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a b s t r a c t

This paper presents a comparative study of two discriminative methods, i.e., Rival Penalized Competitive
Learning (RPCL) and Minimum Classification Error (MCE), for the tasks of Large Vocabulary Continuous
Speech Recognition (LVCSR). MCE aims at minimizing a smoothed sentence error on training data, while
RPCL focuses on avoiding misclassification through enforcing the learning of correct class and de-
learning its best rival class. For a fair comparison, both the two discriminative mechanisms are
implemented at the levels of phones and/or hidden Markov states using the same training corpus. The
results show that both the MCE and RPCL based methods perform better than the Maximum Likelihood
Estimation (MLE) based method. Comparing with the MCE based method, the RPCL based methods have
better discriminative and generalizing abilities on both two levels.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, Discriminative Training (DT) methods signifi-
cantly improve the performance of speech recognition. The suc-
cess of DT methods for large-scale tasks relies on three key
ingredients. The first one is the formulation of a DT criterion.
The most widely used DT criteria include Maximum Mutual
Information (MMI) [1], and a class of error minimizing discrimi-
native training criteria such as Minimum Classification Error
(MCE) [2] and Minimum Word/Phone Error (MWE/MPE) [3]. The
second ingredient is the use of lattice-based competing space,
which provides more competing paths and avoids reduplicative
computation of the same arc (word or phone) in different paths,
when comparing with traditional string based competing space
[4]. The third ingredient is to adopt the widely used Extended
Baum–Welch (EBW) algorithm for parameter estimation. An over-
view of these methods is referred to [5]. Recently, Rival Penalized
Competitive Learning (RPCL) was introduced in [6] to speech
recognition with promising results in a comparison with MMIE
and MPE. Still, there is a lack of comparison between RPCL and
MCE. This paper is motivated for such a comparative study.

MCE criterion was first proposed in [2], which aims at mini-
mizing the expectation of a smoothed string error on training data.

The MCE discriminant function can be generalized to model word
strings, phones, and other levels in speech recognition. In an early
study [7], the string-level MCE was shown to have similar
performance with MMIE based method on small vocabulary tasks.
In [8], phone-level based MCE was used for the acoustic model
training of a continuous phoneme recognition task, which turned
out to be more effective than string-level based MCE. Moreover,
studies in recent years [4,9] investigated lattice-based MCE meth-
ods, which have comparative performance with MPE based
method on the large vocabulary tasks.

First proposed in 1992 [10,11], RPCL is a further development of
competitive learning on a task of multiple classes or models that
compete to learn samples. For each sample, the winner learns
while its rival (i.e., the second winner) is repelled a little bit from
the sample, which reduces a duplicated sample allocation such
that the boundaries between models become more discriminative.
In [6], RPCL was implemented on the level of states for a
discriminative Hidden Markov Model (HMM) based speech model
as shown in Fig. 1. For each input, the winner state which is given
by the correct identity state from Viterbi force alignment is
enhanced while the most competitive rival state is repelled, which
increases the discriminative ability and obtains preferable general-
ization ability. When applied to LVCSR, it showed better general-
ization performance than the MMIE and the MPE, especially when
the sources of test sets are different from the training set.

This paper follows [6] to present a comparison between RPCL
and MCE as discriminative training methods for LVCSR task.
To investigate the impact of RPCL and MCE on different levels of
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a speech recognition system, they are embedded in the levels of
phones or hidden Markov states. According to [9] which uses the
lattice based competing space as [4], MCE is derived to be
implemented at the phone level, and also at the state level. For a
fair comparison, RPCL is also extended from the state level in [6] to
the phone level. Experiments are conducted on large vocabulary
continuous speech recognition tasks: 863-I-Test (matched with
the training data) and Hub-4-Test (unmatched with the training
data). The results show that the RPCL based methods have better
discriminative and generalizing abilities than MCE based methods
on both levels, and on the test data either matched or unmatched
with train data.

The rest of this paper is organized as follows: in Section 2,
state-level RPCL is reviewed and then further is extended to phone
level by using phone lattice as its competing space. In Section 3,
the phone-level MCE and its state-level counterpart are briefly
introduced. In Section 4, experimental results of RPCL and MCE on
phone level and state level are presented. Finally, conclusions are
made in Section 5.

