
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Learning local factor analysis versus mixture of factor analyzers
with automatic model selection

Lei Shi a, Zhi-Yong Liu b, Shikui Tu a, Lei Xu a,n

a Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
b The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China

a r t i c l e i n f o

Article history:
Received 3 June 2013
Received in revised form
29 August 2013
Accepted 15 September 2013
Available online 31 March 2014

Keywords:
Automatic model selection
Mixture of factor analyzers
Local factor analysis
Variational Bayes
Bayesian Ying-Yang
Dirichlet–Normal–Gamma

a b s t r a c t

Considering Factor Analysis (FA) for each component of Gaussian Mixture Model (GMM), clustering and
local dimensionality reduction can be addressed simultaneously by Mixture of Factor Analyzers (MFA)
and Local Factor Analysis (LFA), which correspond to two FA parameterizations, respectively. This paper
investigates the performance of Variational Bayes (VB) and Bayesian Ying-Yang (BYY) harmony learning
on MFA/LFA for the problem of automatically determining the component number and the local hidden
dimensionalities (i.e., the number of factors of FA in each component). Similar to the existing VB learning
algorithm on MFA, we develop an alternative VB algorithm on LFA with a similar conjugate Dirichlet–
Normal–Gamma (DNG) prior on all parameters of LFA. Also, the corresponding BYY algorithms are
developed for MFA and LFA. A wide range of synthetic experiments shows that LFA is superior to MFA in
model selection under either VB or BYY, while BYY outperforms VB reliably on both MFA and LFA. These
empirical findings are consistently observed from real applications on not only face and handwritten
digit images clustering, but also unsupervised image segmentation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mixture models [1,2], such as Gaussian Mixture Model (GMM)
[3,4], have been widely used in many applications. By exploiting
the Factor Analysis (FA) [5] in each Gaussian component, the
correlated high dimensional data can be represented by fewer
latent factors without requiring Oðd2Þ parameters for each Gaus-
sian covariance matrix, where d is the dimensionality of the data.
The mixture model can be regarded as a constrained GMM, and
has been studied under the name of Mixture of Factor Analyzers
(MFA) [2,6] or Local Factor Analysis (LFA) [7,8] in the literature.
MFA and LFA separately employ two parameterizations of FA,
shortly called as FA-a that takes the form of a free factor loading
matrix and an identity covariance matrix for the latent factors, and
FA-b that constrains the factor loading matrix to be a rectangular
orthogonal matrix, and allows a diagonal covariance matrix for the
latent variables, respectively in [9].

Learning MFA/LFA includes parameter learning for estimating
all the unknown parameters and model selection for determining
the component number k and the hidden dimensionalities fhigki ¼ 1.
Parameter learning is usually implemented under the maximum

likelihood principle by an Expectation–Maximization (EM) algo-
rithm [1,10,11]. A conventional model selection approach is
featured by a two-stage implementation. The first stage conducts
parameter learning for each kAM to get a set of candidate
models, where k¼ fk; fhigg for MFA/LFA. The second stage selects
the best candidate by a model selection criterion, e.g., Akaike's
Information Criterion (AIC) [12]. However, this two-stage imple-
mentation suffers from a huge computation because it requires
parameter learning for each kAM. Moreover, a larger k often
implies more unknown parameters, and then parameter estima-
tion becomes less reliable so that the criterion evaluation reduces
its accuracy (see Section 2.1 in [13] for a detailed discussion).

To reduce the computation, an Incremental Mixture of Factor
Analyzers (IMoFA) algorithm was proposed on MFA in [14] with
the validation likelihood as the criterion to judge whether to split
a component, or add a hidden dimension, or terminate. Although
such an incremental procedure can save the costs to some extent,
it usually leads to a suboptimal solution [13,15].

Another road is referred to as automatic model selection, which
starts from a large enough k, and has an intrinsic force to drive
extra structures diminished, and thus automatically determines k
during parameter learning. An early effort is Rival Penalized
Competitive Learning (RPCL) on GMM [16,17]. Two Bayesian
related approaches can be implemented with a nature of auto-
matic model selection. One is Bayesian Ying-Yang (BYY) learning,
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proposed in [18] and systematically developed in the past decade
and a half [13,15,19,20], which provides a general statistical
learning framework that can handle both parameter learning
and model selection under a best harmony principle. BYY is
capable of automatic model selection even without imposing any
priors on the parameters, and its performance can be further
improved with appropriate priors incorporated according to a
general guideline. The other is Variational Bayes (VB) [6,21]. It
tackles the difficulty in computing the marginal likelihood with a
lower bound by means of variational method, and an EM-like
algorithm is employed to optimize this lower bound. The model
selection of VB is realized by incorporating an appropriate prior
distributions on the parameters.

Recently, a comparative study [4] was delivered on automatic
model selection by BYY, VB and MML (Minimum Message Length)
for GMM with priors over the parameters. Also in [9], FA-b shows
better model selection performance than FA-a under BYY and VB,
although FA-a and FA-b have equivalent likelihood functions.

This paper is motivated for an empirical investigation on the
automatic model selection performances of BYY and VB, based on
MFA and LFA, which actually correspond to Mixture of FA-a and
Mixture of FA-b, respectively. There exists a VB algorithm [6] for
MFA with a Dirichlet prior on the mixing weights, Normal priors
on the columns of the factor-loading matrix, and Gamma priors on
precision parameters. Following [4], we consider a full prior on all
parameters and adopt a Normal prior over the mean vector in each
component of MFA. For short, DNG is referred to the above
Dirichlet, Normal, Gamma priors. By slightly modifying the one
in [6], we obtain a VB learning algorithm with the DNG prior,
shortly denoted as VB-MFA. Also, a similar conjugate DNG prior is
considered on the parameters of LFA.

Moreover, we develop three automatic model selection algo-
rithms, namely the VB algorithm on LFA, or VB-LFA for short, and
the BYYalgorithms onMFA and LFA, shortly denoted as BYY-MFA and
BYY-LFA respectively. With the conjugate property of the priors, the
BYY harmony measure is computed by directly integrating out the
parameters with respect to the Yang posteriors, instead of using
Taylor approximations as in [9]. The handled marginal density of
observed variable in each component is tackled by a lower-bound
approximation with the help of additional variables, leading to
products of multiple Student's T-distributions.

The performances of automatic model selection are extensively
compared on a wide range of randomly simulated data, via
controlling the hardness of tasks by varying the dimension of
data, the number of samples, the true number of components, and
the overlap degree of components. The simulated results show the
following empirical findings. First, LFA gets better performance
than MFA under either VB or BYY, which echoes the advantages of
FA-b over FA-a observed in [9]. Second, BYY outperforms VB on
both MFA and LFA, and in most cases BYY-LFA performs the best.
Also, we apply these algorithms to not only clustering face and
handwritten digit images, but also unsupervised image segmenta-
tion on real world images. The results are consistent with the
observations from simulated experiments.

The main contribution of this paper can be summarized in two-
fold. First, three algorithms, i.e, the algorithm of VB based LFA with
Dirichlet–Normal–Gamma (DNG) prior, denoted by VB-LFA, the
algorithm of BYY based LFA with DNG prior, denoted by BYY-LFA,
and the algorithm of BYY based MFA with DNG prior, denoted by
BYY-MFA are derived in detail. Second, based on the algorithms,
we empirically compared by extensive experiments the two types
of clustering of factor analysis models, i.e., LFA and MFA, as well as
two types of automatic model selection strategies, i.e., VB and BYY.

The remainder of this paper is organized as follows. Section 2
introduces MFA/LFA and their DNG priors. We introduce the
automatic model selection algorithms with the DNG priors by

BYY in Section 3, and by VB in Section 4. Experimental compar-
isons are conducted via a wide range of synthetic datasets and real
applications in Section 5. Finally, concluding remarks are made in
Section 6.

2. Models and priors

2.1. Model parameterizations

In a mixture model, the distribution qðxjΘÞ of a d-dimensional
observed random variable x is a mixture of several local distribu-
tions qðxji; θÞ, with each named as a component:

qðxjΘÞ ¼ ∑
k

i ¼ 1
αiqðxji; θiÞ with Θ¼ fαig [ fθig; ð1Þ

where k is the component number, fαig are mixing weights with
∑k

i ¼ 1αi ¼ 1 and each αiZ0, and θi denotes parameters of the ith
component. Here and throughout this paper, qð�Þ is referred to as a
generative distribution, likelihood or prior, while pð�Þ is referred to
as a posterior distribution.

