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ABSTRACT

This paper considers the problem of invoking auxiliary, unobservable variables
to facilitate the structuring of causal tree models for a given set of continuous
variables. Paralleling the treatment of bi-valued variables in [Pearl 1986], we
show that if a collection of coupled variables are governed by a joint normal dis-
tribution and a tree-structured representation exists, then both the topology and
all internal relationships of the tree can be uncovered by observing pairwise
dependencies among the observed variables (i.e., the leaves of the tree). Further-
more, the conditions for normally distributed variables are less restrictive than
those governing bi-valued variables. The result extends the applications of
causal tree models which were found useful in evidential reasoning tasks.

L INTRODUCTION

Belief networks are directed acyclic graphs in which nodes represent random variables, the
arcs signify direct dependencies between the linked variables, and the strengths of these
dependencies are quantified by conditional probabilities. Belief networks can be used to
represent the generic knowledge of a domain, as well as inferece engines that manipulate
this knowledge in evidential reasoning applications [Pear] 1986, 1988]. In particular, it was
shown that in a singly-connected (e.g. tree-structured) network, beliefs can be updated
coherently by local propagation through a network of parallel and autonomous processors,

and that equilibrium is guaranteed to be reached in time proportion to the network diame-
ter.

Since the efficacy of the scheme depends on the singly-connected structure of the network,
Pearl [1986] has proposed a preprocessing approach which introduces auxiliary variables
and permanently turns multiply-connected belief networks into a tree. In [Pearl, 1988], it is
further argued that the introduction of auxiliary variables into causal models constitutes an
important component of human learning, aimed at attaining the features of modularity and

* This work was supported in part by the National Science Foundation Grant, DCR 83-13875.
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autonomy that are unique to tree representations. Naturally, the question arises what class
of multiply-connected networks can be reconfigured as trees. In [Pearl, 1986] it is shown
that if all variables are bi-valued and if there exists a decomposition into a tree-structured
network with auxiliary variables, then the topology of the tree can be uncovered uniquely
from the observed correlations between pairs of variables. However, if the variables are
not bi-valued, the problem is more complicated and remains an open question.

In this paper, we extend the method of structuring causal trees from bi-valued to continuous
normal variables. We show that if all the variables are normally distributed and if the ac-
tivities of the visible variables are governed by a tree-decomposable joint normal distribu-
tion, then the tree can be structured from the observed correlations between pairs of vari-
ables. Moreover, the conditions for normally distributed variables to be tree-decomposable
are less restrictive than the corresponding conditions for bi-valued variables.

II. THEORETICAL BACKGROUND
A. Nomenclature and Problem Statement

Let X, Xy, ..., X, be random variables from a n -dimensional joint normal distribution:
1

F@1X0 %) = Q1) 2(derS,) 2exp [ (X, —i) | T5 G =iy ], (D)

where X, = (x1, X, .., X,) !, 1, = Ex, is the mean vector and ¥, = E(x,— ) (X, ) *
is the covariance matrix of x,,.

Analogous with Section 3.2 in [Pearl, 1986], we can ask if fxy,x9,..,X,) can be

represented as a marginal of an n + 1 dimensional normal distribution of x,,; = (w, x}) ¢
such that the X; ’s are conditionally independent given W, i.e.

+oo
FOuXg X)) = [Fo@1, X0, o Xy, w) dw @)
fslxy,xq, ...,x,,,w):_I_‘Ilfs(xilw)f(w), 3)

where f (x; lw) ,i =1, .., n relate each X; to the central hidden variable W (see Figure 1).
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Figure 1

If the decomposition in (2) is possible, we name f, a star-distribution and call f star-
decomposable.

Instead of one hidden variable, W, we can use m hidden variables (m<n-2)toforma
tree-like structure (see Figure 2), in which each triplet of leaves forms a star, but the central
variable may differ from triplet to triplet.

Figure 2

A normal distribution f (xy, x5, ..., x,,) is said to be tree-decomposable if it is a marginal of
an n + m dimensional normal distribution:

f‘(xl,)fz,...,xn,wl, Wo, ey 'm) msn-2 (4)

that maps into a tree; ie., Wy, W, ..., W,, correspond to the internal nodes of a tree and
X1, X5,..., X, toits leaves.