2. Rival penalized competitive learning

First proposed in 1992 [10,11] and further developed subse-
quently, RPCL is a competitive learning featured, general problem-
solving framework, for multi-learners or multi-agents with each to
be allocated to learn one of multiple structures underlying
observations. Readers are referred to [12] for a systematic review
and recent developments, to Sections 3.1 and 3.2 in [13] and
particularly its Eqs. (7) and (34) for further details. In the follow-
ing, we only provide a brief introduction.

In conventional RPCL, not only the parameter θct of the winner
is learned such that ɛtðθct Þ decreases to some extent, but also the
parameter θrt of the rival is de-learned such that ɛtðθrt Þ increases
by a little bit. Specifically, RPCL learning is simply implemented by

θnew
j �θold

j ppj;t∇θj
ɛtðθjÞ; ð1Þ

where the term ɛtðθjÞðZ0Þ measures the error or cost for the j-th
learner to describe the current input xt, the notation ∇θj

denotes
the gradient operator with respect to θj, and the winner ct and the

rival rt (i.e., the second winner) are as follows:

pj;t ¼
1 if j¼ ct ;

�γ if j¼ rt ;

0 otherwise;

8><
>:

ct ¼ arg min
j

ɛtðθjÞ;

rt ¼ arg min
ja ct

ɛtðθjÞ;

8><
>: ð2Þ

with γ being a small positive number. The rival penalized mechan-
ism makes the boundaries between different learners become
more discriminative.

The state-level RPCL was introduced for speech recognition
system in [6] by considering ɛtðθjÞ ¼ � ln pðxt jθjÞ across different
states fjg, where pðxt jθjÞ is a mixture Gaussian density. In [6], the
winner state ct is determined by the identity of this input by the
Viterbi force alignment, that is,

pj;t ¼
1þpðrt jxtÞ if j¼ ct ;

�pðrt jxtÞγ if j¼ rt ;

0 otherwise

8><
>:

ct ¼ by Viterbi force alignment;
rt ¼ arg min

ja ct
ɛtðθjÞ;

8<
:

ð3Þ

where pjt was refined to be a simplified approximation to the
Bayesian Ying–Yang (BYY) harmony learning for which details are
referred to Section 3.1 in [14] and particularly Section 2.1 in [6].
As illustrated in Fig. 2(a), the sample x (red one) is labeled with
class A, but it has larger posterior probability for class B, PðBjxÞ4
PðAjxÞ. For the input sample x, the winner is the A, while B is
its best rival. Using the learning rule of Eq. (3), PA ¼ 1þpðxjBÞ
and PB ¼ �γ. The learning of the A is enforced, while the B is de-
learned. The class A moves close to the direction of x, while class B
moves away from the direction of x. Repeat the learning program
using all the samples iteratively until getting a good convergence.
After the RPCL learning, the two classes move to a stable place as
shown in Fig. 2(b). The BYY best learning provides a favorable new
mechanism for model selection and discriminative learning. Read-
ers are referred to papers [15,16] for recent systematic overviews
on the fundamentals, the novelties and favorable natures of the
BYY harmony learning.

Analogously, RPCL discriminative learning can be made at the
phone level for each phone. Suppose the reference phone
sequence of the r-th training utterance consists of Nr phones, i.e.,
Sr ¼ fs1r ; s2r ;…; sNr

r g. For each reference phone sr
n, its correct string

set MK
snr

and incorrect string set MJ
snr

are defined, respectively, as
follows:

8SAMK
snr
; (s A S; s� snr ; 8SAMJ

snr
; 8s0 A S0; s0asnr ; ð4Þ

where s� snr means that the phone s has the same phone label
with the same time alignment as the reference phone sr

n, and
s0asnr means that the phone s0 label differs from the reference
phone sr

n but has the same alignments as srn. For the n-th reference
phone sr

n from the r-th utterance, the winner and the rival are
defined by its best scored correct phone sn;Kr and incorrect phone

phone1Word:

GMMs :

HMMs :

phone2

Fig. 1. The hierarchical structure of word in GMM-HMM based speech recognition:
word level, phone level (HMM) and state level (GMM).