If each component is a Gaussian distribution, i.e., qðxji;ΘÞ ¼
Gðxjμi;ΣxjiÞ with mean μi and covariance matrix Σxji, qðxjΘÞ by
Eq. (1) becomes the widely used Gaussian Mixture Model. For a
full matrix Σxji, there are 0:5dðdþ1Þ free parameters to be
estimated, whose accuracy is difficult be guaranteed for a small
sample size. One way for tackling this problem is to impose certain
constraints on Σxji with a Factor Analysis model, i.e.,

qðxjy; i; θiÞ ¼ GðxjAiyþμi;ΨiÞ; qðyji; θiÞ ¼ Gðyj0;ΣyjiÞ;

qðxji; θiÞ ¼
Z

qðxjy; i; θiÞqðyji; θiÞ dy¼ Gðxjμi;AiΣyjiA
T
i þΨiÞ; ð2Þ

where we introduce a hidden factor y in an hi-dimensional
subspace with hiod, and constrain Ψi to be diagonal. FA actually
factorizes Σxji to be Σxji ¼AiΣyjiA

T
i þΨi with fewer free parameters.

To reduce the indeterminacies of the FA by Eq. (2), two parameter-
izations of FA are typically used, called as Mixture of Factor Analyzers
(MFA) [2,6] and Local Factor Analysis (LFA) [7,8] respectively, with their
corresponding mixture models by Eq. (1) summarized in Table 1. The
two FA parameterizations have equivalent likelihood functions by
Eq. (2), and thus they have the same model selection performance in a
two-stage implementationwith AIC or BIC [22]. However, it was found
that they result in different model selection performances under BYY
[23], and a recent study [9] provided systematic empirical findings on
how parameterizations affect model selection performance under not
only BYY but also VB. Moreover, the differences of two parameteriza-
tions on model selection performance have been further analytically
investigated in Section 2.2 of [20]. In this paper, we proceed to
investigate the automatic model selection performances of MFA/LFA
under BYY and VB.

Moreover, when each diagonal covariance Ψi in Table 1 is
constrained to be spherical, i.e., Ψi ¼ ψ iId, MFA and LFA will
degenerate to Mixture of PCA [11] and Local PCA [8], respectively.

Table 1
MFA v.s. LFA: similarity and difference. MFA and LFA are actually mixtures of FA-a
and FA-b in [9], respectively.

Model: MFA (mixture of FA-a) LFA (mixture of FA-b)

Parameters θi: fAi; μi ;Ψig fUi;Λi ; μi ;Ψig
Same: Ψi is d� d diagonal Ψi is d� d diagonal
Different: Ai is general d� hi Ui is orthogonal, i.e., UT

i Ui ¼ Ihi ,
Λi is diagonal, Λi ¼ diag½λ1 ;…; λhi �

qðyji; θiÞ: Gðyj0; Ihi Þ Gðyj0;ΛiÞ
qðxjy; i; θiÞ: GðxjAiyþμi ;ΨiÞ GðxjUiyþμi ;ΨiÞ
qðxji; θiÞ: Gðxjμi ;AiA

T
i þΨiÞ Gðxjμi ;UiΛiU

T
i þΨiÞ
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Additionally, MFA/LFA can be reformulated by introducing a
binary variable set Z¼ fztgNt ¼ 1 corresponding to the i.i.d. samples
XN ¼ fxtgNt ¼ 1. In each zt , we have each ith element zitAf0;1g and
∑k

i ¼ 1zit ¼ 1, and zit ¼ 1 iff xt is generated from the ith component.
The generative process of an observation xt is thus interpreted as
three steps: (1) sample zt from a Multinomial distribution
described by α¼ ½α1;…; αk�T , i.e., zt �MultinomialðαÞ; (2) generate
hidden variable y from a Gaussian subspace, i.e., y�∏iqðyji; θiÞzit ;
(3) generate xt from a Gaussian conditional on y, i.e., xt �
∏iqðxt jy; i; θiÞzit . Therefore, we have the following joint probability:

qðXN ;Y;ZjΘÞ ¼ ∏
N

t ¼ 1
∏
k

i ¼ 1
½αiqðxt jy; i; θiÞqðyji; θiÞ�zit : ð3Þ

Given a set of observations XN , supposing that the component
number k and the local hidden dimensionalities fhig are given, one
widely used method for parameter estimation is the maximum-
likelihood learning, which can be effectively implemented by the
well-known Expectation–Maximization (EM) algorithm [1]. Model
selection on LFA/MFA is to appropriately determine both the
component number k and the local hidden dimensionalities
fhigki ¼ 1, or shortly to determine the tuple k¼ fk; fhigki ¼ 1g, on which
the maximum likelihood principle fails to give a good guide [13].

2.2. The conjugate Dirichlet–Normal–Gamma priors

Considering the parameters with appropriate prior distribu-
tions can provide helpful learning regularization and also improve
model selection performance [13]. Such empirical studies have
been conducted on GMMwith either the improper Jeffreys prior or
the conjugate Dirichlet–Normal–Wishart prior under BYY, VB and
MML [4], and also on FA with Normal–Gamma prior under BYY
and VB [9]. This section considers similar prior distributions on
parameters Θ¼ α [ fθigki ¼ 1 of MFA or LFA in Table 1, where the
Dirichelet distribution Dðαjλ; ξÞ takes the form,

Dðαjλ; ξÞ ¼ ΓðξÞ
∏k

i ¼ 1ΓðξλiÞ
∏
k

i ¼ 1
αξλi �1
i

 !
; ð4Þ

with the constraints λ¼ ½λ1;…; λk�T ;∑iλi ¼ 1; 8λiZ0:
For MFA, we consider a Dirichlet prior on the mixing weights

α¼ ½α1;…; αk�T , a Normal prior on each component's mean vector
μi, an independent Gamma prior on the diagonal elements of

φi ¼Ψ�1
i , where φðjÞ

i is the jth diagonal element in φi. Moreover, a
hierarchical Normal–Gamma prior is assigned on each jth column
AðnjÞ
i of Ai, where AðnjÞ

i a priori comes from a zero-mean Normal
distribution with a covariance Id=ςij, and ςij further follows a
Gamma prior. We use Γð�ja; bÞ to denote the Gamma distribution
with a shape parameter a40 and an inverse scale parameter
b40. The whole qðΘÞ is shortly denoted as DNG with details given
in the left of Table 2. A DNG prior was considered on MFA under
VB in [6] without qðμiÞ. Based on the observations in [4] that a full
prior helps to improve model selection performance, in this paper
we consider the full DNG prior with qðμiÞ.

For LFA, we consider a similar DNG prior on Θ in the right of
Table 2, with the parts different from MFA highlighted by gray
color. Therein, each orthogonal matrix Ui is considered without
any prior, instead of adopting the qðUiÞ used in [9] because it is
irrelevant to Ui and thus not helpful for automatic model selection.
The differences in qðΘÞ actually come from the parameterizations.
Therefore, the qðΘÞ for LFA is also called DNG prior in this paper
without ambiguity. For both MFA and LFA, the DNG prior is
conjugate [6,11] to the generative process described in Eq. (3).

In the sequel, we may use short notations aφi ¼ ½aφi1;…; aφid�T ,
bφ
i ¼ ½bφi1;…;bφid�T , aςi ¼ ½aςi1;…; aςihi �

T , bς
i ¼ ½bςi1;…; bςihi �

T , aνi ¼ ½aνi1;…;

aνihi �
T and bν

i ¼ ½bνi1;…; bνihi �
T for expression convenience.

3. BYY algorithms for learning LFA versus MFA

3.1. Bayesian Ying-Yang (BYY) harmony learning

Firstly proposed in [18] and systematically developed over a
decade and a half [13], Bayesian Ying-Yang (BYY) harmony learn-
ing theory is a general statistical learning framework that can
handle both parameter learning and model selection under a best
harmony principle, which provides a favorable new mechanism
for model selection.

The BYY harmony learning is featured by seeking the best
harmony between the Ying- Yang pair in a BYY system. The BYY
system consists of Yang machine and Ying machine, respectively
corresponding to two types of decompositions, namely Yang
pðRjXÞpðXÞ and Ying qðXjRÞqðRÞ, where the observed data X is
regarded as generated from its inner representation R¼ fY;Θg that
consists of latent variables Y and parameters Θ, supported by a
hyper-parameter set Ξ. The harmony measure is mathematically
expressed as follows [13,15,19]:

Hðpjjq;ΞÞ ¼
Z

pðRjXÞpðXÞ½qðXjRÞqðRÞ�dX dR: ð5Þ

Maximizing Hðpjjq;ΞÞ leads to not only a best matching between
the Ying-Yang pair, but also a compact model with a least
complexity. Different from VB model selection that bases on an
appropriate prior qðΘjΞÞ (see Section 4 for the details of the prior
in VB), BYY harmony learning by Eq. (5) bases on qðRÞ ¼
qðYjΘÞqðΘjΞÞ to make model selection, where qðYjΘÞ plays a role
that is not only equally important to qðΘjΞÞ but also easy
computing, and qðΘjΞÞ is still handled in a way similar to VB.
Moreover, maximizing Hðpjjq;ΞÞ is implemented with the help of
the general two-stage iterative procedure shown by Fig. 6 in [19]
(also see Eqs. (6) and (7) in [8]). The first stage estimates Ξ (usually
via estimating Θ) by an optimization of continuous variables,
while the second stage involves a discrete optimization on one
or several integers that index candidate models. Here, we only
consider the first stage where automatic model selection actually
performs, though the second stage may be also considered to
further improve the model selection performance with much more
computing costs.

