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Summary

Transcription factor activities (TFAs), rather than expression levels, control gene expres-
sion and provide valuable information for investigating TF-gene regulations. The underly-
ing bimodal or switch-like patterns of TFAs may play important roles in gene regulation.
Network Component Analysis (NCA) is a popular method to deduce TFAs and TF-gene
control strengths from microarray data. However, it does not directly examine the bimodal-
ity of TFAs and it needs the TF-gene connection topology to be a priori known. In this
paper, we modify NCA to model gene expression regulation by Binary Factor Analysis
(BFA), which directly captures switch-like patterns of TFAs. Moreover, sparse technique
is employed on the mixing matrix of BFA, and thus the proposed sparse BYY-BFA al-
gorithm, developed under Bayesian Ying-Yang (BYY) learning framework, can not only
uncover the latent TFA profile’s switch-like patterns, but also be capable of automatically
shutting off the unnecessary connections. Simulation study demonstrates the effectiveness
of BYY-BFA, and a preliminary application to Saccharomyces cerevisiae cell cycle data
and Escherichia coli carbon source transition data shows that the reconstructed binary pat-
terns of TFAs by BYY-BFA are consistent with the ups and downs of TFAs by NCA, and
that BYY-BFA also works well when the network topology is unknown.

1 Introduction

High-dimensional data from DNA microarray are typically controlled by low-dimensional reg-
ulatory signals through an interacting network [1]. The gene expression is controlled by one
transcription factor (TF) alone or several TFs in combination on the target promoter regions.
Transcription factor activities (TFA) rather than levels of transcription factor expression play
roles in transcriptional regulations. It is a challenging problem in system biology to reconstruct
the dynamics of the hidden regulatory signals of TFs from the transcript levels of the genes they
control [1].

Network component analysis (NCA) [1, 2] is a popular method to deduce TFA and TF-gene
regulation control strengths from transcriptome data and a priori network structure information
which is usually constructed from ChIP-chip binding assays. In NCA, the (relative) gene ex-
pression is formulated as the product of each (relative) TFA to the power of the control strength

† These authors contributed equally to this work
*To whom correspondence should be addressed. Email: lxu@cse.cuhk.edu.hk

C
op

yr
ig

ht
 2

01
2 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

Journal of Integrative Bioinformatics, 9(2):198, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-198 1



from that TF to the gene, or equivalently, the relationship between TFA and and gene expres-
sion is approximated as a log-linear model, where the log expression level of a gene is modeled
by a mixture of log TFAs weighted by the control strengths. NCA takes the available network
topology into account to compute the component TFAs, different from principal component
analysis (PCA) or independent component analysis (ICA) which are based on statistical prop-
erties that may hinder the biological interpretations [1]. Three identifiability criteria need to
be satisfied in NCA for a unique decomposition [1, 3]. NCA has been successfully applied to
determine the transcription regulatory activities, on microarray data generated from yeast Sac-
charamyces cerevisiae during cell-cycle process or Escherichia coli carbon source transition
from glucose to acetate [1, 4], and so on. Other related methods include the REDUCE [5] that
takes normalized motif binding copy number as the regulation strength of the TF for that gene,
and obtains TFA profiles from gene expression data by linear regression.

Based on the NCA framework, this paper modifies NCA to model gene transcriptional regu-
lation by Binary Factor Analysis (BFA), which assumes the latent TFAs take binary values,
e.g., indicating whether or not a TF is activated. The identification of bimodal activity is useful
to identify the biological variation of TFs whose regulatory dynamics are tightly around two
discrete levels which are usually corrupted by noise. The switching pattern can be shown in
many ways, including high expression versus low expression, activation versus deactivation,
on versus off, and so on. To examine the functional of the protein or RNA products through
gene expression level, a simple and natural way is to divide the gene expression levels into
two categories as by Barcode in [6], which converts relative measure of expression from a sin-
gle microarray into a reliable absolute measure of expressed/unexpressed calls for each gene,
aiming to find which genes are expressed in a given cell type. Switch-like genes are shown to
exhibit tissue and disease-specific expression signatures [7]. The extracted binary pattern can
be the results of stochastic switches in a gene regulatory network, or epigenetic differences in
the form of methylation of cis-regulatory regions of genes contributing to regulation of gene
expression [8], or thresholds in target gene expression generated by miRNAs which can act
both as a switch and as a fine-tuner of gene expression [9]. Thus, examining the switch-like
patterns of TFA variation may shed light upon the underlying regulatory mechanisms.

