posterior hyper-parameters E* = {A*,&*,

{m?‘,}:;"”},{a;;”,b?}"},{af"’,b;"’}} and {U;}: (Table B1)

N
= (6/11-+ 2:] pft)/(¢+N), E=¢+N,

-1

N
m; = [ﬂld+ (t; pn) diag(a?‘“’®b}““’)}
N
« [ﬂmi+ 3 by diag@@b™)(x, fu.-vlt)] :
t=1

-1

N
= [ﬁld+( z p,-t)diag(a;%b?‘ﬂ)} ,
t=

ai* :a;’+§ > DPielps
t=1

=
~x

I
=3
~
+

pie diagly}yy +21,

picla,

1N . . .
b =b! +5 21 pie diagl(x; — Uy} —m¥)(x, — Uy —mH) + = + U;z2UT),
t=

U?ew — PCS(U?EW); U?EW _ U?ld +’7(GUi _ U?ldGEiU?ld),

N sovgy kT
Gy, = LZI Pie(Xe — M)y }
-1

N R Tad sy old
tgl PiYiVie +%; =-U7 (B.2)

H-step update prior hyper-parameters &= {4, ¢, {my}, 4, {a%, bj;},
{af, b))

k
W — (29 4 ysay) / [ (ﬂ}?'dﬂ%)] =
j=1
84 =Y (EA) —P(E) - P (E)+P(©),
k
e =My psg, se= 3 Ao,
i=1

m, general case (each my is free),

m=<1k% . .
! % > mj, special case (constrain each m; = m),
i=1

k
p=kd / { )y [(mi—m?‘)(mi—m?‘)T+tr(ZT“)]}.,
i=1

a‘new = avold+75@%), 8@ =Inb{—Inb" —w@)+w@"),

binew = b}old+,5(b}), 5(b})=a‘@b!-ai*ob",

a’new =a’old+ns@?), s5@f)=Inb? —Inb” —¥@?)+¥@),

b?new =bfold+n5b?), sbY)=alob!—a’ob’. (B.3)
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