In this paper we assume that a) each W has at least three neighbors and b) f (x 1y) # f (x)
for each X,Y €(X,X,, .. X,, W, W,, .., W, }, ie., there are genuine dependencies
between the linked variables (otherwise the tree can be decomposed into a forest).
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The problem is whether f,(x, x5, ..., X,, w1, Wy, ..., ') Can be recovered given a tree-
decomposable normal distribution f (x,, x, ..., Xp).

B. A Theorem on Normal Distributions

Itis well known (e.g., [Gigi 1977]) that the covariance matrix Y of a normal random vector

X=(x1,X9, ... X)) Tisa p X p diagonal matrix, iff the components of x represent indepen-
dent normal random variables. Moreover,

Theorem 1: Letx = (x{y), () ', Xy = (x1 - x,), xby = (CAIEEES )
Let p = Ex be similarly partitioned as p = (ry 1)) ! and let Y be partitioned as
Zn X2
255 ®

where Y, is the ¢ X ¢ upper left-hand corner submatrix of Y. If x is normally distributed
with mean p and covariance matrix ¥, then

a. The vectors x(jyand Xy~ 3, 37 X1y are independently normally distributed
with — means  pgy e~y Yl gy  and  covariance  matrices
= =1 )
211 X1 = Zop— Xy iy Lo respectively.
b. The marginal distribution of X(1) is g-variate normal with mean (1) and covariance
matrix ¥;.
c. The conditional distribution of X@) given Xqy is normal with mean

)+ X1 X471 Xy — By and covariance matrix Yy, ;.

The proof of the theorem is given in [Gigi, 1977, pp. 51-53] and it will be used in the next
section.

III. STAR-DECOMPOSABLE TRIPLETS OF GAUSSIAN VARIABLES

Let f(x1,x2 x3) be a 3-dimensional joint normal distribution as in (1), with mean
1= (1 Ky W3)’ and covariance matrix

G11 O12 O3
Y= 0'21 Gy 023 and Gij =Gji’ l,] = 1, 2, 3. (6)
031 O3 Oz
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If f (x4, x5, x3 ) is star-decomposable, then it is a marginal of a 4-dimensional joint normal
distribution f (w, X1, x5, x3) with mean p; = (u,,, u*)* and covariance matrix

' Oy ' Oiw O’ O3y
L= Ow1
[OW) z
Ow3

and
C,; =0, i=1,2,3

FW,xq,x0,x3) =f (xq, X3, X31w) f (W) @)

FOpxo,x3,lw)=Ff Gy lw)f ylw)f (x3lw). ®
Theorem 1 states that f (x, X9, x31w), f (w) and £ (x; lw)’s are also normal distributions,
and the mean vector and covariance matrix of f (x1, X5, x5 1w) are given by

- t

H1231w == O, [Gw, Gwzow;] w-u,) ©
- t

21'2'3|w = Z - cw‘lv [o-wl o.wz Gw,] [Gwl o-wz 6w,] . (10)

Additionally, the conditional independence stated in (8) implies that Y1231, must be adi-
agonal matrix, thus

Gij ~OCwiOjy /Oy, =0, i#jand i,j=1,2,3. an
and
o.l'i_cl%l/cww>0, i=1,2,3. 12)

Using the correlation coefficients defined as
pij =0y / (0;0;)" ‘ 13)
(11) and (12) can be written as
Pij =PiwPjw, foralli,j 14

pZ, <1 forall i (15)
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Solving (14) for p;, , we obtain
Prw = (P12P13/P23)*  Paw = (P12P13/ P13)*  P3w = (P13P23/ P12 (16)

The requirement that the p;,’s must be real numbers with magnitude not exceeding 1,
yields the following two conditions for f (x;, x4, x3) to be star-decomposable:

a. P12; P13, P23 are all positive, or two are negative and one is positive. In other words,
the triplet (xq, x5, X3, is positively correlated.

b. Pjx 2 Pjipi foralli,jk e {123} andi =/ =k

Summarizing the analysis above, we obtain Theorem 2.

Theorem 2:

L. A necessary and sufficient condition for three random variables with a joint normal
distribution to be star-decomposable is that the correlation coefficients satisfy the
inequalities:

Pik ZPjiPiu  Pij Pji Pui 20 an
foralli,jke {1,23},andi #j #k.