Another problem in transcription network analysis is to determine the network topology and
control strengths. NCA needs a priori knowledge about the connection topology of the TF-gene
regulatory network. However, in most organisms, the connectivity information is currently un-
available. Due to the noise in experiments, the known connectivity data may not be reliable. A
two-stage method that integrates NCA with stepwise regression was proposed to trim the net-
work with the help of a modified Akaike information criterion [10]. To avoid such a repeated
implementation, we impose a sparsity penalty on the mixing matrix of control strengths, so that
the extra entries are automatically pushed to zeros if there is not enough evidence for the exis-
tence of connections. Efforts on sparsity have been made on sparse learning or Lasso shrinkage
by L1 norm penalty or a Laplacian prior, and so on [11, 12]. Within the Bayesian paradigm,
we consider on each entry of the mixing matrix a joint Normal-Jeffreys prior distribution which
is shown to implement sparsity well without any hyper-parameters to be determined [13]. We
propose to implement BFA under Bayesian Ying-Yang (BYY) [14, 15] learning framework.
The derived BYY-BFA algorithm can utilize both the available connectivity information and
sparsity property on the mixing matrix.

To test our proposed algorithm, experiments are conducted on both synthetic data and real data.
Simulation study demonstrates the effectiveness of sparse BYY-BFA in recovering the hidden
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dynamics of TF regulatory signals, and in estimating the connectivity topology and control
strengths. When applied on the yeast cell cycle data [16], the reconstructed binary TFAs by
BYY-BFA are consistent with the ups and downs of the continuous ones by NCA. If sparsity
is activated in BYY-BFA, many connections are shut off as the their regulation strengths are
pushed towards zeros, but without changing the cyclic patterns of the hidden TFAs. This sug-
gest that some connections are not necessary or may be false positive. Moreover, the problem
becomes more difficult if no network topology is used. However, the connectivity and the
regulatory dynamics can still be inferred to some extent. Most connections are shut off, and
approximately 40% the obtained connections are consistent with experimental ChIP-chip data.
Therefore, our algorithm directly captures the underlying activation patterns of TFAs, and also
extends NCA to the case when the topology of the TF-gene network is not available or not reli-
able. In addition, results on E. coli data show that BYY-BFA is effective to detect activations of
TFAs corresponding to the adaptation to carbon source transition from glucose to acetate [4].

The rest of this paper is organized as follows. In Section 2, we provide a brief review on NCA,
based on which we proceed to introduce BFA for gene regulation modeling, with a BYY-BFA
algorithm developed. Section 3 is devoted to experiments on synthetic data and real data, to
validate the performance of BYY-BFA. Finally, conclusion is made in Section 4. The algorithm
details are left in Appendix.

2 Methods

2.1 A brief review on NCA

NCA approximates gene expression as the product of the contribution of each TF regulatory
activity using the following model [1]:

Ei(t)

Ei(0)
=

m∏
j=1

(
TFAj(t)

TFAj(0)

)CSij

, (1)

or equivalently a log-linear model in canonical matrix form:

X = AY + Γ, (2)

where Ei(t) is the gene expression level, TFAj(t) is the activity of the TF j, and CSij

represents the control strength of TF j on gene i, and X = [log(Ei(t)/Ei(0))]n×N , Y =
[log(TFAj(t)/TFAj(0))]m×N , A = [CSij]n×m, and Γ is the residual.

