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Xu L. YING-YANG machines: A Bayesian-Kullback scheme for unified learning and new results on vector
quantization. In: Proceedings of the International Conference on Neural Information Processing
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YING-YANG Machine: A Bayesian-Kullback Scheme for
Unified Learnings and New Results on Vector Quantization®

Lei Xu
1. Dept of Computer Science, The Chinese University of Hong Kong, Hong Kong
2. National Machine Perception Lab, Peking Univ, Beijing

Abstract A Bayesian-Kullback learning scheme, called Ying-Yang Machine, is proposed based
on two complement but equivalent Bayesian representations for joint density and on the iterative
Alternative Minimization of the Kullback divergence between the representations. We show that
the scheme unifies the EM & em algorithm, multisets modeling, Helmholtz machine, maximum
information preservation and other major learning schemes, and also provides new learning schemes
and new views. Furthermore, a particular case of the scheme is investigated in depth. We obtain the
cluster number selection criteria for the conventional Vector Quantization (VQ) and its algorithms.
Moreover, Stochastic VQ and Maximum Posterior VQ are suggested and shown to be superior
to the conventional VQ. They are implernented by the EM algorithm and its hard-cut variant
respectively, with the appropriate cluster (code-vector) number automatically selected. In addition,
an adaptive EM algorithm is proposed, which not only justifies current major competitive learning
(CL) algorithms by including them as special cases, but also improves these algorithms in several
aspects. , . :

1. Introduction

Most of the learning problems can be summarized into the estimation of the joint distribution
P(z,y) with = from the input space and y from the representation space. By Bayesian formulation,
P(z,y) bas two complement but equivaleat representations Py, (z,y) = Py, (v) Par,(zly) and
Pae, (=, ¥) = Pa,(y|z) Pag, (z). The two representations are modeled by Af; and M|, called YING
machine and YANG machine respectively with YING and YANG being two chinese characters
for words “female” and “male” respectively. The Kullback divergence K L(Py, (2, y), Par,(z, v)) is
iteratively minimized by alternatively fixing M, and Ma to get all the remaipiog unknows. We call
the Bayesian-Kullback learning stheme as YING- YANG Machine. Instead of merely using Kullback
divergence for matching joint densities in information geometry type alternating minimization
learnings (Amari, 1995a&b; Byrae, 1992; Csiszar, 19754:84), the YING-YANG Machine combines
Bayesian formulation into the Kullback divergence for matching two specific joint densities in the
complement but equivalent Bayesian representatiogs.

We show that the YING-YANG machine unifies the existing major learning approaches. One
special case reduces to the EM algorithm proposed by Dempster et al{1977), te a cost function
by Hathaway (1986) and Neal & Hinton (1993), to the [nformation Geometry theory and the
em algoritbhm (Amari, 1995akb; Byroe, 1992; Csiszar, 1975&84), to MDL autoencoder with a
“bits-back”™ argument by Hinton & Zemel (1994) and the autoencoder of minimizing the bits-of -
uncoded residual errors and the uoused bits in the transmission chaanel’s capacity (Xu, 1993).
The special case can also reduces to multisets modeling learning (Xu, 1995)-a unified learning
framewock for several existing major unsupervised and supervised learnings. One other special
case of the YING-YANG machine reduces to maximum information preservation (Linsker, 1939;
Atick & Redlich, 1990; Bell & Sejnowski, 1995). Another special case of the YING-YANG machine
reduces to Helmboltz machine (Dayan et al,1994; Hinton, 1994), and provides a new perspective
to the popular model, Moreover, the YING-YANG machine includes also maximum likelihood ot
least square learning as special cases, and provide new learning schemes for further studies.