Fig. 2. Two class supervised model training using rival penalized competitive learning: (a) the learning trend of two models for incoming sample x and (b) a stable condition
after RPCL iterative learning. (For interpretation of the references to color in this figure the reader is referred to the web version of this paper.)
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sn;Jr in the denominator lattice as follows:

sn;Kr ¼ arg min
sASdenr ;s � snr

ɛtðθsÞ
� �

; sn;Jr ¼ arg min
sA Sdenr ;sa snr

ɛtðθsÞ
� �

;

ɛtðθsÞ ¼ � ln
�
1
Ts
pðXjθsÞ

�
; ð5Þ

where Sr
den is the decoding space from the denominator lattice of

r-th utterance. For comparing competing ability fairly, the likelihood
of every phone is normalized by the corresponding length Ts.

The posterior probability of every phone s is computed by

ΓRPCL
s ¼Γr

s � ξs; ξs ¼
1þδs if s¼ sn;Kr

�δsγ if s¼ sn;Jr

(
ð6Þ

where Γs
r is the posterior probability of the phone s of the r-th

utterance, which is collected from the lattice using the forward-
backward algorithm, and ξs is the weight of the phone s and δs is
the counterpart of pðrt jxtÞ of Eq. (2)(b) to represent the degree of
the competition:

δsnr ¼

1
Tsn;Jr

pðXsn;Jr
jθsn;Jr

Þ
1

Tsn;Kr

pðXsn;Kr
jθsn;Kr

Þþ 1
Tsn;Jr

pðXsn;Jr
jθsn;Jr

Þ
: ð7Þ

In Eq. (6), γ is the de-learning rate. The bigger the γ is, the stronger
the de-learning is. For one reference phone sr

n, the learning of the
winner phone sn;Kr is enhanced, while its rival phone sn;Jr is de-
learned with a de-learning rate γ. The strengths of enhancing and
de-learning vary as the degree of the competition, namely the
posterior probability of the rival phone, which makes the phones
more discriminative.

Accordingly, the parameters of each Gaussian mixture compo-
nent are updated according to the following modification of the
BW algorithm:

αnew0
jm ¼Γjm= ∑

Kj

m0 ¼ 1
Γjm0 ; Γjm ¼∑

s
∑
ts

t ¼ 1
ΓsjmðtÞΓRPCL

s ;

μnew0
jm ¼ 1

Γjm
∑
s

∑
ts

t ¼ 1
ΓsjmðtÞΓRPCL

s � xt ;

Σnew0
jm ¼ 1

Γjm
∑
s

∑
ts

t ¼ 1
ΓsjmðtÞΓRPCL

s � ½ðxt�μjkÞðxt�μjkÞT �; ð8Þ

where Γsjm denotes the posterior probability of phone s, state j and
Gaussian component m, and Kj is the number of Gaussian
component of state j. Eq. (8) differs from the BW algorithm and
the EBW algorithm for the lattice based MCE in the role of Γs

RPCL as
introduced above.

The above estimate θnew0
for each θAfαjm;μjm;Σ jmg specifies

a direction in which θold may be updated along with. However,
a direct use of θnew0

indicates a move with a too large learning step
along the direction θnew0 �θold. Similar to Box-3 in Fig. 7 in [14] and
the Ying step at the end of [12], we consider the following linear
interpolation:

θnew ¼ ð1�λÞθoldþλθnew0 ð9Þ

where λ indicates an appropriate step-size in which the update
θnew approaches to θnew0

, with 0oλr1.