NCA is to minimize the residual Γ to get a decomposition X ≈ ÂŶ , from the observed gene
expression profile X and the known connectivity for A, i.e., Cij is fixed at zero if TF j does not
bind to the promoter region of gene i, otherwise the control strength is non-zero. To guarantee
a unique decomposition up to some normalization factors, NCA requires A and the resultant
connectivity matrix by removing a regulatory node together with its connected neighbor genes
to have full-column rank, and requires Y to have full-row rank. It should be noted that the NCA
solution does not assume any relationship between the TFAs.
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2.2 Binary Factor Analysis

Binary Factor Analysis (BFA) explores latent binary structures of data. Unlike the conventional
factor analysis where the latent factor is Gaussian, BFA assumes the observations are generated
by Bernoulli distributed binary factors. From an information theoretic perspective, the latent
independent random bits take the role of causal sources. Research on BFA has been conducted
with wide applications, on analysis of binary data (e.g., social research questionnaires, mar-
ket basket data, etc.) with the aid of Boolean algebra [17], or to discover binary factors in
continuous data, e.g., see page 839-840 of [18] and also see [19, 20, 21].

BFA model assumes that an n-dimensional observation x is formed by n mixtures of m inde-
pendent binary factors y1, . . . , ym and added with a Gaussian noise e, i.e.,

x = Ay + a0 + e, (3)

where A is an n×m mixing matrix, and a0 is a bias vector. Moreover, the distributions of the
variables are given by

q(y) =
m∏
j=1

q(yj), q(x|y) = G(x|Ay + a0,Σe), (4)

where Σe is a diagonal covariance matrix, and G(z|µ,Σ) denotes a Gaussian probability density
with mean µ and covariance Σ. One natural way to model a binary variable yj in Eq.(4) is
Bernoulli distribution [18, 19, 21]. Equivalently, we consider that y takes binary values from a
two-component Gaussian mixture, that is,

q(yj) =
2∑

ℓ=1

αjℓG(yj|µjℓ, σ
2
jℓ), (5)

where 0 ≤ αjℓ ≤ 1, and
∑2

ℓ=1 αjℓ = 1, µj1 = 0, µj2 = 1, and σjℓ is fixed at a very small value.

According to Eq.(2)&(3), we use BFA to modify the framework of network component analysis
(NCA) [1] by considering the mixing matrix A as the connectivity matrix between the transcrip-
tion factors (TF) and the genes, the latent factor y to encode the state of the TF activity, and the
observation x to be the gene expression.

2.3 Sparsity on the mixing matrix

As indicated by the literature [1], the number of target genes of a TF is usually small, and
thus the connectivity matrix A is sparse, i.e., with many zero entries. If connectivity is par-
tially known from biological experiments or computational predictions, then the case falls in
the general framework of semi-blind factor analysis, e.g., see Sec.4.3 in [22]. However, the
connectivity information may be not available or not reliable. One possible way is to deactivate
those false positive connections by automatically shrinking control strengths to zeros during
learning with the help of a sparseness constraint. Efforts on sparsity have been made on sparse
learning or Lasso shrinkage by L1 norm penalty or a Laplacian prior, and so on [11, 12]. In
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this paper, we adopt the following joint Normal-Jeffreys probability density on each entry of
the mixing matrix [13]:

q(A|γ)q(γ) ∝
∏
i,j

G(aij|0, γij) ·
∏
i,j

1

γij
, (6)

where γij is the variance of aij and controlled by a Jeffreys prior without hyper-parameters.