We further study one special case of the YING-YANG machine in depth with several new results
obtained for Vector Quantization (VQ). A cluster cumber selection criteria has bees discovered
for the conventional Vector Quastization (VQ) and its algorithms, which provides a solution for
an open problem that remains unsolved for decades. The Stochastic VQ (SVQ) aad Maximum
Posterior VQ (MAP VQ) are presented and shown to be superior to the conventional VQ. They
are implemented by the EM algorithm and its hard-cut variant respectively, with the appropriate

'I am grateful to G. E. Hinton and P. Dayan for discussions which give me good understanding on
Helmholtz machine, to M.I.Jordag and his group for helpful comments on the early version of this paper.
The wark was Supperted by the HK RGC Farmarked Grant CUHK250/94E.
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Figure 1: (a) The input space X and the representation space Y. (b) The YING-YANG
Machine.

cluster (code-vector) number automatically discovered during the learning. In addition, we propose
an adaptive EM algorithm, which not only justifies, by including as special cases, the existing major
CL algorithms, such as the conventional CL, conscience or frequency sensitive CLs (Desieno, 1988;
Ahalt at al, 1990) and RPCL (Xu, Krzyzak& Oja, 1993), but also improve these algorithms in
several aspects.

2. YING-YANG Machine: A Bayesian-Kullback Learning Scheme
2.1 Learning as joint distribution estimation

Most of the learning problems can be summarized into the problem of setting up the descrip-
tions and their connections for patterns in the input space X and the representation space ¥, An
appropriate formulization for the purpose is the joint distribution Plz.y), z € X, y €Y from
which we can have all the four components P(z), P(y), .ny]:? and P(zly). P(z)and P(y) describe
the input distribution and its representation in ¥ . From P(y z), we have the mapping X —+ Y. As
shown in Fig.1(a), given a z, we get, according to the probability P(y|z),ay € Y asa label, a code
or a representation. E.g., we can randomly choose an y according to P(y|z), this is usually called
stochastic coding, labeling or recognition. We can also get y = arg mazx, P(y|z), called as mani-
mum posteriori coding, labeling or recognition. Moreover, we can even use y = Epiyl=)[y], called
as regression. Hence, P(y|z) defines a Recognition/Representation model, or R model shortly. On
the other hand, from P(z|y) we have the mapping ¥ — X. As shown in Fig.1{a), given a y, we
can get a z € X as a decoded or reconstructed pattern from y; or in other words, z is generated
from y. Similarly, we can randomly choose an = according to P(zl|y), or let z = arg maz. P(z|y),
or = Epz[z]. That is, P(z]y) defines a Generative model, or ¢ model shortly.

The purpose of learning is to build up P(z), P(y), P(y|z) and P(z|y) or equivalently P(z,y),
based on training samples from X or from both X and Y. Given a training set D, = {z;}N,,
we can find an empirical P(z). If we further specify the structure of ¥ (e.g., integer, binary,
independent binary bits) as well as the structure of P(z|y) or P(y|z), the extension from P(z)
to P(z,y) will not arbitrary and should be consistent to these specified structures. The set of
P(ylz), P(z|y), P(y), P(z) that satisfies D, and are bestly consistent to these constraints as well
as the Bayesian law P(y|z}P(z) = P(z|y)P(y) provides the solution of the learning. For particular
structures of ¥, by P(ylz) we may have clustering, PCA, coding, etc. Moreover, by P(z|y) we
are also able to generate a new member z from Y. We call all these learnings as Unsupervised
learning. Given a training set Dey = {z;, 5}, i, we are taught to pair z;,y; for a set’
of samples, the task of building up P(y|z) to be bestly consistent to this teaching is usually
referred as Supervised Learning. It is a subtask of seeking the densities P(y|z), P(z|y), P(y), P(z),
which satisfy D, , and are bestly consistent to the specified struciural constraints and the equality
constraint P(y|z)P(z) = P(z|y)P(y). This duty is similar to the duty of unsupervised learning.