2. FoIw)~N@W )y, 0;1), i =123 are specified by the parameters
;1w =0;(1-pd)=0;(1 = PjiPix / Pji)

Gij

Kitw =H; = Oy (W — ) / Oy = 1y — Py p (w —u,)and
ww

fw)~N(,,0,), where 6,,, >0 and j1,, may be chosen arbitarily.
Part 2 of Theorem 2 can be proved from (9), (10) and (11) combined with (13) and (16).

In a manner similar to [Pearl, 1986] we may pose the following problem. Suppose
S (x4, X2, x3) is an arbitrary distribution (not necessarily normal), can it be approximated by
a star-decomposable normal distribution f(x{, x4, x3) which will have the same covari-
ance matrix as f . The answer is implied by Theorem 2, and stated in Theorem 3.

Theorem 3: A necessary and sufficient condition for the second order dependencies
among the triplet X1, X, X3 to support a star-decomposable normal joint distribution is
that all the correlation coefficients obey the triangle inequality:

p12p13p2320 and pjk ijipik for all i,j.k € {1,2,3},i zj#k.

Discussion:

1. Comparing Theorem 2 and 3 to those of [Pearl, 1986], we see that the conditions for
a normally distributed triplet X 1, X 5, X5 to be star-decomposable are less restrictive
than those for bi-valued variables; there is no restriction corresponding to the 3rd
order constraint imposed on P in [Pearl, 1986].
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2. Part 2 of Theorem 2 illustrates that if the conditions (17) are satisfied, the densities
S ), f(x;lw)’s can be obtained in closed form, depending on the selection of
Hw,0,, . In the case of star-decomposable triplets, one may conveniently set 62 = 1
and [, =0 ie., let the inner node have a standard normal distribution. For tree-
decomposable structures with more than three variables, the selection of 1, , o, for
the intermediate variables should be made in a consistent manner, as shown in the
next section.

3. To ensure that n( >3) variables of a joint normal distribution be star-decomposable,
(14) and (15) must lead to a consistent solution for all the Piw’S.

4. A simple (degenerate) example of triplets which always satisfy (17) is given by
Ist-order Markov variables X |, X 5, X 5, governed by the covariance matrix

2
On pVo1105  p™NG103;

Z=| pVo;0p ) P0O22033 1>p>0

2
PN pVOpos; O33 -

Since pjp=p, p13=p* and py=p,

we have P12 > P13 P32
P23 > P12 P13
P13=P12 P23

In this case the central variable W coincides with X 5. .

IV. STRUCTURING CAUSAL TREES

Consider the 4 possible topologies of 4-tuple of leaves in a tree, as given in Figure 3.
1 4 1 2 1 2 1 2
2 3 3 4 4 3 ><‘
3
(@) ®) ©) @ 4

Figure 3
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. The topologies differ in the identity of the triplets which share a common center, e.g., in the
topology of Figure 3 (a), [(1, 2, 3), (1, 2, 4)] share a common center; so does the pair [(1, 3,
4), (2, 3, 4)]. It follows that the star-decomposition of either triplet (1, 2, 3) or (1, 2, 4)
should yield the same values of o,,, W,,. This means that the correlation coefficients of the
4 variables with a topology of Figure 3 (a) should satisfy (16),

P, =puPis/py  for (1,2,3)

Pl =P1oPral Py for (1,2,4)

Thus,

P12P13/ P23 =P12P14/ Poy
or

P13P24 = P14P32 (18)

(Enforcing the equality of pzzw for (1, 2, 3) and (1, 2, 4), would yield the same equation).
Similarly, from the pair [ (1, 3, 4), (2, 3, 4) ], we also obtain (18) (note Pij =pji)- Thus, the
equality in (18) may be taken as the essential condition identifying the topology of Figure
3(a).

The equalities characterizing the 4 possible topologies of Figure 3 are given in table

1.
Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)
two equalities
P13P24 = P14P23 P12P34 = P14P23 P12P34=P13P24 | holding simultaneously

Table 1. The Characteristic Equalities of the 4 Toplogies in Figure 3

Table 1 may be taken as a tool for both testing if a 4-tuple is tree-decomposable and, if so,
deciding its topology. Since the basic test to decide the toplogy of any 4-tuple is the same
as that of binary variables, the topology of the entire tree of n leaves can be decided by the
procedure described in [Pearl and Tarsi, 1986].

