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A Maximum Balanced Mapping Certainty Principle
for Pattern Recognition and Associative Mapping!

Lei Xu
1. Dept. of Computer Science, The Chinese University of Hong Kong
Shatin, Hong Kong ( the correspondence address)
2. Information Science Center, Peking University, Beijing, China

Abstract A genernal principle, called Maximum Balanced Mapping Certainty (Max-BMC), is pro-
posed for pattern recognition and associative mapping. Three unsupervised special cases have been inves-
tigated. One is equivalent to maximum mutual information or informax, with a close relation to a special
case of the YING-YANG machine. One provides an extension of a recently proposed minimum uncertainty-
unbalance PCA-type learning for a single neuron. The another gives a new model particularly suitable for
pattern recognition purpose. Furthermore, the counterparts of the three cases for supervised learning have
also been studied. In addition, the exclusive, factorial, and separable representations have been discussed
with a new type of asymptotic separability for pattern recognition.

1. Introduction

We may come to an age of searching a unified scheme for many different unsupervised and supervised
learning models that have been developed for pattern recognition and associative mapping in the literature.
Recently, a Bayesian-Kullback scheme, called the YING-YANG Machine, has been proposed as such an
effort(Xu, 1995a&96). Its one special case reduces to the EM algorithm (Dempster et al, 1977; Hathaway,
1986; Neal & Hinton, 1993) and the closely related Information Geometry theory and the em algorithm
(Amari, 1995a&b), to MDL autoencoder with a “bits-back” argument by Hinton & Zemel (1994) and its
alternative equivalent form that minimizes the bits of uncoded residual errors and the unused bits in the
transmission channel’s capacity (Xu, 1995d), as well as to Multisets modeling learning (Xu, 1995¢)-a unified
learning framework for clustering, PCA-type learnings and self-organizing map. Its other special case reduces
to maximum information preservation (Linsker, 1989; Atick & Redlich, 1990; Bell & Sejnowski, 1995). More
interestingly its another special case reduces to Helmholtz machine (Dayan et al,1995; Hinton, 1995) with
new understandings. The YING-YANG machine includes also maximum likelihood or least square learning.
Furthermore, the YING-YANG Machine has also been extended to temporal patterns with a number of new
models for signal modeling, with the Hidden Markov Model (HMM), AMAR and AR models (Xu, 1995b)
and other existing models included and éxtended. In addition, it has also been shown in Xu(1995a&:c,
1996b) that one special case of the YING-YANG machine can provide us three variants for clustering or
VQ, particularly with criteria and an automatic procedure developed for solving how to select the number
of clusters in clustering analysis or Gaussian mixtures — a classical problem that remains open for decades.

A number of possible new models have also been suggested by this unified YING-YANG Machine scheme
(Xu, 1996a). However, there do exist some learning models for pattern recognition and associative mapping
that can not be unified under this unified scheme.* In this paper, we propose another general learning
principle, called Maximum Balanced Mapping Certainty (Max-BMC), as a complement scheme. In Section
2, we present this principle for unsupervised learnings. We show that one special case is equivalent to
maximum mutual information or informax (Linsker, 1989; Atick & Redlich, 1990; Bell & Sejnowski, 1995),
with a close relation to a special case of the YING-YANG machine (Xu, 1996a). One other special case has
extended a recently proposed minimum uncertaindy-unbalance unsupervised learning for a single neuron,
with a close relation to Nonlinear Maximum Variance (NMYV) for PCA-type tasks (Xu, 1995f). Particularly,
another special case gives us a new model which is more suitable for pattern recognition purpose. Section
3 further introduces the counterparts of the three cases for supervised learning. In Section 4, based on this
general learning principle, we discuss the exclusive, factorial, and separable representations, with a new type
of asymptotic separability suggested.

! This project was supported by the HK RGC Earmarked Grant CUHK484/95E, and and by Ho Sin-Hang Edu-
cation Endowment Fund for Project HSH 95/02.




2. The Max-BMC Principle for Unsupervised Pattern Recognition

All the tasks of pattern recognition and associative mapping can be summaried by setting up a mapping
from an input pattern space X to a class or representation space Y. Probabilistically, such a mapping can
be modeled by a conditional density Pps(y|z) such that this model M recognizes/classifies/maps an input z
into a class or a representation y with probability Pp(y|z).

To obtain this model M, we first need to specify a family M from which our model comes from. This
family is usually of two types. For the first type, M is given with Py (y|z) being a regression model,
e.g., Pu(ylz) = N(f(z), £)-a normal density with mean f(z) and variance £ and f(z) implemented by
a feedforward network or radial basis network. Also, Py (y|z) can be given by normalizing the outputs
[fi(z), f2(z), - -, fx(2)] of a feedforward network into probabilities, e.g., by softmax e/i(#) / Z:::. elil@),

The second type is called generative model with

P = P Ppe(z ! P T P Pre(z : 1
) [ Pan Praaliyay” " e 2y Pr () Pra (1) i

with Pyr(z|y) given by a backward network, e.g., Pu(z|ly) = N(g(y),Zy)-a normal density with mean
9(y) and variance £, and g(y) implemented by a backward network. In the simplest case, we even can let
9(y) = my being a point, i.e., a usual normal density Py (z|y) = N(my, Z,).