In a summary, all the learning problems can be considered as the problem of joint distribution
estimation, and the difference of supervised learning from unsupervised learning lies in that more
constraints are added.
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2.2 YING-YANG Machine That Bases on Bayesian-Kullback Scheme

Under the Bayesian framework, we have two representations for P(z,y). As shown in Fig.1ib}.
One 15 Pu,(z.y) = Pu,(vlz) Pas, (z). implemented by a R-model M;, which we call Yang/(male)
machine since it performs the task of transferring a pattern/(a real body) into 2 code/(a seed). The
other is Py, (2, ¥) = Py, (zy) Pary(y), implemented by a G-model M, which we call Ying machine
since it performs the task of generating a pattern/(a real body) from a code/(a seed). They are
complement to each other and together implement an entire circle £ = y =+ z. Such a scheme
shows a compliment to a famous chinese ancient philosophy— YING-YANG theory, represented
by a sign similar to that given in Fig. 1(b). The theory believes that every thing in universe
consists of YING part and YANG part and that the match or coherence of the two parts makes
every thing as well as the entire universe normal.

To make our scheme normally perform certain learning based tasks, we design and then match
or couple the YANG machine and YING machine by appropriately setting up Py, (), Par, (y]z),
Pys.(z]y) and Ppy,(y), based on a given training set for the tasks. This procedure consists of two
stages——Model Design and Parameter Estimation.

On the Model Design Stage, we need to design the forms of the density functions and
the corresponding implementing architectures for the four components. Each of them should be
subject to three types of constraints:

{1) Free. The component is free to take any member of the family consisting of all the possible
den=ities of the same type as the component. E.g, if Py, (ylz) is free, then it can be any member
of the density family {P(y|z)} consisting of all the possible P(yjz). In this case, no architecture
is sacified.

.} Parametric. The component must be a member of the given parametric family of densities
of 1"« same type as members. E.g., if Py, (y]z) is parametric, then it must be a member of the
par metric density family {P(y|z,6)} with its function form fixed but 8 taking all the possible
val' . The particular interesting family of {P(y|z,6)} for recognition purpesed representation
car. : one of the following ones:

Pus, (vlz,8), withy = 1,--- k, or binary y = [1n, -, m),
Pa,(9z) = [Ty p(312)9(1 = plys2)) ',
Par, (vl=, 6) = TTj=, p(yslz, 890)% (1 = p(yz|z, 80))) -5 (1)
Wh--2 eq.(1) is called factorial coding, preferred by Hinton et al (1994). The architectures for
imp :menting them are free as long as they are mapping networks from z to discrete or binary y.
\n interesting family of {P(y|z,#)} for regression purposed representation is

Pas, (ylz,6) = (22)~9/3|S, |~ 12~ 3= 1= W DT (y=1(=.)) f={W,,%}, (2)
wit: Elylz.8) = f(z, W}) representing a feedforward network for the R-model.

.nother interesting but more complicated family for {P(yjz,#)} is the conditional mixture
(Xu. Jordan & Hinton, 1994}):

Py, (¥lz.8) = Ef;:fji& FHEH]-&!?[EIJi—”!c"l:'(!-’-"fj(l-',ﬂr',‘,}}TE:;[L‘—I,I:.WL_,}]‘ (3)
wherz £ consists of all the v, Wy j, L, ;. Each f;(z, W, ;) is a feedforward network. The nonnegative
gj(z,v),j=1,---, K forms an output vector of a gating network with the weight set v such that
E::;, g;(z,v) = 1. In other words, a mirtures of experts model (Xu, Jordan & Hinton, 1994) is
used as a whole for performing the R-model.

While 2 particular interesting family for the generative {P(z|y, ¥)} is

Pars(zly, ) = (27) =42 |Eg| =12~ Ho-slwWal) TS ==0lvWa)) g = (W, T4}, (4)

with E(z|y, v) = gy, Wa) representing a backward network for implementing a G-model.