3. Minimum classification error discriminant function

Using lattice as its competing space, the phone-level MCE
based DT method [4,9] considers the following discriminant

function for each string set:

gK ðθÞ ¼ log
1

jMK
snr
j

∑
SAMK

snr

pβθðXr jSÞpβðSÞ

2
64

3
75
1=β

ð10Þ

and

gJðθÞ ¼ log
1

jMJ
snr
j

∑
SAMJ

snr

pβθðXrjSÞpβðSÞ

2
64

3
75
1=β

ð11Þ

where β is the weighting exponent from which the phone-level
MCE criterion in consideration is written as

FMCE ¼ ∑
R

r ¼ 1
∑
Nr

n ¼ 1
f ðdsnr Þ; dsnr ¼ �gK ðθÞþgJðθÞ; ð12Þ

where f ðzÞ ¼ �1=ð1þe2ρzÞ, and dsnr is the misclassification measure
related to the reference phone sr

n.
To compare with the state-level RPCL method [6], the MCE is

also considered at the state level. The competing space of state-
level MCE is the same as that of state-level RPCL. The discriminant
function and the loss function of the state-level MCE are in the
same format as the phone-level MCE. The difference comes from
the discriminative unit and its discriminative state sequences.

The reference state sequence is obtained by the Viterbi force
alignment, and it is kept to be the same for all frames. For every
frame t, the candidate competing state set is selected according to
the KL distance measure in the same way as the one used in [6].
For every reference state st;r , its correct state sequence set MK

st;r
contains only the best alignment state sequence, while the
incorrect state sequence set MJ

st;r contains those different from
the correct one only at the time t.

The above implementation of MCE is based on Section 3.1 of
[9], which extends the original MCE in [2] for the LVCSR task with
the use of lattices to compactly represent competing space.

On the whole, though both the RPCL and the MCE enforce
learning of correct class and de-learning its best rival, they have
difference at the allocation mechanism. In RPCL, the enforce learning
and the de-learning are controlled by the posterior probability of the
de-learning rate. While in MCE, the enforce learning and the de-
learning are controlled by the smoothed sequence error. Also, from
the form the sequence learning, the mechanism of RPCL is inclined to
the local error, while the MCE focuses on the long sequence error.

4. Experiments and results

The speech corpus employed in this paper is the continuous
Mandarin speech corpora 863-I, which contains about 120 h, including
166 speakers, 83 male speakers and 83 female speakers. The training
set consists speech of 73 male speakers and 73 female speakers. The
test set (863-I-Test) was selected from the remainder 20 speakers, 20
utterances each. From the same corpus with the training set, this test
set is well matched with the training set. For investigating the
generalization ability of different models, we also test the models on
a not-well-matched test set, the 1997 HUB-4 Mandarin broadcast
news evaluation (Hub-4-Test), which consists of 654 utterances,
including 230 for male speakers and 424 for female speakers.

The acoustic models chosen for speech recognition were cross-
word triphone models built by decision-tree state clustering. After
clustering, the resulted HMM had 4517 tied states with 32
Gaussian mixtures per state. The acoustic models were first
trained using the MLE criterion and the BW update formulas.
Using this acoustic model, two sets of lattices named numerator
and denominator are generated using HTK toolkit [17]. Both the
phone-level MCE and RPCL methods share the same training

Z. Pang et al. / Neurocomputing 134 (2014) 53–59 55



lattices. To improve generalization, a syllable based unigram
language model is trained to generate phone lattices. Referring
to [4,9], both the phone and state level MCE based methods are
implemented with β¼1/15 and ρ¼0.04. For investigating the
effect of the different de-learning rate, both the phone and state
level RPCL based methods are implemented with different de-
learning rates γ¼0.2, 0.3 and 0.4.

The language model for recognition evaluation is a word-based
trigram built from a vocabulary of 57K entries. The input speech
data is made up of Mel-Frequency Cepstral Coefficients (MFCCs)
with 13 cepstral coefficients including the logarithmic energy
and their first and second-order differentials. All experimental
results were obtained through a single pass recognition on test
speech.
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Fig. 3. Character error rates (CER) (%) for each iteration on (a) 863-I-Test (matched with training set) and (b) Hub-4-Test (unmatched with training set) using phone-level
MCE and RPCL methods.
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Fig. 4. Character error rate (%) for each iteration on (a) 863-I-Test and (b) Hub-4-Test using state-level MCE and RPCL methods.
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The performance evaluation metric used in Mandarin speech
recognition experiments is the Chinese Character Error Rate (CER).
The MLE based acoustic model yields a CER of 13.67% on 863-I-Test
and 26.61% on Hub-4-Test, that is, the performance tested on the
matched test data is much better than that tested on not-well-
matched test data.