2.4 Implementing sparse BFA under BYY framework

First proposed in [14] and systematically developed over a decade and a half [23], Bayesian
Ying-Yang (BYY) harmony learning is a general statistical learning framework for parameter
learning and model selection under a best harmony principle, which aims to maximize the
following harmony measure:

H(p∥q) =
∫ ∑

L

p(X)p(Θ|X)p(Y, L|X,Θ) ln[

q(X|Y, L,Θ)q(Y |L,Θ)q(L|Θ)q(Θ)]dY dXdΘ, (7)

where q(·) gives the Ying representation, and p(·) gives the Yang representation. For the BFA
model introduced in Sec. 2.2, components in Ying representation follow from the above specifi-
cations in Eq.(4)-(6) with X = {x}, Y = {y}, L = {j} and Θ = {A, a0,Σe, αjℓ, µjℓ, σ

2
jℓ}. In

Yang representation, the empirical density p(X) = δ(X−XN) is adopted with XN = {xt}Nt=1,
and the other components are free, i.e., no constraints on forms of their probability densities.

The derived algorithm to maximize H(p∥q) is called BYY-BFA, and its details are referred
to the Tab. 4 in Appendix. Sparse learning on the mixing matrix A is activated by q(Θ) =
q(A|γ)q(γ), or is shut off by q(Θ) = 1. Moreover, the given connectivity data can be utilized
by fixing the corresponding entries of A at zero through Ã if there is no known connection in
Tab. 4, or by a confidence probability for a flexible incorporation [22]. The obtained combina-
tions of implementations of BYY-BFA are summarized in Tab. 1.

The last one BYY-BFA(n+f) is actually a special case of the BYY harmony learning algorithm
for non-Gaussian factor analysis (NFA) proposed in Sect. 5 of [24] and Sect IV(C) in [15],
at the special case of a two-component Gaussian mixture by Eq.(5), or the BYY BFA learning
given on p840 of [15] and also the one studied in [19, 21]. The other three BYY-BFA algorithms
extends these previous studies by considering either or both of a priori connectivity and a priori
q(Θ).

The above is a brief introduction to BYY. Readers are referred to not only a summary of nine
aspects on the novelty and favorable natures of BYY best harmony learning, made at the end of
Sect. 4.1 in [23], but also the roadmap shown in Fig. A2 of in [23], as well as to a systematic
outline on the 13 topics about best harmony learning in Sect. 7 of [25].

C
op

yr
ig

ht
 2

01
2 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

Journal of Integrative Bioinformatics, 9(2):198, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-198 5



Table 1: Implementation of the algorithms. ”c”: constraining A with the connectivity topology
from e.g., ChIP-chip assay; ”f”: using a full A (no a priori connectivity); ”n”: implementing
BYY-BFA without sparse prior; ”s”: implementing BYY-BFA with sparse prior.

algorithm details
NCA implemented by NCA toolbox [1]
BYY-BFA(n+c) constraining A as NCA, τ = 0 in Tab. 4
BYY-BFA(s+c) constraining A as NCA, τ = 1 in Tab. 4
BYY-BFA(s+f) Ã = 1n×m (a matrix of all ones), τ = 1 in Tab. 4
BYY-BFA(n+f) Ã = 1n×m, τ = 0 in Tab. 4

0 20 40 60 80 100

−0.5

0

0.5

1

1.5

0 20 40 60 80 100

−0.5

0

0.5

1

1.5

Figure 1: The true binary activities (in blue, covered by the red points) is correctly reconstructed
by the ones (in red) by BYY-BFA

3 Results

3.1 On simulated data

We demonstrate the effectiveness of the proposed algorithm by simulated data sets. We set
n = 6,m = 2, k1 = k2 = 2,Σe = 0.1In, a0 = 0. The mixing matrix A is randomly generated
and then randomly set ps = 40% percentage of the entries to be zero. The final mixing matrix
is given by Aob in Eq.(8). The factor distributions are two-component Gaussian mixture with
means µj1 = 0, µj2 = 1 and variances fixed at σ2

j1 = σ2
j2 = 10−5, and k1 and k2 are fixed at 2.