(3) Fized. The component has been fixed at a particular empirical density, obtained by non-
parametric Parzen window estimate from a training set. We say that Py, (z) is fixed, it means
Pm,(z) = Pa(z) or Py, (z) = Po(z):

Pa(2) = gz Tica K(35%), Pol2) = limneso Palz) = & TN, 8z ~ 2. ()

where d is the dimension of z, K(r) is a kernel statisfying some condition (sec. 2.2, Xu, Krzyvzak
& Yuille, 1994), and A is called smooth parameter.
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The Parzen window estimate for Py(z.y) and Py(y) are obtained via replacing z in eq.(5) by
: = [z,y] and y respectively. .

How each of the four components Py, (z), Pas, (ylz), Par,(zly) and Ppy,(y) is confined to each of
the above three types of constraints is based on a particular design. Different designs are suitable
for different learning tasks and also provide different models even for a same learning task. In
general, We have the following situations:

(1) For Unsupervised learning tasks, we fix that Py, (2z) = Pa(z) or Pag,(z) = Py(z). For the
other components, we can have three types of designs: .

(a) Backward G-Net. Py (y|z) is free and Py, (2z|y, ¥) is parametric (i.e., a backward net
directly implements G-model). Depending on whether y is discrete or real, we have three variants:

(i) G-Net-1: Ppy,(v) is free in the finite discrete family {Pu,(y),y = 1,---, k).

(i1) G-Net-II : Py, (y) is free for real y. .

111} G-Net-1II : Py, (y) is in 2 parametric family Py, (yly) for real y.
b) Forward R-Net. Pu,(y|z,8) is parametric (i.e., a feedforward net directly implements
R-model). There may be two useful variants:

(1) R-Net-I : Pu,{g.? is free and it is forced that Py, (zly) = Pa(z) or Par,(z|y) = Pol(z).

(i) R-Net-II : Pay, (z|y) is free, and Py, (y) is in a parametric family Pay, (y]tby) for real y.

The variant that correspond to the free Py (z|y) and Pug,(y) is a useless under-determined
model.

(¢) Forward-Backward RG-Net. Both Py, (y|z,8) and Pu.(z]y, v) are parametric; i.e., a feed-
forward net directly implements R-model, and a backward net directly implements G-model. De-
pending on whether y is discrete or real, we have three variants:

(i) RG-Net-1 : Py, (y) is free in the finite discrete family {Pa,(v),y = 1, --, k}.

(1) RG-Net-11 : Pas,(y) is free for real y.

(iif) RG-Net-11I : Py, (y) is in a parametric family Ppy, (yliy) for real y.

(2) For Supervised learning tasks, we can have empirical estimates P,(z), Pa(y) and Py(z,y).
We can use any pair of them to fix two of the four components. In total, we can have also three
types of designs:

(a) Backward G-Net. Pu,(z,y) = Pi(z,y) or Pay,(2,y) = Po(z,y) is fixed, Py, (ziy, ¢) is
parametric, and Pa,(v) = Fily) or Py, Syj = Pyly) is fixed.

(b) Forward R-Net. Pyg,(z) = Pu(z) or Pu,(z) = Po(z) is fixed, Py, (vlz,#) is parametric,
and ‘PM:{:IF] = Pﬁ(I-F] or PM,(I. FJ = Pn("ly} is fixed.

(c) Forward-Backward RG-Net. Py, (z) = Py(z) or Pu,(z) = Po(z) is fixed, Py, (ylz,0) is
parametric, Py, (zly, ¥) is parametric, and Py (v) = Pi(y) or Pu,(y) = Po(y) is fixed.