Table 2
The Dirichlet–Normal–Gamma priors on MFA and LFA with hyper-parameters

Ξ¼ fλ; ξ; βg [ fΞigki ¼ 1. Priors on MFA/LFA are described in the two big columns
respectively, whose differences are highlighted with gray color. The “distr.”
columns indicate the distribution types for clarity, with “D” for Dirichlet, “N” for
Normal, and “G” for Gamma, respectively.

MFA LFA

Θ¼ α [ fθigi , θi ¼ fAi ; μi;Ψig Θ¼ α [ fθigi , θi ¼ fUi ;Λi ; μi ;Ψig
φi ¼Ψ�1

i ; AðnjÞ
i : jth column vector of Ai νi ¼Λ�1

i , φi ¼Ψ�1
i

Ξi ¼ fmi ; faφij ;b
φ
ijgj ; fa

ς
ij ; b

ς
ijgjg Ξi ¼ fmi ; faφij ; b

φ
ijgj ; fa

ν
ij ; b

ν
ijgjg

prior distr. prior distr.

qðΘÞ ¼ qðαÞ ∏
k

i ¼ 1
qðθiÞ DNG qðΘÞ ¼ qðαÞ ∏

k

i ¼ 1
qðθiÞ DNG

qðαÞ ¼Dðαjλ; ξÞ D qðαÞ ¼Dðαjλ; ξÞ D
qðθiÞ ¼ qðμiÞqðφiÞqðAiÞ NG qðθiÞ ¼ qðμiÞqðφiÞqðνiÞ NG
qðμiÞ ¼Gðμijmi ; Id=βÞ N qðμiÞ ¼Gðμijmi ; Id=βÞ N

qðφiÞ ¼ ∏
d

j ¼ 1
ΓðφðjÞ

i aφij ; b
φ
ij Þ G qðφiÞ ¼ ∏

d

j ¼ 1
ΓðφðjÞ

i jaφij ; b
φ
ij Þ G

qðAijςiÞ ¼ ∏
hi

j ¼ 1
GðAðnjÞ

i j0; Id=ςðjÞi Þ N qðνiÞ ¼ ∏
hi

j ¼ 1
ΓðνðjÞi jaνij ;b

ν
ijÞ G

qðςiÞ ¼ ∏
hi

j ¼ 1
ΓðςðjÞi jaςij ; b

ς
ijÞ G

L. Shi et al. / Neurocomputing 139 (2014) 3–14 5
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BYY harmony learning leads to improved model selection via
either or both of improved model selection criteria and algorithms
with automatic model selection. Such a merit can be intuitively
understood as follows [13]:

HðpjjqÞ ¼
Z

pðXÞln qðXÞ dX¼HðpjjpÞ�KLðpjjqÞ: ð6Þ

Thus, besides the Kullback–Leibler divergence, a system entropy
term HðpjjpÞ is also incorporated into the BYY objective function.
By contrast, VB tries to maximize the marginal likelihood by
minimizing only the Kullback–Leibler divergence. It is the term
HðpjjpÞ that makes the BYY harmony learning possess automatic
model selection ability, even there is no prior on the parameter.
More specifically, to estimate some mixture model such as the
MFA, with the help of HðpjjpÞ the BYY harmony learning takes the
following E-step which compared with the conventional EM
algorithm has an extra term Δ as follows [13]:

pj;t ¼ pðjjtÞþΔj;t : ð7Þ
By such a regularization term Δj;t (see also (A.9) in Appendix A),
the updating on the jth component shares somewhat a similar
updating to the rival penalized competitive learning (RPCL)
[16,17], and thus realizes automatic model selection.

On MFA and LFA with the DNG priors in a conjugate manner,
there is still no detailed automatic model selection algorithm
available for implementing BYY harmony learning, and thus this
section targets at developing such algorithms.

3.2. BYY algorithm for learning LFA with DNG prior

For LFA, we consider the Ying machine as qðX;RÞ ¼ qðX;Y;
ZjΘÞqðΘÞ, with R¼ fY;Z;Θg, qðX;Y;ZjΘÞ given in Eq. (3) and qðΘÞ
given in the right of Table 2. In the Yang machine, we consider pðXÞ
as the empirical distribution, i.e., pðXÞ ¼ δðX�XNÞ, and the Yang-
pathway pðRjXÞ as
pðRjXNÞ ¼ pðΘjZ;Y;XNÞpðYjZ;XNÞpðZjXNÞ;

pðΘjY;Z;XNÞ ¼ pðαjZ;XNÞ ∏
k

i ¼ 1
pðμijZ;XNÞ ∏

hi

j ¼ 1
pðνðjÞi jY;Z;XNÞ

"

� ∏
d

j ¼ 1
pðφðjÞ

i jY;Z;XNÞ
#
;

pðYjZ;XNÞ ¼ ∏
k

i ¼ 1
∏
N

t ¼ 1
pðyji; xtÞzit ;

pðZjXNÞ ¼ ∏
k

i ¼ 1
∏
N

t ¼ 1
pðijxtÞzit : ð8Þ

Particularly, in accordance with the variety preservation prin-
ciple (see Section 4.2 in [13]), the details of pðΘjY;Z;XNÞ are
further designed as the following posteriors in the DNG form by
utilizing the conjugate property:

pðαjZ;XNÞ ¼Dðαjλn; ξþNÞ;

pðμijZ;XNÞ ¼ G μijmn

i ; βIdþ ∑
N

t ¼ 1
zit

� �
diagðaφi ⊘bφ

i Þ
� ��1 !

;

pðνðjÞi jY;Z;XNÞ ¼ Γ νðjÞi jaνijþ
1
2

∑
N

t ¼ 1
zit ; b

nν
ij

� �
;

pðφðjÞ
i jY;Z;XNÞ ¼ Γ φðjÞ

i jaφijþ
1
2

∑
N

t ¼ 1
zit ; b

nφ
ij

� �
; ð9Þ

where fλn;mn

i ; b
nν
ij ; b

nφ
ij g are free hyper-parameters to be optimized.

Therein and throughout this paper, we use symbols “⊘” and “�”

to denote the Hadamard (element-by-element) division and pro-
duct respectively.

The pðijxtÞ in Eq. (8) is constructed as the Bayesian posterior of
qðxt ; iÞ, i.e., pðijxtÞpqðxt ; iÞ, where the qðxt ; iÞ is computed by

qðxt ; iÞ ¼
Z

qðxt ; ijΘÞqðΘÞ dΘ¼ λiqðxt jiÞ; ð10Þ

qðxt jiÞ ¼
Z

qðxt ji; θiÞqðθiÞ dθi ¼
Z

qðxt jyt ; i; θiÞqðyt ji; θiÞqðθiÞ dyt dθi;

ð11Þ
with θi ¼ fμi; νi;φig. However, it is difficult to directly compute the
above integral over fθi; ytg for an analytical qðxt jiÞ. Therefore, qðxt jiÞ
is sequentially approximated by lower-bounds according to Jen-
sen's inequality, i.e.,

qðxt jiÞZ
Z

~qðxt ji; θiÞqðθiÞ dθiZ
Z

~qðxt ji; νi;φiÞqðνiÞqðφiÞ dνi dφi;

ð12Þ
which leads to the marginal qðxt jiÞ as a product of several Student's
T-distributions in Eq. (A.1) in Appendix A, where

~qðxt ji; θiÞ ¼ exp
Z

Gðyt j ~y it ; ~Σ
y
i Þ ln

qðxt jyt ; θiÞqðyt jθiÞ
Gðyt j ~y it ; ~Σ

y
i Þ

dy

( )
; ð13Þ

~qðxt ji; νi;φiÞ ¼ exp
Z

Gðμij ~μx
it ; ~Σ

μx

i Þ ln ~qðxt ji; θiÞqðμiÞ
Gðμij ~μx

it ;
~Σμx

i Þ
dμi

( )
; ð14Þ

and f ~y it ; ~Σ
y
i ; ~μ

x
it ;

~Σμx

i g are assistant variables which can be updated
by maximizing the above lower bounds with the details referred to
Appendix A.