4.1. RPCL vs MCE: with λ¼ 1 in Eq. (9) for RPCL

Based on the experimental results, we have the following
observations:

� At the phone-level, CER of each iteration for two methods is
shown in Fig. 3. Comparing with the MLE based method, both
DT methods get improved recognition performance on the two

test sets. As shown in Fig. 3, for both the matched and
unmatched sets, the CER of RPCL first decreases to be smaller
than that of MCE and then increases with the gap vanishing
gradually. This is a typical phenomenon that is usually called
“overtraining”, which indicates that learning regularization is
needed. In other words, learning by Eq. (9) with λ¼ 1 has a too
aggressive learning step size, which will be reduced in the
experiments shown in Fig. 5.

� At the state-level in Fig. 4, RPCL consistently outperforms MCE,
especially for the unmatched set in Fig. 4(b) where RPCL stably
improves MLE a lot but MCE does not show obvious improve-
ment over MLE. Although there are still slight fluctuations, the
state-level implementation of RPCL is stabilized even by the
updating Eq. (9) with λ¼ 1.

� The best recognition performances of each method at different
de-learning rates are given in Table 1:
○ the phone-level MCE outperforms the state-level MCE on

both 863-I-Test and Hub-4-Test;
○ RPCL has a larger improvement over MLE on the phone-

level implementation than the state-level on the 863-I-Test.
Moreover the state-level RPCL slightly outperforms the
phone-level one on the Hub-4-Test;

○ Among all results, the phone-level RPCL with γ¼0.3 is the
best on the 863-I-Test, while the state-level RPCL with
γ¼0.2 gets the best result on Hub-4-Test.

4.2. RPCL vs MCE: with different λ in Eq. (9) for RPCL

As shown in the Fig. 3, the performance of RPCL fluctuates as
the training proceeds. To obtain more stable performances, we

Table 1
Performance comparison based on Figs. 3 and 4.

863-I-Test Hub-4-Test

CER (%) RR (%) CER (%) RR (%)

MLE 13.67 – 26.61 –

Phone-MCE 12.93 5.41 25.78 3.12
Phone-RPCL γ¼0.2 12.60 7.83 25.43 4.43
Phone-RPCL γ¼0.3 12.58 7.97 25.30 4.92
Phone-RPCL γ¼0.4 12.59 7.90 25.26 5.07

State-MCE 13.24 3.15 26.43 0.68
State-RPCL γ¼0.2 13.02 4.75 25.17 5.41
State-RPCL γ¼0.3 12.87 5.85 25.24 5.15
State-RPCL γ¼0.4 12.75 6.73 25.32 4.85
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Fig. 5. Character error rate (%) for each iteration on (a) 863-I-Test and (b) Hub-4-Test using phone-level RPCL methods with γ¼0.3 and λ¼0.25,…,1.0. The results of Phone-
MCE are taken from Fig. 3.
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implement Eq. (9) by decreasing λ from λ¼1 to λ¼0.75, 0.5, 0.25,
which actually decreases the learning step size from large to small.
We demonstrate the performances of RPCL with varying λ at a de-
learning rate γ¼0.3.

� It can be observed in Fig. 5 that the fluctuations in CER of RPCL
become weak as the step size λ decreases, and the RPCL with
λ¼0.25 is generally the best and consistently outperforms the
phone-level MCE. Comparing Fig. 5 with Fig. 3 implies that an
appropriate step size λ is important for phone-level RPCL.

� Although the state-level RPCL in Fig. 4 is already stable,
adjusting step size λ in Fig. 6 leads to a further improved

relative reduction on 863-I-Test from the best one 7.97 in
Table 1 to 8.41 in Table 2.

5. Conclusions

This paper has provided a comparison of MCE and RPCL in
discriminative training for LVCSR systems. The two methods are
both implemented at phone and hidden Markov state levels, and
tested on the data sets that are matched or unmatched with the
training data set. Experimental results show that RPCL consistently
performs better than MCE at both phone and state levels on both
matched and unmatched test data sets. All the results indicate that
RPCL is a promising method for the task of LVCSR.
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