On the Parameter Estimation Stage, we estimate the unknown parameters to match or
couple the above designed YING machine and YANG machine, which is based on an important
constraint for Py, (z), P, (ylz), Pas,(zly) and Py, (y)— the Bayesian law:

Pus, (yl2) Pua, (2) = Par, (2, ) = Pagy(2,9) = Paa(=ly) Pasa(v)- (6)
However, the direct solving based on eq.(6) has two disadvantages. First, eq.(6) gives nonlinear
equations which may be difficult to be solved explicitly. Second, for some restrictive cases like
Forward-Backward RG-Net, we may be not able to find a solution to exactly satisfy the equation.
We need to relax the tight satisfaction of eq.(6) by requesting that the two representations should
be as close as possible. With these considerations, we minimize the Kullback divergence?

K L(My, Ma) = KL(Pat, (2,9). Paty (2, 9)) = [, Poa, (v12) Pa (2) log peiiipesEazdy (1)
to let M3 to couple M, as close as possible such that M;, My are coordinately decided. Obviously,
eq.(7) includes eq.(6) as a special case that K L(M;, M3) = 0.

The minimization of K L(M,;, M2) can be made by Alternative Minimization (ALTMIN):

Step 1 Fix My = M3, to get M]'*" = arg Miny, KL(M,, M%)
or equivalently M = Miny,, ey Pas, (vlz) Pas, (2) log Pae, (vlz) Pur, (2 )dzdy. Or simply find a
MV such that K L(MP®, M§') < K L(M{, M$"4) and then we update M#¢ = Mpew_

Step 2 Fix M; = M, to get MJ*¥ = arg Miny, KL(M{*, M,) or simply find a MJ**
such that KL(MP4 MPe) < KL(MS4, M§'4)

Since KL[M],M:} # KL{M; M), we can also have variants KL(M:, M) or K.L{H:.Mi)"l‘
K L{Mz, M), which can be investigated similarly by following the line we study KL(M,M:) in the
rest of the paper



The ALTMIN iteration will finally converge to a local minimum of K L(Af;, M») since the both
steps reduce or at least not increases A L(A;, Ms). We call a pair {M;, M1} obtained by such a
procedure as Dayesian-Kullback Coupled YING-YANG Machine or YING-YANG machine shortly.

It deserves to mention that the YING-YANG machine is related to the information geometry
type learnings (Amari, 1995ad:b; Byrne, 1902; Csiszar, 1975&84) which also use the Kullback
divergence for matching two joint densities (i.e., the density from data submanifold and the density
from model submaaifold) via alternating minimization. However, those learnings only consider the
densities on the space of all the variables without going deep into the structure of the space.
The YING-YANG Machine cousiders the joint space of the input space and the representation
space via two complement but equivalent Bayesian formulations implemented by two complement
structures—generative model and recognition model. The two formulations are coupled through
the Kullback divergence. In other words, instead of only using the Kullback divergence for two
Jjoint densities, the YING-YANG Machine is a combination of Bayesian formulation and Kullback
divergence for matching two structural joint densities, with their four components specifically
designed as stated above. This difference is significant and makes it possible that the YING-YANG
Machine can act as a very general learning scheme for unifying the exisiting major unsupervised
and supervised learning schemes for neural networks.

3. Unified Learnings by YING-YANG Machine
3.1 Unsupervised Backward G-Net and The EM Related Learning Schemes

For the G-Net-I, let Py, (z) = FPy(z) as given by eq.(5) and put it into eq.(7), through certain
mathematics we can get

KM, Ma)=H-Q+D, Q=% b Pus, (vlz:) log [Pas, :ly, ) Pu, (v)]
H = T, 35y Pu, (ylzi) log Pag, (vlz:), D = —limsso log N, (8)
Since D is independent of M;, M3, the minimization of K(M;, Ma) is equivalent to minimize

H — Q. Since Py, (y|z) and Py, (y) are free, the Step 1 of the ALTMIN scheme can be explicit
solved. As a result, the ALTMIN scheme now becomes:

Step 1 (E-step) Compute Py, (ylzi) = Par, (2:ly, $°) P2(8)/ Ty Pata(zely, 74) PR (w),