Similarly for pðyji; xtÞ, we can also obtain a product of multiple
Student's T-distributions, which however makes the subsequent
integrals in the harmony measure difficult. We further approx-
imate it by the following Gaussian according to the property of
Student's T-distribution [24]:

pðyjxt ; iÞ � GðyjWiðxt� ~μy
itÞ;ΠiÞ;

Wi ¼ΠiU
T
i Di; Di ¼ diag½ðaφi þ1

2 1dÞ⊘ðbφ
i þ1

2 diagð ~Σμy

i ÞÞ�;
Πi ¼ ½UT

i DiUiþdiagðaνi⊘bν
i Þ��1; ð15Þ

where ~μy
it and ~Σμy

i can be updated for a better approximation given
the parameters. The details are referred to Appendix A.

Putting Eq. (8) into Eq. (5), the harmony measure on LFA
becomes

HLFAðfUig;ΞÞ ¼
Z

∑
Z
pðΘjZ;Y;XNÞpðYjZ;XNÞpðZjXNÞ

�ln½qðXNjY;Z;ΘÞqðYjZ;ΘÞqðZjΘÞqðΘjΞÞ� dY dΘ: ð16Þ

By further substituting the details of Eqs. (9)–(15) into Eq. (16), we
obtain the following lower-bound:

HLFAðfUig;ΞÞZHLFAðfUig;Ξ;ΞnÞ; ð17Þ

where the detailed expression of HLFAðfUig;Ξ;ΞnÞ is given by
Eq. (A.5) in Appendix A. The best harmony principle is approxi-

mated by maximizing HLFAðfUig;Ξ;ΞnÞ with respect to the prior
hyper-parameters Ξ¼ fλ; ξ; fmig; β; faνij; b

ν
ijg; faφij ; b

φ
ijgg and the poster-

ior hyper-parameters Ξn ¼ fλn; fmn

i g; fb
nν
ij g; fbnφ

ij gg. The derived algo-
rithm is sketched in Table 3 and shortly denoted as BYY-LFA, with
details referred to Appendix A.

The above checking on whether to discard dimension j in
component i is actually observing whether the jth diagonal
element of Λi tends to zero and thus the corresponding dimension
of y can be discarded. Following Section 2.2 of [20], e.g., its Eq.
(36), this checking can be further improved by the nature of the
co-dim matrix pair of each FA model.
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3.3. BYY algorithm for learning MFA with DNG prior

Learning on MFA can be made in a similar way. The main
differences come from the parameterizations on the factor loading
matrix and the factor covariance matrix, and their corresponding
prior distributions, as shown in Tables 1 and 2.

The Ying machine is represented by replacing the counterparts
of LFA with the ones of MFA, i.e., getting qðX;Y;ZjΘÞ in Eq. (3) by
the left column of Table 1 and qðΘÞ by the left part of Table 2. In
Yang machine, we still consider the empirical distribution
pðXÞ ¼ δðX�XNÞ, but the Yang-pathway pðRjXÞ is factorized in a
form slightly different from Eq. (8):

pðRjXNÞ ¼ pðΘjZ;XNÞpðYjZ;XN ; fAigÞpðZjXNÞ;

pðΘjZ;XNÞ ¼ pðαjZ;XNÞ ∏
k

i ¼ 1
pðμijZ;XNÞ � ∏

d

j ¼ 1
pðφðjÞ

i jZ;XNÞ
(

� ∏
hi

j ¼ 1
½pðAðnjÞ

i jZ;XNÞpðςðjÞi jZ;XNÞ�
)
;

pðYjZ;XN ; fAigÞ ¼ ∏
k

i ¼ 1
∏
N

t ¼ 1
pðyji; xt ;AiÞzit ; ð18Þ

where pðZjXNÞ is expressed in the same form as the one in Eq. (8).
We proceed to the detailed expressions of pðΘjZ;XNÞ according to
the conjugate property of the DNG priors on MFA. Particularly,
Eq. (8) is modified accordingly by replacing pðνðjÞi jY;Z;XNÞ with the
following equations:

pðAðnjÞ
i jZ;XNÞ ¼ G

�
AðnjÞ
i jA ðnjÞ

i ;

�
aςij=b

ς
ijIdþ ∑

N

t ¼ 1
zit

� �
diagðaφi ⊘bφ

i Þ
��1�

;

pðςðjÞi jZ;XNÞ ¼ Γ ςðjÞi jaςijþ
d
2
; bnς

ij

� �
; ð19Þ

where fA ðnjÞ
i ; bnς

ij ; b
nφ
ij g are free hyper-parameters to be determined.

Similar to Eq. (10), the pðijxtÞ is constructed by the Bayesian
posterior, i.e., pðijxtÞpqðxt ; iÞ. The qðxt jiÞ for MFA can also be
approximated via Eqs. (12)–(14), where ~qðxt ji; νi;φiÞ is substituted
by ~qðxt ji;Ai;φiÞ, and then Eq. (12) is computed by integrating
~qðxt ji;Ai;φiÞqðζ iÞqðφiÞ with respect to Ai; ζ i;φi, leading to a different
qðxt jiÞ which is also a product of multiple Students T-distributions.
Moreover, the pðyji; xt ; fAigÞ is approximated by Eq. (15) with slight
modifications: replacing Ui and diagðaνi⊘bν

i Þ with Ai and Ihi
respectively.

Putting the above specifications of Ying-Yang machine into
Eq. (5), we obtain a lower-bound HMFAðΞ;ΞnÞ analogous to
HLFAðfUig;Ξ;ΞnÞ, and also a corresponding BYY-MFA algorithm to

maximize HMFAðΞ;ΞnÞ via modifying the counterparts of BYY-LFA
according to Eqs. (18) and (19). Readers are referred to [25] for
details.

It should be noted that the pðθijY;Z;XNÞ is considered to have
a conjugate Normal–Gamma form, whereas it was approximated
by a 2nd order Taylor expansion in [9] (see Eqs. (13)–(17) and
Table B1 in [9] for details), although the prior qðθiÞ on each
component's parameters θi in Table 2 is the same as those in [9].
Therefore, when the mixture model in Eq. (1) degenerates to only
one Gaussian component represented by FA in [9], i.e., k¼1, the
BYY-LFA and BYY-MFA here actually provide alternative BYY
learning algorithms for FA-a and FA-b, being different from the
algorithms derived in [9].

4. VB algorithms for learning LFA versus MFA

With proper incorporation of prior knowledge on model para-
meters, Bayesian model selection is implemented via the max-
imum marginal likelihood, which is obtained by integrating out
the latent variables Y and the parameters Θ, i.e., qðXNÞ ¼R
qðXN ;YjΘÞqðΘÞ dY dΘ. However, the involved integration is

usually very difficult. Variational Bayesian [6,21] tackles this
difficulty via constructing a tractable lower bound for the log
marginal likelihood by means of variational methods, and an EM-
like algorithm is employed to optimize this lower bound. More
precisely, the lower bound is given as follows:

JVBðΞn;ΞÞ ¼
Z

pðΘ;YjΞnÞ ln qðXN ;YjΘÞqðΘjΞÞ
pðΘ;YjΞnÞ dY dΘ

¼ ln qðXNjΞÞ�
Z

pðΘ;YjΞnÞ ln pðΘ;YjΞnÞ
pðΘ;YjXN ;ΞÞ

dY dΘ; ð20Þ

where Y represents all hidden variables, e.g., fY;Zg in Eq. (3) for
MFA/LFA, qðΘjΞÞ is a prior on parameters Θ with hyper-parameters
Ξ, and pðΘ;YjΞnÞ is a variational posterior with hyper-parameters
Ξn to approximate the exact Bayesian posterior pðΘ;YjXN ;ΞÞp
qðXN ;YjΘÞqðΘjΞÞ. It follows from Eq. (20) that the lower bound
JVBðΞn;ΞÞ is tight to ln qðXN jΞÞ when pðΘ;YjΞnÞ ¼ pðΘ;YjXN ;ΞÞ. For
computational convenience, qðΘjΞÞ is usually chosen to be con-
jugate priors, and pðΘ;YÞ is usually assumed to be afactorized form
pðΘ;YÞ ¼ pðYÞ∏ipðΘiÞ with Θ¼⋃iΘi, so that maximizing JVB makes
the variational posterior pðΘÞ to be conjugate, i.e., in the same
form as the corresponding prior.

There is already a VB learning algorithm on MFA proposed in
[6], where the prior on θi is qðθiÞ ¼ qðφiÞqðAiÞ, without considering
the prior on μi. In this paper, the DNG prior in Table 2 considers a
Gaussian distribution qðμiÞ for μi. Then, the corresponding VB

Table 3
BYY algorithm on LFA with DNG prior (BYY-LFA).