Then, a synthetic data set XN of sample size N = 100 is randomly generated according to the
BFA model given in Eq.(3)-(4).

The sparse BYY-BFA algorithm (i.e., BYY-BFA(s+f)) is implemented on XN by randomly
initializing Θ = {A,Σe, a0, αrjr} with m = 2. It can recover the true connectivity matrix Aob

in Eq.(8) by a sparse matrix Âsb, with the corresponding elements pushed to zeros when there
is no enough evidence to support such connections. If not imposing the prior by Eq.(6), the
obtained Afb in Eq.(8) is not sparse enough. Figure 1 shows that the underlying 0-1 switch-like
factor activities are correctly recovered.

Aob =



−0.9785 2.1000
0.4908 0.1858

0 −0.4478
0 0

0.6946 1.4923
0 1.1556

 , Âfb =



−1.0924 1.9265
0.5292 0.1218
0.0172 −0.4930
0.0560 0.0234
0.6886 1.5070
−0.0580 1.0953

 , Âsb =



−1.0799 1.9233
0.4862 0.0223
0.0004 −0.4662
0.0012 0.0003
0.6669 1.4951
−0.0013 1.0903


(8) C
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Table 2: Reconstruction mean square errors (MSE) of NCA and BYY-BFA on yeast cell-cycle
data. We implement BYY-BFA(n) and BYY-BFA(s) in a combination of whether (c) constraining
A with the connectivity topology from ChIP-chip assay or (f ) using a free A.

algorithm MSE(n+c) MSE(s+c) MSE(s+f)
NCA 0.1320 - -
BYY-BFA 0.1677 0.1727 0.1495

3.2 On real data

3.2.1 Yeast cell-cycle data

We apply our algorithm to microarray data sets that are about yeast cell-cycle regulation. The
data were taken from wild-type S. cerevisiae cultures synchronized by three independent meth-
ods, α-factor arrest, elutriation, and arrest of a cdc15 and temperature-sensitive mutant [16], as
well as cdc28 data [26]. The connectivity information between transcription factors and their
regulated genes comes from the genomewide location or ChIP-chip assay [27].

We focus on 6 transcription factors (TF) that are known to be related to cell-cycle regulation
[27, 1]. Based on the ”NCA Toolbox” [1], 137 genes regulated by these TFs were selected,
with the connectivity information obtained from [27].

First, we implement the BYY-BFA(n+c) in Tab. 1. Similar to NCA, we construct Ã = [ãij]n×m

in Tab. 4 as: ãij = 1 if the j-th TF regulates the i-th gene according to the connectivity data;
otherwise, ãij = 0. The reconstruction mean square errors (MSE), i.e.,

MSE =
1

nN

N∑
t=1

∥xt − Âŷt − â0∥2 (9)

are given in Tab. 3, where xt is the gene expression vector at time t, and Â, ŷt, â0 are connectiv-
ity matrix, TFAs and mean vector, estimated by NCA or BYY-BFA(n+c). The two algorithms
both reconstruct the microarray expression data with small errors. BYY-BFA(n+c) obtained a
relative larger MSE because it constrains TFAs to be binary. The estimated regulatory activi-
ties are presented in Fig. 2(a)&2(b). Similar to NCA results, the dynamics of the TF activities
estimated by the BYY-BFA(n+c) also show cyclic behavior, which reveals the role of each TF
during cell cycle regulation. The reconstructed TFAs by BYY-BFA(n+c) are highly consistent
with those by NCA, i.e., 0 and 1 correspond to low and high, respectively.

Second, we implement BYY-BFA(s+c) given in Tab. 1. The estimated TFA profile is given
in Fig. 2(c), which resembles Fig. 2(a). According to Tab. 3, 128 of 203 connections from
the ChIP-chip assay were shut off by the sparse learning, which indicates the 128 connections
might be false positive or a mechanism of redundancy to ensure the robustness [28].