Pﬂl‘d,m{y] = ﬁ’}:?; P, (ylzi), Qfﬂ’i"’”l = ]IVE:T-.L EFM.(F]IJBOERWJEIIIIFT ﬁr}] (9)
Step 2 (M-step) ¥™** = arg mazy Q(¢¥|¥*?) or find a ¢¥™*” such that Q(p"**|p*4) >
Qv 4 y™d).
This is exactly the EM algorithm proposed by Dempster et al(1977). They showed via in-
complete data theory that the EM algorithm gives the maximum likelihood estimation of mixture

model. Here we can have a very easy proof for this point. From eq.(9), we have Par, (z[y, ¥) Pas (1) =
Par.(z)) Py, (ylz) with

Py, (a]¥) = Ty Pary(zly, ¥) Pa, (3), (10)

being the companion representation for M in the form of finite mixture(Xu & Jordan, in press).
Putting these into K (M), M;), we can obtain K(M;,M;) = =L + D with D being the same as
given in eq.(8) and

L= ik J, P, (vlz:) log Par, (=:l)dy = & UL, log Pas (2:1¥)
It indicates that Min K (M, M;) is equivalent to maximum likelihood estimation of mixture model.
So we here get 4 new perspective for the EM algorithm.

Also, H — @ in eq.(8) is the same as the D(I¥,8") function given in Hathaway (1986) and
the —F(P,#) function given by Neal & Hinton (1993), which was interpreten as the “free energy”.
The same F function has also been obtained by Hinton & Zemel (1994) via using Minimum
Description Length (MDL) with a “bits-back™ argument for building an autoencoder, as well as
by Xu (1995) via minimizing the bits of encoding errors and the unused bits of the transmission
channel’s capacity during the communication®. Although the two encoding schemes give the same
solution, the scheme by Xu (1995) is for on-line encoding and can avoid the “bits-back” argument
and its related unnatural assumption “ the receiver waits until all of the training vectors have been

*Moreover, the term D actually represents the cost by the quantization accuracy.
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rommunicated losslessly”. Here, we get a new interpretation—=F = i — Q is the major part of
the Kullback divergence K L(My, M3) in the case Py, (z) = Polz).

In this case, the representation Ppy,(z,y) is also equivalent to the data submanifold D i
the Information Geometry theory and the em algorithm proposed by (Amari, 1995akb), and
the representation Py, (z,y) is equivalent to his submanifold M of an exponential family when
Pps.(z,y) belongs to an exponential family. In other words, the ALTMIN scheme for minimizing
K L(M;, Ma) shares the same idea of alternatively mapping between D and M for the Information
Geometry theory and the em algorithm. As a result, this specific YING-YANG machine provides a
new easy-understandable perspective and a new implementation for Amari’s Information Geometry
theory. There is no need for the concepts of differential geometry, e-geodesic, m-geodesic, and the
alternative minimization is not treated in sufficient statistics and limited in the exponential family.
Instead, the specific YING-YANG machine is for any density family, although the implementation
will be much simpler when Py, (z,y) belongs to an exponential family. Moreover, the general
YING-YANG machine can provide several new extensions for the existing Information Geometry
schemne. For example, when & # 0, Py, (ylz) and Py (z) together define a new data submanifold D,
which is more smooth and thus the learned model will be better in generalization. Furthermore,
the cases of G-NET-II, G-NET-III, the two R-Nets, as well as the three RG-nets described in
Sec.2.2 can all be regarded as new developments from the existing Information Geometry scheme,

Moreover, the above discussed also indicates that the EM algorsthm and the emn algorithm is
actually equivalent. In fact, the EM algorithm defined by Amari(1995a&b), which is based on
the sufficient statistics of the exponential family, is slightly different from the conventional EM
algorithm. lIts E step (and thus M step also) is not equivalent to the above eq.(§) ( and the
M step). Amari has shown that his EM algonthm is equivalent to his em algorithm [ thus the
conventional EM algorithm) in most cases and also asymptotically, although not always(Amari,
1995b).