1 Initialization: Randomly initialize the model with large enough number k of components and hidden dimensionalities fhig; set τ¼ 0 and the harmony measure
JBYY ðτÞ ¼ �1;

2 repeat
3
4
5
6
7
8
9
10
11
12

Yang�step : Update assistant variables f ~y it ; ~Σ
y
i g by Eq: ðA:3Þ; f ~μ; ~Σμx

i g by Eq: ðA:2Þ; and f ~μy
it ;

~Σμy

i g by Eq: ðA:4Þ: Calculate pðijxt Þ by Eq: ðA:1Þ; eit and ϵit by Eq: ðA:6Þ:
Ying�step : With ∇Ui

HLFA by Eq: ðA:8Þ; update each Ui via

Unew
i ¼Uold

i þη½∇Ui
HLFA�Uold

i ð∇Ui
HLFAÞTUold

i �:
Update Ξn ¼ fλni ;mn

i ;b
nν
i ;bnφ

i g in a gradient way by Eq: ðA:7Þ:
H�step : In a gradient way; update fλ; ξ; βg [ fmig by Eq: ðA:10Þ; faνi ;b

ν
i g by Eq: ðA:11Þ; and faφi ;b

φ
i g by Eq: ðA:12Þ:

	for i¼ 1;…; k do
if λni or λi-0 then discard component i; let k¼ k�1;
for j¼ 1;…; hi do

if bnν
ij

aνij þ 1
2∑

N
t ¼ 1pðijxt Þ or

bνij
aν
ij
-0 then discard dimension j in component i; let hi ¼ hi�1;

�
6666664
if another 5 runs pass then let τ¼ τþ1; calculate JBYY ðτÞ ¼HLFA by Eq: ðA:5Þ;

�����������������������������
13 until JBYY ðτÞ� JBYY ðτ�1ÞoϵJBYY ðτ�1Þ; with ϵ¼ 10�5;

L. Shi et al. / Neurocomputing 139 (2014) 3–14 7



Author's personal copy

algorithm (shortly denoted as VB-MFA) can be obtained through
slightly modifying the one in [6] by replacing μi with mn

i when
updating other parameters, and additionally update the following
variational posterior for μi:

pðμiÞ ¼ Gðμijmn

i ;Σ
nμ
i ÞpEp½ln½qðXN ;Y;ZjΘÞqðΘÞ��; ð21Þ

where Ep½�� denotes expectation with respect to the current
estimate of all variational posteriors pðYjZÞpðZÞpðΘÞ except pðμiÞ.

There is no VB algorithm available for LFA with DNG prior, yet
there is a VB algorithm presented in [9] on FA-b, a degenerated
case of LFA with k¼1. Following [6], the joint posterior is assumed
to be approximately factorized as the following variational poster-
ior:

pðY;Z;ΘjXNÞ � pðYjZÞpðZÞpðΘÞ;

pðΘÞ ¼ pðαÞ ∏
k

i ¼ 1
pðμiÞ ∏

hi

j ¼ 1
pðνðjÞi Þ ∏

d

j ¼ 1
pðφðjÞ

i Þ
" #

; ð22Þ

and then the variational lower bound becomes

JLFAVB ¼
Z

pðYjZÞpðZÞpðΘÞ ln qðX;Y;ZjΘÞqðΘÞ
pðYjZÞpðZÞpðΘÞ

� �
dY dZ dX dΘ: ð23Þ

Its maximization leads to the following conjugate form:

pðZÞ ¼ ∏
k

i ¼ 1
∏
N

t ¼ 1
pzitit ; pðYjZÞ ¼ ∏

k

i ¼ 1
∏
N

t ¼ 1
Gðyjyn

it ;Σ
ny
i Þzit ;

pðαÞ ¼Dðαjλn; ξnÞ; pðμiÞ ¼ Gðμijmn

i ;Σ
nμ
i Þ;

pðνðjÞi Þ ¼ ΓðνðjÞi janν
ij ; b

nν
ij Þ; pðφðjÞ

i Þ ¼ ΓðφðjÞ
i janφ

ij ;b
nφ
ij Þ: ð24Þ

An EM-like algorithm is given in Appendix B, for maximizing JVB
LFA

with respect to the variational parameters ffpit ; yn

itgt ;Σny
i gki ¼ 1 that

describe the posterior distribution on Y [ Z, and the variational
hyper-parameters Ξn ¼ fλn; ξn; fmn

i ;Σ
nμ
i gi; fanν

ij ; b
nν
ij gi;j; fa

nφ
ij ; b

nφ
ij gi;jg that

describe the posterior on Θ.

5. Experimental results

Since the values of the hyper-parameters Ξ are usually
unknown and it is not good to assign one for all data by guess,
the algorithms are implemented to adjust Ξ under their own
learning principles. Moreover, it has been demonstrated in [4] that
the performance of VB will be improved when the fmig of Table 2
are constrained to be the same, i.e., 8 i;mi ¼m, with the number of
free hyper-parameters reduced, and thus VB is here implemented
with mi ¼m too. Still, no constraints are imposed on fmig for BYY
algorithms.

5.1. Comparisons on four series of simulations

Each dataset is generated according to MFA or LFA in
Tables 1 and 2. For each component i, we set the hidden
dimensionality hn

i ¼ 5, and the mixing weight αi ¼ 1=kn, where
kn denotes the true component number. The remaining para-
meters are randomly generated according to the Normal–Gamma

distributions given in Table 2, with aςij ¼ bςij ¼ 3, aνij ¼ 10, bνij ¼ 200,
and aφij ¼ bφij ¼ 10, 8 i; j.

To cover a wide range of experimental conditions, we vary the
values of the sample size N, the observed data dimensionality d,
the true component number kn, and the overlap degree β of
Gaussian components, where increasing β indicates that the
degree of separation of the components changes from large to
small. Generally speaking, it becomes more difficult in model
selection as N decreases, d increases, kn increases, and β increases.

We consider four series of experiments specified in Table 4.
Starting from a same point in the 4-dimensional factor space, each
series varies one factor of ðN; d; kn; βÞ while fixing the remaining
three. For each specific setting, 500 datasets are generated
independently, and all algorithms are initialized with a same
component number 25 and a same hidden dimensionality 9. We
compare the resulted k [ fhigki ¼ 1 with the true kn [ fhn

i g
kn

i ¼ 1 with
each hn

i ¼ 5. The model selection accuracies are reported in Fig. 1
as percentages of correctly obtaining k¼ kn and hi ¼ 5ð8 iÞ out of
500 independent runs.

Fig. 1 shows that all algorithms perform well at the starting
case, and then decline as the experimental environment deterio-
rates. Particularly, we observe:

1. LFA is shown to be superior to MFA in model selection, under
either BYY or VB. This observation is consistent to the empirical
findings on FA in [9]. Specifically, the superiority of LFA is less
obvious in the cases of small N, or large kn; β, because both LFA
and MFA get bad performance on these extreme cases. The
reason may be due to the fact that y in MFA processes an
identity covariance matrix, which can be taken as a special case
of that of LFA. Thus, LFA is more flexible than MFA to
accommodate different types of data. Moreover, the LFA is
better than MFA in terms of providing one additional room for
model selection via estimating Λ. Compared with adding priors,
Gðyj0;ΛÞ is more reliable and easier to be estimated from data.

2. On either LFA or MFA, BYY greatly outperforms VB for all the
cases except the one kn ¼ 7 in series 3. Although VB-LFA
benefits from the superiority of using LFA instead of MFA,
BYY-MFA is still more robust than VB-LFA against the deteriora-
tion of the environment, while BYY-LFA is the best in general.

Regarding the time-cost, due to space limit we are not able to
present the detailed results. It was observed that the BYY in
general involves a heavier computational load than VB because it
involves more gradient calculations. However, the complexities of
both algorithms are comparable to each other (around OðN3Þ),
since the main computation of both of them arises from the matrix
multiplication.

5.2. Face and handwritten digit images clustering

We test the clustering performances of the four algorithms on
three real datasets: the ORL1 face image database, the USPS2

handwritten digits, and the MNIST3 handwritten digits. The ORL
contains with 10 grayscale images for each 40 human subjects, and
all images are of a size 64�64. We project them to 65 dimensions
by PCA so that 90% energy in the covariance is reserved. The USPS
and MNIST digit databases both contain grayscale images of “0”
through “9”. In USPS, each image is of a size 16�16 and thus 256-
dimensional, and there are 1100 images for each digit. In MNIST,
each image is of a size 28�28 and thus 784-dimensional, and

Table 4
Four series of experiments for MFA/LFA model selection.