The table yields the following condition for tree-decomposability:

Theorem 4: A necessary condition for a joint normal distribution to be tree-decomposable
is that, for every set of four variables {X;, X s Xk, X}, the equality

PapPys = PayPpo
be satisfied for at least one permutation (., B, v, ©) of (i, Jok, D).
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The next stage is to determine all the f (x; Iw) and f (w Iwy) functions. The functions
f (x; 1w)) assigned to the peripheral branches of the tree are determined directly from the
star—decomposmon of triplets involving adjacent leaves, and these can be used to determine
the functions f (w; Iwy) connecting the hidden variables. In Figure 4, for example, the
star-decomposmon of f(xy1, X9, x3) yields f (x;1wy), f (xy1w,), while f (xylwy) can be
obtained from the star-decomposition of (X}, X3, X ¢). These are sufficient for determining

fwilwy), via

flxylwy = jf(xlrwl)f(wllwgdwl (19)

wy

Figure 4

Let the mean and variance of f (x;lwy), f (x; lwy) and f(wylwy) be denoted by
Pty Ol oy s O, 0 oy 1y G2, |, Tespectively, and let the mean vector and
covariance matrix of (X, W, W) be [M,s Moy s Myy,] and

2
oxl lewl Gx;w;

2

Owx, Oy, ©

Wiwy

2
Gwle Gw,wz Gw;

We will show that G, ,,,ky, 1w, (thus f(w;lw,)) may be determined from
f(xylwy) and f (xqIw;). >From Theorem 1, the mean vector and covariance matrix of
Filw) fwilwy)=f (), wylwy) and f (x1,w, | w)) are given by
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- ~ ;. 5
0'31 Oxlwl 1 chXl
oy lwy = 2 (- ——5~ r {0, O, } (20)
e to.wlxl Ow, (5‘%2 Owawy F1 Twan e
J J
. N - \
2
Zx le Gwle 1 GWlxx
walw, =1 2 (~ r {o O }
o {GJHWz 6W2 cv%l cwlwz Wik TWiwal
J J
Hx, 1 Owox,
Hxywyilw, = - wa— 1) @n
R uwl O'w,' \Gwal ¥’
Hy, 1 Owux,
w = - (W - )
x1walwy uwz Gwl Gw;wl 1 “wl
Therefore,
2 —~2 2 2
0%, 1w, = O%, ~ O,/ O, 22)
2 — <2 2 2
o'wl 7% owl - o'wzwl / cwz
2 —~2 2 2
oxllwl = cxl - Gwlxl / Gwl
Oy
2X1
My iw, = Hx, — (wo— llwz) (23)
w2
_ c“'2‘4’1
My tw, = Hw, — P (wy— p'wz)
W2
_ Owix,
uxllwl_uxl_ o (Wl—uwl)'
w1

It is to be noted that f (x,wolw ) =f (x1Iwy) f (x5 Iwy), hence, ¥, .y, 1w, is a diagonal ma-
trix which leads to

= 2
Oy %, = Owyx, Owow, / O, 24)

As mentioned in Theorem 2, the mean and variance of the first inner variable may be as-
signed arbitrarily. We set 0&,1 =1 and p,, =0, then join (22) and (24) and keep in mind
that 62 1w 620 021, a0d My 1o By By, are known from
Fylw), f(xqlwy) and f(xy), and 62 |, 62, Gy s O, may be solved. In turn,
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Wy By 1w, can be solved by (23). Consequently, f(w;lw,) is determined by
Oy iwp My iwy  f(Wp) is determined by 0'32, My, In the same manner,
f (wslw,), and f (w,1w,) can also be determined.

V. CONCLUSIONS

The paper extends the auxiliary-variable method of constructing causal tree representations
to continuous variables. It shows that if the visible variables are governed by a tree-
decomposable joint normal distribution, then the tree can be structured from the observed
correlations between pairs of variables. Furthermore, the conditions for tree-decomposable
normal distribution are less restrictive than those of bi-valued variables. The results should
extend the applicability of causal tree models to evidential reasoning tasks involving con-
tinuous signals and can also be used to discover the underlying causal structure behind ill
understood phonomena.
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