Third, we implement BYY-BFA(s+f) given in Tab. 1. Table 3 shows that a large part of the re-
laxed connections are switched off, and about 40% of the remaining connections are consistent
with the ChIP-chip experiment. As in Fig. 2(d), most of TFAs still preserve the cyclic pattern.
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Figure 2: The estimated TFA profiles on Yeast cell-cycle data by the algorithms in Tab. 1.

Table 3: Confusion matrices of the reconstructed connectivity by sparse BYY-BFA on yeast cell-
cycle data against the known connectivity from available experiments. For sparse BYY-BFA, a
connection is determined to be present if the absolute value of its estimated control strength is
larger than a threshold 0.02. Notations: 0̂ or 1̂ denotes reconstruction, 0∗ or 1∗ denotes the known
connectivity.

BYY-BFA(s+c)
0∗ 1∗

0̂ 0 128
1̂ 0 75

BYY-BFA(s+f)
0∗ 1∗

0̂ 535 152
1̂ 84 51

3.2.2 E. coli carbon source transition data

We further apply BYY-BFA to temporal gene expression profiles of E. coli during transition
from glucose to acetate, with samples taken at 5, 15, 30, 60 min and every hour until 6 h after
transition [4]. Similar to [4], the repeated data points are averaged, and we demonstrate the
effectiveness of BYY-BFA on 5 of 16 TFs that were analyzed by NCA in [4]. Based on the
available connectivity data and the applicability for NCA, 22 genes were selected by the NCA
toolbox [1], and there were 30 regulations from TFs to genes.

Similar to the reconstructed TFA profiles by NCA in Fig. 3(a), most TFAs by BYY-BFA(s+c)
in Fig. 3(b) show activation immediate after transition and then gradually become stable, cor-
responding to the adaptation of cells to the new environmental condition. However, different
from NCA, BYY-BFA(s+c) computed the TF “FadR” to be not activated after transition. More-
over, 16 of 30 regulation strengths are pushed to zero, or the corresponding regulations are shut
off. Similar to Fig. 2, the results by other implementations of BYY-BFA can also be computed.
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Figure 3: The estimated TFA profiles on E.Coli data: (a) by NCA with MSE 0.0117; (b) by BYY-
BFA(s+c) with MSE 0.02213.

4 Conclusion

Based on the NCA framework, we modify NCA to model the gene transcriptional regulation by
BFA, which assumes the latent regulatory signals to have two states, e.g., activated or deacti-
vated. Formulated within Bayesian paradigm, BFA can properly incorporate the a priori knowl-
edge from experiments and the sparseness feature on the connectivity matrix via a Normal-
Jeffreys prior. Synthetic experiments have demonstrated the effectiveness of our derived sparse
BYY-BFA algorithm in uncovering the latent TFA profile, and estimating the control strengths.
The extra connections are shut off by pushing the corresponding control strengths to zeros due
to the sparseness feature. Moreover, a preliminary application to Saccharomyces cerevisiae cell
cycle data and Escherichia coli carbon source transition data shows that BYY-BFA not only re-
constructs the hidden TF regulatory signals to be consistent with the up-and-down patterns of
the results by NCA, but also is capable of shutting off unnecessary or unreliable connections.
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Appendix: Details of the sparse BYY-BFA algorithm
In Yang representation, the empirical density p(X) = δ(X−XN) is adopted with XN = {xt},
and all the other components are free, i.e., no constraints on their probability functions. In such
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a setting, maximizing H(p∥q) leads the unknown Yang components to be Dirac delta functions,
p(Θ|X) = δ(Θ−Θ∗) and p(yt, j|xt) = δ([y, j]− [y∗

t , j
∗
t ]). It follows that Eq.(7) becomes

H(p∥q) ≈
N∑
t=1

ln[G(xt|Ayt + a0,Σe)αj∗G(y∗
t |µj∗ ,Λj∗)] + τ ln q(A|γ)q(γ) (10)