Starting case ðN; d; kn; βÞ ¼ ð300;10;3;0:1Þ

Series 1 Vary NAf300;290;280;…;100g and fix d; kn; β
Series 2 Vary dAf10;12;14;…;30g and fix N; kn; β
Series 3 Vary knAf3;4;5;…;15g and fix N;d; β
Series 4 Vary βAf0:1;0:2;…;1:5g and fix N;d; kn

1 Downloaded from “http://www.cl.cam.ac.uk/research/dtg/attarchive/facedata
base.html”.

2 Downloaded from “http://cs.nyu.edu/�roweis/data.html”.
3 Downloaded from “yann.lecun.com/exdb/mnist/”.
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each digit has 12,000 images. To study model selection on a small
sample size, we randomly pick 1200 images for each digit in
MNIST.

After MFA/LFA learning in an unsupervised way, all samples are
partitioned into different clusters with each component being a
cluster. Since we do not know the true component number in
these real world databases, we use two metrics to evaluate the
clustering performance: (1) Rand index (RI) [26]; (2) normalized
mutual information (NMI) [27]. Both metrics compare the clus-
tered partition with a ground truth partition, which is formed by
letting each class (i.e., each person in ORL and each digit in USPS/
MNIST) be a cluster. Both RI and NMI take value in ½0;1� and equal
to 1 when two partitions are identical, and a higher value means
greater similarity between the obtained clusters and the ground
truth [28]. It should be also noted that, since an appropriate model
selection helps improve the generalization ability, a high RI/NMI
score is related to but does not necessarily come from an appro-
priately determined component number.

After 10 independent runs for each algorithm, the average RI
and NMI scores by using each algorithm are reported in Table 5. As
shown, on both MFA and LFA, BYY outperforms VB in terms of both
RI and NMI scores. Moreover, LFA provides better results than MFA
under BYY or VB. Out of all algorithms, BYY-LFA performs the best.

5.3. Unsupervised image segmentation

We also apply the algorithms to unsupervised image segmen-
tation on the Berkeley segmentation database of real world
images4. Based on the fact that any feature of a single pixel may

not be sufficient for segmentation, we choose the VZ features
proposed in [29,30] to take into account the neighborhood and
texture information. A VZ feature for each pixel is constructed by
vectorizing the color information of all pixels in a w�w-sized
window centered at the pixel. Here, we set w¼7 to construct
147-dimensional feature vectors from the LAB color space. Usually,
the VZ features are further projected to 8 dimensions by PCA, e.g.,
in [4,29,30], when the dimensionality is too high. Since MFA/LFA
can simultaneously perform clustering and local dimensionality
reduction, we use the 147 features directly without PCA prepro-
cessing as PCA may result in some information loss.

For every image, the trained MFA/LFA model assigns each
image pixel to the cluster (represented by a component) of
maximum posterior probability. Since the true component number
is unknown, we evaluate the resulted segmentations by the
Probabilistic Rand (PR) index [31], which takes values between
0 and 1. A higher PR score indicates a better segmentation with a

Fig. 1. The correct selection rates by MFA/LFA automatic model selection algorithms in the four series of simulations.

Table 5
Clustering performance by MFA/LFA algorithms on ORL, USPS and MNIST databases.

Index per algorithm ORL USPS MNIST

Rand index (RI)
BYY-MFA 0.90 0.87 0.87
BYY-LFA 0.92 0.91 0.90
VB-MFA 0.86 0.84 0.86
VB-LFA 0.89 0.88 0.89

Normalized mutual information (NMI)
BYY-MFA 0.91 0.88 0.89
BYY-LFA 0.93 0.91 0.91
VB-MFA 0.89 0.87 0.85
VB-LFA 0.91 0.88 0.88

4 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/.
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higher percentage of pixel pairs in the segmentation having the
same labels as in the ground truth segmentation. A good model
selection performance is closely related to, but not necessarily
implies, a high PR score. We directly compare the segmentation
performance of the four algorithms without any post-processings

such as region merging and graph cut [32], although these
techniques may further improve the segmentations.

Table 6 gives the average PR scores by 5 runs on all of the 100
testing images of the Berkeley image segmentation database.
Shown in Fig. 2 are two examples chosen from the database. On

Fig. 2. Two image segmentation examples from Berkeley segmentation database by MFA/LFA automatic model selection algorithms. The segments are illustrated by the
highlighted green boundaries. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 6
Average PR scores of 5 runs on the 100 testing images of Berkeley image segmentation database by MFA/LFA algorithms on the 147-dimensional features. The “ GMM” results
are obtained by GMM automatic model selection algorithms on the 8-dimensional VZ features in [4].

GMM from [4] MFA/LFA

VB-DNW BYY-DNW VB-MFA VB-LFA BYY-MFA BYY-LFA

0.803 0.851 0.819 0.845 0.864 0.878
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both MFA and LFA, the BYY algorithm shows a higher average PR
score than VB, which is consistent with their model selection
performances on simulated data. Also, the BYY-LFA algorithm
performs the best and is able to detect the objects of interest
from a confusing background.

Moreover, compared with the results in [4] by GMM algorithms
on the PCA preprocessed 8-dimensional VZ samples, learning
MFA/LFA based on the original 147-dimensional samples provides
further improvements for both BYY and VB. This may show that it
is advantageous to jointly perform clustering and local subspace
modeling in image segmentation.

6. Concluding remarks

This paper has presented a comparative investigation on the
relative strengths and weaknesses of VB and BYY in automatic
model selection on MFA and LFA with the conjugate DNG priors.
The algorithm in [6] for VB on MFA is slightly modified. Moreover,
not only the algorithm for VB on LFA is developed, but also the
algorithms for BYY on MFA and LFA are proposed.

Through synthetic experiments, we have the following empiri-
cal findings. First, LFA performs better than MFA for both VB and
BYY, which echoes the advantages of FA-b over FA-a observed in
[9]. Second, BYY outperforms VB on both MFA and LFA. Overall, the
BYY-LFA algorithm performs the best in most cases. These obser-
vations are reconfirmed by applications on not only face and
handwritten digit images clustering, but also unsupervised image
segmentation on real world images.
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Appendix A. The BYY-LFA algorithm

The qðxt jiÞ is approximated by Eq. (12) with the following
product of multiple Student's T-distributions:

qðxt jiÞ �
βd=2exp

dþhi

2

� �
j ~Σμx

i j1=2j ~Σy
i j1=2

ð2πÞd=2 exp β

2
tr½ ~Σμx

i þð ~μx
it�miÞð ~μx

it�miÞT �
� 	

� ∏
hi

j ¼ 1

ðbνijÞa
ν
ij � Γ aνijþ

1
2

� �

ΓðaνijÞ bνijþ
1
2

diagð ~Σy
i þ ~y it ~y

T
itÞðjÞ

� �ðaνij þ1=2Þ

� ∏
d

j ¼ 1

ðbφijÞ
aφij � Γðaφijþ1

2Þ

ΓðaφijÞ bφijþ1
2sitj

h iðaφij þ1=2Þ; ðA:1Þ

where sitj ¼ diagðQ itÞðjÞ, Q it ¼ ðxt�Ui ~y it� ~μx
itÞðxt�Ui ~y it� ~μx

itÞT þ ~Σμx

i
þUi

~Σy
i U

T
i , and the notations ~y it , ~Σy

i , ~μ
x
it , ~Σμx

i are assistant variables
for approximations and updated by

~μx
it ¼ ~Σμx

i ½diagðaφi ⊘bφ
i Þðxt�Ui ~y itÞþβmi�; ~Σμx

i ¼ ½diagðaφi ⊘bφ
i ÞþβId��1;

ðA:2Þ

~y it ¼ ~Σy
i U

T
i diagðaφi ⊘bφ

i Þðxt�miÞ; ~Σy
i ¼ ½UT

i diagðaφi ⊘bφ
i ÞUiþdiagðaνi⊘bν

i Þ��1; ðA:3Þ

~μy
it ¼ ~Σμy

i ½diagðaφi ⊘bφ
i Þxtþβmi�; ~Σμy

i ¼ ½diagðaφi ⊘bφ
i ÞþβId��1:

ðA:4Þ

The HLFAðfUig;Ξ;ΞnÞ in Eq. (17) is expressed as

HLFAð Uif g;Ξ;ΞnÞ ¼ �Nd
2

lnð2πÞþ1
2

∑
k

i ¼ 1
∑
N

t ¼ 1
pðijxtÞLLFAit ð Uif g;Ξ;ΞnÞ

þ ∑
k

i ¼ 1
RLFA
i ðΞ;ΞnÞ;

LLFAit ðfUig;Ξ;ΞnÞ ¼ �hi lnð2πÞþΨ ðλni ðξþNÞÞ�Ψ ðξþNÞ
�tr½diagðωnν

it ÞðWieiteTitW
T
i þΠiÞ�

�tr½diagðωnφ
it ÞðϵitϵTitþUiΠiU

T
i þId=βÞ�;