Next, we need a principle to choose an appropriate one,M € M, based on a given data set,

In unsupervised cases, we have only an input data set {z;}_, to base on. - =

Given a model M, Py (y|z) describe the certainty that we make a decision of classifying or mapping =
into y. In the ideal case, we hope that this decision should be correct and fully confident. Since we have
no supervisor here, it is difficult to check whether it is correct. However, we can maximize Py (y|z) or
f(Pa(ylz)) to let our decision more confident, where f(.) is a strictly monotonic increasing function on the
interval [0, 1]. Considering the whole distribution of z and y, we maximize

E[f(Pu(y|z))] = L'y P(z,y)f(Pum(ylz))dzdy, f(.) is strictly monotonic increasing on [0, 1]. (2)

We further approximate P(z,y) = Py (y|z)Po(z) with the empirical estimate Py(z) = limp—o Px(z) =
+ Z‘h;l d(z — z;) for the input density. Putting this into eq.(2), we get

Je= % i, [, Pu(yle) f(Pu(ylei))dy, or Je=4% YL, T8, Pru(ylz) f(Palulzi)) (3)

The larger is the J., the more confident we are on our mapping, that is, the mapping certainty is
maximized. However, this maximization alone may result in a trivil solution that all the {z;}}, are mapped
into a single yo with Pps(yo|z:i) = 8(y — yo) or Par(yo|z:) = 1. In contrary, we hope that the mapped results
can well distribute on the full range of Y space. To achieve this target, we minimize E[f(Py(y))], i.e.,
Jy = f, Pu(y) f(Pum(y))dy, or Jo =30 Pu(W)f(Pu(v)),  Puml(y) = [, Pu(ylz)Po(z)dz = & TN | Par(ylz:) (4)

The minimization of J, will let input data more balancely mapped onto the full range of space Y.

As a whole, the trade-off between maxJ. and min J, gives us a principle as follows:

maxa(Je — Jb), with Je, Js given by eq.(3) and eq.(4), (5)

We call it by Maximum Balanced Mapping Certainty (Max-BMC) since it maximizes the mapping
(decision) certainty and keep the largest balance on the distribution in the space ¥ .

In sequel, we examine three special cases for the function f(.):

(1) f(z) = z, in this case, eq.(5) becomes
Jo=% Zfil fy Pi(ylzi)dy, or J.=% Zfi; Z:-l Py(ylz:)d Iy = fy Pi(y)dy, or Jp= Z:,:l P (v) (6)

This is actually a further development of a unsupervised learning rule for a single neuron in Xu(1995f),
called Minimum uncertainty-unbalance, which minimizes:

Jeb = 3 Toiy Pu(y = Uz)pul(y = 0lz:) = {} Tiv, Puly = Uz)HE T puly = 0/z:)}

where py(y = 1|z;) = 12 2i+9) ang () being sigmoid function with s(0) = 0, s(—o0) = —1, s(c0) = 1.
Noticing pw(y = 0]z;) = 1 — pu(y = 1|z;), the above equation can be rewriten into —J.; = Z-N=1 pily =
l|z;) — pP*(y = 1) with p(y = 1) = T{;Zf__l pw(y = 1|z;). This —Je is just the special case of eq.(5) and
eq.(6) for only one neuron. As shown in Xu(1995f), it is closely related to the Nonlinear Maximum Variance
(NMYV) learning rule

max E[s(w”zi +c) — Es(w"z: + ¢)]* = max{Es*(w Tz + ¢) — [Es(wTz: + ¢)]*}
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which is an extension of linear PCA learning to the nonlinear case.
(2) f(z) = In(z), in this case, eq.(5) becomes
Jo= % Tits J, Pulz) n Pu(ylsi)dy,  or Jo= % 5N ¢ Pu(ylsi)In Pa(ylss),
Jo= [, Pu(y)ln Pu(y)dy, or o= o s Pu(y)In (Pu(y) (N
That is, this Max-BMC is equivalent to maximum mutual information or informax (Linsker, 1989; Atick
& Redlich, 1990; Bell & Sejnowski, 1995), and also a special case of the YING-YANG machine (Xu, 1996a).

(3) f(z) = s(z) and s(z) is a sigmoid function with 5(0.5) = 0.5 and is convex on [0.5, 1] but concave on
0,0.5]. e.g., s(z) = 0.5tanh(z — 0.5) + 0.5. In this case, eq.(5) becomes

Je=fH 30, J, Prlylz)s(Pu(ylzi))dy, or Jo=4 TN Yoy Pu(ylzi)s(Par(ylzi))dy,

i=1
Jo= [, Pu(w)s(Pr(y))dy,  or Jo=3*_, Pr(y)s(Pa(v)) (®)
Comparing In(z) with z, we find that J. — J, in eq.(7) attempts to discount those values of probabilities
near 1 (which is helpful to increase the decision’s certainty) and to over-count those near 0 (which is actually
not desirable ). In contrast, s(z) can also discount those values of probabilities near 0. As a whole, it
pays more attention on deciding those data which are difficult to make a decision (which is surely desirable
to increase decision certainty). Thus, eq.(8) should be more suitable for those tasks with binary outputs,

such clustering or classification. This is a new model that deserves further theoretical and experimental
explorations.