[y∗
t , j

∗
t ] = argmax

yt,jt
{ln[G(xt|Ayt + a0,Σe)αjG(yt|µj,Λj)]} (11)

where j = [j1, . . . , jm] with q(yr|jr) = G(yr|µrjr , σ
2
rjr), and q(yt|j) is a multivariate Gaussian

density with mean µj = [µ1,j1 , . . . , µm,jm ] and covariance matrix Λ = diag[σ2
1,j1

, . . . , σ2
m,jm ],

and diag[u] denotes a diagonal matrix with the vector u as its diagonal, and q(j) = αj =∏m
r=1 αrjr , and τ is an indicator of whether the last term in Eq.(10) takes effects. Specifically,

τ = 0 shuts off the effects from the last term.

A Ying-Yang alternative procedure is implemented between “Step Y ” and “Step θ with details
given in Tab. 4. The obtained algorithm is called BYY-BFA. It should be noted that τ = 0
removes the sparsity constraint in BYY-BFA, which degenerates back to a special case of the
BYY-NFA learning algorithm proposed in Sect. 5 of [24] and Sect. IV(C) in [15], simplified
with only two-component Gaussian mixtures. The binary matrix Ã is used to incorporate known
connectivity data, and it is set to be a matrix of all ones when no connectivity is available.
Moreover, µr,2 can also be free to be updated accordingly, for a more general BFA.

Table 4: The BYY-BFA algorithm
Objective: maximize H(p∥q) by Eq.(10)

Step Y : get y∗
t and j∗t = [j∗1t, . . . , j

∗
mt], for t = 1, . . . , N .

y∗
t (xt|jt) = (Λ−1

jt
+ATΣ−1

e A)−1[ATΣ−1
e (xt − a0) + Λ−1

jt
µjt ],

j∗t = argmaxj∈M ln[G(xt|Ay∗
t + a0,Σe)αjG(y∗

t |µj,Λj)],
where j = [j1, . . . , jm], αj =

∏m
r=1 αr,jr , µj = [µ1,j1 , . . . , µm,jm ],

and Λj = diag[σ2
1,j1

, . . . , σ2
m,jm

],M = {j | jr = 1, . . . , kr; 1 ≤ r ≤ m}.
Step θ: by gradient method θnew ← θold + η · ∂θ, ∂θ = ∂H(p∥q)

∂θ

∣∣∣
θ=θold

, ∀θ ∈ Θ.

a0 ← a0 + η ·
∑N

t=1{Σ−1
e et}, e = xt −Ayt − a0,

A←
[
A+ η ·

{∑N
t=1

{
Σ−1
e ety

T
t

}
+ τ ·B

}]
◦ Ã, B = −aij/γij ;

Σe ← Σe + η ·
∑

t

{
−1

2Σ
−1
e + 1

2Σ
−1
e ete

T
t Σ

−1
e

}
, γij ← γij + ητ ·

{
− 3

2γij
+

a2ij
2γ2

ij

}
,

βrℓ′ ← βrℓ′ + η · {
∑N

t=1 zrℓ′t − αrℓ′N}, αrjr ← exp{βrjr}/
∑kr

ℓ′=1 exp{βrℓ′},
where zrℓt = 1 if ℓ = j∗r , otherwise zrℓt = 0, ∀ℓ ∈ {1, . . . , kr}, αrjr is relaxed
to updating βrjr , and k1 = · · · = km = 2, µr1 = 0, µr2 = 1, σ2

r1 = σ2
r2 = 10−5,

η is a small learning step size, and τ = 1, 0 indicate whether sparsity is taken
into account or not, respectively, and Ã = [ãij ]n×m ∈ {0, 1}n×m is specified
according to the connectivity constraint, and “◦” is an element-wise product.

Convergence: repeat Step Y and Step Θ untilH = H(p∥q) converges,
i.e., |Hnew −Hold|/|Hold| < 10−4. C
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