RLFA
i ðΞ;ΞnÞ ¼ 1

k
ln ΓðξÞ� ln ΓðξλiÞþðξλi�1Þ½Ψ ðλni ðξþNÞÞ�Ψ ðξþNÞ�

þ1
2
½�d lnð2πÞþd ln β�βðmn

i �miÞT ðmn

i �miÞ�d�

þaνi T ln bν
i �1T

hi
ln Γðaνi Þþ anν

i �1
2
1hi

� �T

ðΨ ðaνi Þ

� ln bnν
i Þ�bν

i Tðanν
i ⊘bnν

i Þþaφi T ln bφ
i �1T

hi ln Γðaφi Þ

þ anφ
i �1

2
1d

� �T

ðΨ ðaφi Þ� ln bnφ
i Þ�bφ

i Tðanφ
i ⊘bnφ

i Þ; ðA:5Þ

with the prior hyper-parameters Ξ¼ fλ; ξ; fmig; β; faνij; b
ν
ijg; faφij ; b

φ
ijgg

and the posterior hyper-parameters Ξn ¼ fλn; fmn

i g; fb
nν
ij g; fbnφ

ij gg, and
we adopt the following denotations for convenience. Table 3 gives
an algorithm to maximize the above lower bound in gradient, i.e.,
BYY-LFA.

anν
i ¼ aνi þ

1
2

∑
N

t ¼ 1
pðijxtÞ1hi ; anφ

i ¼ aφi þ
1
2

∑
N

t ¼ 1
pðijxtÞ1d;

eit ¼ xt� ~μy
it ; ϵit ¼ xt�UiWieit�mn

i ;

ωnν
it ¼ ½anν

i þð1�pðijxtÞÞ1hi=2�⊘bnν
i ;

ωnφ
it ¼ ½anφ

i þð1�pðijxtÞÞ1d=2�⊘bnφ
i : ðA:6Þ

Update Ξn. The gradient ∇ϑH
LFA for ϑAΞn is calculated by

∇λni
HLFAp ∑

N

t ¼ 1
pðijxtÞþξλi�1

� �
½Ψ 0ððξþNÞλni Þ�Ψ 0ðξþNÞ�;

∇mn

i
HLFAp ∑

N

t ¼ 1
pðijxtÞωnφ

it � ϵitþβðmi�mn

i Þ;

∇bnν
i
HLFAp

1
2

∑
N

t ¼ 1
pðijxtÞωnν

it � diagðWieiteTitW
T
i þΠiÞ

þbν
i � ðanν

i ⊘bnν
i Þ�anν

i þ1
2
1hi ;

∇bnφ
i
HLFAp

1
2

∑
N

t ¼ 1
pðijxtÞωnφ

it ⊘bnφ
i � diagðUiΠiU

T
i þId=βþϵitϵ

T
itÞ

þbφ
i � ðanφ

i ⊘bnφ
i Þ�anφ

i þ1
2
1d: ðA:7Þ

Update: fUig The gradient w.r.t. Ui is calculated by

∇Ui
HLFAp ∑

N

t ¼ 1
pðijxtÞ½∇ð1Þ

Ui
ði; tÞþδit � ∇ð2Þ

Ui
ði; tÞ�;

∇ð1Þ
Ui
ði; tÞ ¼WT

i diagðωnν
it ÞðWieiteTitW

T
i þΠiÞ

þðId�UiWiÞT diagðωnφ
it ÞϵiteTitWT

i

�ðId�UiWiÞTDieiteTitW
T
i diagðωnν

it ÞΠi

�ðId�UiWiÞT ½Id�DieitϵTit � diagðωnφ
it ÞUiΠi;

∇ð2Þ
Ui
ði; tÞ ¼ 2 diag½ðaφi þ1

2 1dÞ⊘ðbφ
i þ1

2 diagðQ itÞÞ�
�½ðxt�Ui ~y it� ~μx

itÞ ~yT
it�Ui

~Σy
i �;

Unew
i ¼PGSðUnew

i Þ ðA:8Þ
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where PGSð�Þ denotes the Gram–Schmidt process which outputs an
orthogonal matrix, δit describes the difference between local
harmony measure on (i,t) and the weighted average with

δit ¼ δð1Þit þδð2Þit ;

δð1Þit ¼ Lð1Þit � ∑
k

j ¼ 1
pðjjxtÞLð1Þjt ;

Lð1Þit ¼ 2Ψ ððξþNÞλni Þ�2Ψ ðξþNÞ�hi lnð2πÞ
þ1T

d ½Ψ ðaφi Þ� ln bnφ
i �þ1T

hi
½Ψ ðaνi Þ� ln bnν

i �

�1
β
tr½diagðωnφ

it Þ��eTitW
T
i diagðωnν

it ÞWieit�ϵTitdiagðωnφ
it Þϵit

�tr½ΠiðUT
i diagðωnφ

it ÞUiþdiagðωnν
it ÞÞ�;

δð2Þit ¼ 1
2

∑
N

τ ¼ 1
pðijxτÞ Lð2Þiτ � ∑

k

j ¼ 1
pðjjxτÞLð2Þjτ

" #

�1
2
pðijxtÞ Lð2Þit � ∑

k

j ¼ 1
pðjjxtÞLð2Þjt

" #
;

Lð2Þit ¼ �tr½diagðbnν
i Þ�1ðWieiteTitW

T
i þΠiÞ�

�tr½diagðbnφ
i Þ�1ðϵitϵTitþUiΠiU

T
i þId=βÞ�: ðA:9Þ

The gradient for ϑAfλ; ξ; fmig; βg is given by

∇λiH
LFAp ∑

N

t ¼ 1
pðijxtÞδitþξ½Ψ ðξÞ�Ψ ðλiξÞ�Ψ ðξþNÞþΨ ððξþNÞλni Þ�;

∇ξH
LFAp ∑

k

i ¼ 1
∑
N

t ¼ 1
pðijxtÞþξλi�1þΨ ðξÞ�Ψ ðλiξÞ�Ψ ðξþNÞþΨ ððξþNÞλni Þ

� �
;

∇miH
LFAp

∑
N

t ¼ 1
pðijxtÞδitð ~μx

it�miÞþðmn

i �miÞ; each mi is free;

∑
k

i ¼ 1
∑
N

t ¼ 1
pðijxtÞδitð ~μx

it�miÞþ ∑
k

i ¼ 1
ðmn

i �miÞ; constrain each mi ¼m;

8>>>><
>>>>:

∇βH
LFAp ∑

k

i ¼ 1
∑
N

t ¼ 1
pðijxtÞ∇βði; tÞþdk�β ∑

k

i ¼ 1
ðmn

i �miÞT ðmn

i �miÞ;

∇βði; tÞ ¼ 1
β
1T
dω

nφ
it þδit ½d�β tr½ ~Σμx

i þð ~μx
it�miÞð ~μx

it�miÞT ��: ðA:10Þ

For hyper-parameters faνij; b
ν
ijg of the Gamma prior on fνig:

∇aνi
HLFAp

1
2

∑
N

t ¼ 1
pðijxtÞ ∇ð1Þ

aνi
ði; tÞþδit �∇ð2Þ

aνi
ði; tÞ

h i
þ∇ð3Þ

aνi
;

∇ð1Þ
aνi
ði; tÞ ¼ �diagðWieiteTitW

T
i þΠiÞ⊘bnν

i

þ2ωnν
it � diag½ðWieiteTitW

T
i þΠiÞΠi�⊘bν

i

�2 diag½WieitϵTit diagðωnφ
it ÞUiΠi�⊘bν

i

þdiag½ΠiU
T
i diagðωnφ

it ÞUiΠi�⊘bν
i þΨ 0ðaνi Þ;

∇ð2Þ
aνi
ði; tÞ ¼ ln bν

i þΨ ðaνi þ1
2 1hi Þ�Ψ ðaνi Þ� ln½bν

i þ1
2 diagð ~Σy

i þ ~y it ~y
T
itÞ�;

∇ð3Þ
aνi

¼ ln bν
i � ln bnν

i þðaνi �1hi Þ � Ψ 0ðaνi Þ�bν
i⊘bnν

i ;

∇bν
i
HLFAp

1
2

∑
N

t ¼ 1
½∇ð1Þ

bν
i
ði; tÞþδit � ∇ð2Þ

bν
i
ði; tÞ�þaνi⊘bν

i � ∑
N

t ¼ 1
ωnν

it ;

∇ð1Þ
bν
i
ði; tÞ ¼ diag½ð2WieiteTitW

T
i þΠiÞ diagðωnν

it ÞΠi

�diagð2WieitϵTit�ΠiU
T
i Þ diagðωnφ

it ÞUiΠi�⊘bν
i � ðaνi⊘bν

i Þ;