3. The Max-BMC Principle for Supervised Pattern Recognition

In supervised cases, we have a data set {zi, i /L, to base. Now the distribution of y is controlled by
the data {y;}/L,, we no longer need the term J, for this purpose. Thus, we can maximize only the following
simplified J, to choose M € M:

Jo = % TIL, Pre(uilzi) £ (Pra(wile:)
Je=% 211 Piu(wilz:), for f(z)=g, J.= * Zf_'l Pum(yilzi) In Pa(yilzi), for f(z) = In(z)
Je= % Tity Tyey Pu(lz)s(Puulz)),  for f(2) = (=) (9)

The case for f(z) = z is the same as a new supervised learning model obtained from a special case of

the YING-YANG machine (Xu, 1996a). All the others in €q.(9) are also new models that deserve further
theoretical and experimental explorations.

4. Exclusive, Factorial, and Separable Representations

For J. in eq.(3), in the case that f(.) 'is"convex, we have

Je < f(F ks [, Phelwlzidy) < £(1), or Je<f(H TN, T per Phelvlz) < £(2) (10)
That is, it is up-bounded by f(1). For f(z) = z, f(1) = 1is achieved when # E‘tl Z:=1 Pk (ylz:)) =1,

which holds only when Py (y|z;) = 1 for a single yo and Py (ylz;) = 0 for all the other y’s. In other words,
each z; is classified into one class with probability 1, or each z; 1s exclusively represented by a single y. For
f(z) = Inz, similarly f(1) = 0 is also is achieved when each z; is exclusively represented by a single y. So,
we see that max J, is to ensure an ezxclusive representation for each input z;.

On the other hand, max(—Jj) is actually the entropy of Py (y). When y = [v1,- -+, ] with each binary
yj = 1 or y; = 0, max(—Jp) is achieved when Puly) = H;fﬂ Par(yj), i.e., whether y; taking 1 or 0 is

j : s
independent of what values Yj,J # i takes. This is called factorial representation, which is different from

the above exclusive representation by which theress only one y; = 1 with all y; = 0,1 # j.

So we see that the Max-BMC Principle is a combination of ezclusive representation on P(y|z) and
factorial representation on P(y).

In sequel, we further study the condition that ﬁ Zf\;l 221 Pl (y|zi) = 1. When N is finite, it holds
only when Pu(y|z;) is exclusive for each z;. When N — 00, this requirement can be relaxed into

Imyoeo 221 Z:zl P (ylzi) =1, for f(z)=1=z (11)
lmy oo & ily ey Pre(ylzi)in Pas(yles) =0, for f(z) = In(z) (12)

which may not imply that Pu(ylz;) is exclusive for each z;. In this case, we call those Py (y|zi) asymptotic
ezclusive. Clearly, ezclusive implies asymptotic exclusive, but its inverse is not true.
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Moreover, from Z:=1 Py (ylzi) =1, we have 1 = Zt,:i Pl (ylzi) + Z;=1 E::l,p;&q Py (plzi) P (qlz:).
Thus, the condition eq.(11) for f(z) = z is equivalent to

BN oo 37 Soret Dot Dopet pea P (PIZi)Pre(alzi) =0 (13)

which holds when limy 00 77 Zf\;l Pys(plzi) Pr(gl2:) = 0 for any pair p # ¢. In other words, asymptotically
there is no overlap between classes p, ¢. That is, the data of classes p, ¢ are asymptotically separable. Here,
the meaning of “separable” is more general and relaxed than the conventional deterministic “linear separable”
“nonlinear separable” in pattern recognition literature, which does not permit P (p|i) Pa(gl2i) = 0 on any
pair p # ¢ even for a single point z; and thus is too idealistic in practice. In the special case that M is given
by the generative model eq.(1) with Gaussian density Py (z|y) = N(my, ), the condition eq.(13) is exactly
the Cond-EMG— a necessary and sufficient condition for the correct convergence by the EM algorithm on
Gaussian mixture (Ma & Xu, 1996).

With the above regards, we can take the conditions eq.(11) or eq.(12) as the definition of asymptotic
separable data or distributions, which are more general and practical for pattern recognition purpose. More-
over, from eq.(10) we know that making eq.(12) satisfied only results in the maximized upbound In1 = 0 for
J. with f(z) = Inz, which does not imply the maximization of this J. itself.

5. Conclusions

The Maximum Balanced Mapping Certainty (Max-BMC) can serve as a general principle for both un-
supervised and supervised pattern recognition. It unifies some existing models and also provides several
new models. It is a combination of ezclusive representation on P(y|z) and factorial representation on P(z).
Based on it, we can also obtain more general and practical definitions on separability for pattern recognition.
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