∇ð2Þ
bν
i
ði; tÞ ¼ aνi⊘bν

i � aνi þ
1
2
1hi

� �
⊘ bν

i þ
1
2
diagð ~Σy

i þ ~y it ~y
T
itÞ

� �
: ðA:11Þ

For hyper-parameters faφij ; b
φ
ijg of the Gamma prior on fφig, we

have

∇aφi
HLFAp

1
2

∑
N

t ¼ 1
pðijxtÞ½∇ð1Þ

aφi
ði; tÞþδit � ∇ð2Þ

aφi
ði; tÞ�þ∇ð3Þ

aφi
;

∇ð1Þ
aφi
ði; tÞ ¼Ψ 0ðaφi Þ�diagðϵitϵTitþUiΠiU

T
i þId=βÞ⊘bnφ

i

�2 diag½ðId�UiWiÞeitðϵTit diagðωnφ
it ÞUi

þðxt� ~μy
itÞTWT

i diagðωnν
it ÞÞΠiU

T
i �⊘ðbφ

i þ1
2 diag ~Σμy

i Þ

þdiag½UiΠiU
T
i diagð1dþωnφ

it ÞUiΠiU
T
i �⊘ðbφ

i þ1
2 diag ~Σμy

i Þ;

∇ð2Þ
aφi
ði; tÞ ¼ ln bφ

i þΨ ðaφi þ1
2 1dÞ�Ψ ðaφi Þ� ln½bφ

i þ1
2 diagðQ itÞ�;

∇ð3Þ
aφi

¼ ln bφ
i � ln bnφ

i þðaφi �1dÞ � Ψ 0ðaφi Þ�bφ
i ⊘bnφ

i ;

∇bφ
i
HLFAp

1
2

∑
N

t ¼ 1
pðijxtÞ½∇ð1Þ

bφ
i
ði; tÞþδit �∇ð2Þ

bφ
i
�þaφi ⊘bφ

i � ∑
N

t ¼ 1
ωnφ

it ;

∇ð1Þ
bφ
i
ði; tÞ ¼ diag½2ðId�UiWiÞeiteTitWT

i diagðωnν
it ÞWi

�2ðId�UiWiÞeitϵTit diagðωnφ
it ÞUiWi

�UiΠiðdiagðωnν
it ÞþUT

i diagðωnφ
it ÞUiÞWi�

⊘ðbφ
i þ1

2 diagð ~Σμy

i ÞÞ;

∇ð2Þ
bφ
i
ði; tÞ ¼ aφi ⊘bφ

i �ðaφi þ1
2 1dÞ⊘½bφ

i þ1
2 diagðQ itÞ�: ðA:12Þ

Table B1
VB algorithm to maximize the variational lower bound in Eq. (23) on LFA with DNG prior (VB-LFA).

1 Initialization: Randomly initialize the model with large enough number k of components and hidden dimensionalities fhig; set τ¼ 0 and the variational function
JVBðτÞ ¼ �1;

2 repeat
3
4
5
6
7
8
9
10

E�step : Given Ξ and Ξn; for each i and t; estimate pit ; y
n

it and Σny
i by Eq: ðB:1Þ:

M�step : Given pit ; yn

it ;Σ
ny
i and Ξ; update Ξn and fUig by Eq: ðB:2Þ;

H�step : Given pit ; y
n

it ;Σ
ny
i and Ξn; update prior hyper� parameters Ξ by Eq: ðB:3Þ:

	 for i¼ 1;…; k do
if λni or λi-0 then discard component i; let k¼ k�1;
for j¼ 1;…; hi do

⌊if bnν
ij

anν
ij
or bνij

aν
ij
-0 then discard dimension j in component i; let hi ¼ hi�1;

6666664
if another 5 runs pass then let τ¼ τþ1; calculate JVBðτÞ by Eq: ð23Þ;

����������������������
11 until JVBðτÞ� JVBðτ�1ÞoϵJVBðτ�1Þ, with ϵ¼ 10�5 in our implementation
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Appendix B. The VB-LFA algorithm

E-step update pit, y
n

it and fΣny
i g:

pit ¼ r1=2it ∑
k

j ¼ 1
r1=2jt

 !
:;

,

rit ¼ exp 2Ψ ðξnλni Þþhiþ ∑
hi

j ¼ 1
½Ψ ðanν

ij Þ� ln bnν
ij �

(
þ ∑

d

j ¼ 1
½Ψ ðanφ

ij Þ� ln bnφ
ij �

�tr½diagðanφ
i ⊘bnφ

i Þ½ðxt�Uiy
n

it�mn

i Þðxt�Uiy
n

it�mn

i ÞT

þΣnμ
i þUiΣ

ny
i Ui���tr½diagðanν

i ⊘bnν
i Þðyn

ity
nT
it þΣny

i Þ�
)
;

yn

it ¼ ½UT
i diagðanφ

i ⊘bnφ
i ÞUiþdiagðanν

i ⊘bnν
i Þ��1UT

i diagðanφ
i ⊘bnφ

i Þðxt�mn

i Þ;

Σny
i ¼ ½UT

i diagðanφ
i ⊘bnφ

i ÞUiþdiagðanν
i ⊘bnν

i Þ��1: ðB:1Þ
M-step update posterior hyper-parameters Ξn ¼ fλn; ξn;

fmn

i ;Σ
nμ
i g; fanν

ij ; b
nν
ij g; fanφ

ij ; b
nφ
ij gg and fUig: (Table B1)

λni ¼ ξλiþ ∑
N

t ¼ 1
pit

� �
ðξþNÞ; ξn ¼ ξþN;=

mn

i ¼ βIdþ ∑
N

t ¼ 1
pit

� �
diagðanφ

i ⊘bnφ
i Þ

� ��1

� βmiþ ∑
N

t ¼ 1
pit diagðanφ

i ⊘bnφ
i Þðxt�Uiy

n

itÞ
� �

;

Σnμ
i ¼ βIdþ ∑

N

t ¼ 1
pit

� �
diagðanφ

i ⊘bnφ
i Þ

� ��1

;

anν
i ¼ aνi þ

1
2

∑
N

t ¼ 1
pit1hi ;

bnν
i ¼ bν

i þ
1
2

∑
N

t ¼ 1
pit diag½yn

ity
nT
it þΣny

i �;

anφ
i ¼ aφi þ

1
2

∑
N

t ¼ 1
pit1d;

bnφ
i ¼ bφ

i þ
1
2

∑
N

t ¼ 1
pit diag½ðxt�Uiy

n

it�mn

i Þðxt�Uiy
n

it�mn

i ÞT þΣnμ
i þUiΣ

ny
i UT

i �;

Unew
i ¼PGSðUnew

i Þ;Unew
i ¼Uold

i þηðGUi
�Uold

i GT
Ui
Uold

i Þ;

GUi
¼ ∑

N

t ¼ 1
pitðxt�mn

i ÞynT
it

� �

∑
N

t ¼ 1
pity

n

ity
nT
it þΣny

i

� ��1

�Uold
i : ðB:2Þ

H-step update prior hyper-parameters Ξ¼ fλ; ξ; fmig; β; faνij;b
ν
ijg;

faφij ; b
φ
ijgg:

λnewi ¼ ðλoldi þηδλiÞ ∑
k

j ¼ 1
ðλoldj þηδλjÞ

" #
:;

,

δλi ¼Ψ ðξnλni Þ�Ψ ðξnÞ�Ψ ðξλiÞþΨ ðξÞ;

ξnew ¼ ξoldþηδξ; δξ¼ ∑
k

i ¼ 1
λoldi δλi;

mi ¼
mn

i ; general case ðeach mi is freeÞ;
1
k

∑
k

i ¼ 1
mn

i ; special case ðconstrain each mi ¼mÞ;

8><
>:

β¼ kd ∑
k

i ¼ 1
½ðmi�mn

i Þðmi�mn

i ÞT þtrðΣnμ
i Þ�

( )
:;

,

aνi new¼ aνi oldþηδðaνi Þ; δðaνi Þ ¼ ln bν
i � ln bnν

i �Ψ ðaνi ÞþΨ ðanν
i Þ;

bν
i new¼ bν

i oldþηδðbν
i Þ; δðbν

i Þ ¼ aνi⊘bν
i �anν

i ⊘bnν
i ;

aφi new¼ aφi oldþηδðaφi Þ; δðaφi Þ ¼ ln bφ
i � ln bnφ

i �Ψ ðaφi ÞþΨ ðanφ
i Þ;

bφ
i new¼ bφ

i oldþηδðbφ
i Þ; δðbφ

i Þ ¼ aφi ⊘bφ
i �anφ

i ⊘bnφ
i : ðB:3Þ
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