Fi:::alhr. we mention two interesting issues. First, we can use the factorial distribution eq.(1)
for Pp,(ylz) in eq.(8) and the ALTMIN scheme in order to get the factorial recognition code in a
way similar to Hinton and Zemel (1994). Second, the above specific YING-YANG machine only
provides us with the G-model P, (z]y, ¥) and a set of samples Py, (yiz;) for R-model. This is
enough for clustering purpose only. However, for encoding or recognition on a testing data set, we
can get Fyr,(z|v) by the following extrapolating formula:

Pay(2]9) = Ty, Paty (2l 9) Pos, () = Jr 0%y Tobey Pos, (12:) Pagy (2ly, 9)

P £ 18 P_u' .FM £a I8
Pu,(y]z) = —"'%ﬁﬂl = ;‘;ﬁfﬁ;‘"ﬁ i=1 P, (vizs)-
3.2 Unsupervised Backward G-Net and Multisets Modeling Learning
By Multisets Modeling Learning (MML) (Xu, 1994 & 95a), multiple sets M(z, W,),y =
1,-+-,m in the same type of parametric model are used to a multi-modes data set D, which
comes from different objects or models. We call 2 sample z; satisfying M (z, W,) if z; € M(z, W, f
If z; does not satisfy M(z, W,), we have a cost £9(z;, W,) = f,r(W,) + min seMizw,) [ T(zi= :5' d
with |T'(z; — z)|? = ||lz; — z||* when ¢ = 2 and T = /. Since the cost can define a Gibbs density
Plz|Wy) = 'J:EEP{"E'{-"--'-Wy”- iy =2y, W) = E::1 exp(—e¥(z;, Wy ))
we can relate MML to the G-Net-I by letting Py, (zly, ¥1) = P(z|W,) with the Egqual Volume
Assumption Zy, = Z,y=1,---,m. For example, for those special cases with T'= I and ¢ = 2, the
Q) given in eq.I(B] becomes .
Q==Y TIL, Plylzi)e?(zi, Wy) - log Z. =
That is, MML is a special case of the Backward G-Net of the YING-YANG Machine.
3.3 Unsupervised Forward R-Net and Maximum Information Preservation
For the R-Net-1, let Py, (z) = Fa(z) and Py, (z|y) = Po(z) with Py(z) as given by eq.(5), and
then put them into eq.(7), through certain mathematics we can get i

K{Mth) =H-Q, Q= jx,‘ E.,J:q E:zl FM. l:y]'tfia} IOEPH:I‘-"} . i

H=4YN, T y=1 Pos, (vl=s, 6) log Pag, (vlzi, 6). (.ull‘-

Since Py, (y) is free, the minimization of this K (M, M;) gives Pay,(y) = :!;Ef__l P, (ylzi) whh!:
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is also Py, (y) from Par, (2, y) directly. Thus, putting it into the above Q, we get that
—K(My, Ma) = I{y,z) = Hv) - H(yz), H(y)=-Q=-%T1, E:=1 Py, (ylzi, 8) log [Par, (v))
R
H(ylz) = -H = - T, Tyey Pan(vlz:, ) log Par, (vlz:, 6). (11)

That is, [{y, z) is the mutual information that the output of the R-model contains abour its
input z. Or in the other words, [(y, z) is the information transmitted from r through the R-model
to y. Therefore, the minimization of this K'(Ay, M3) is equivalent to the maximization of the
information transmitted or preserved — an existing unsupervised learning scheme investigated by
several authors (Linsker, 1989; Atick & Redlich, 1950; Nadal & Parga, 1994; Bell & Sejnowski,
1955). Here, we can also use the factorial distribution eq.(1) for Py, (ylz,#) in eq.(11) to get
factorial codings.

The YING-YANG machine at the case R-Net-II is the dual case of the Backward net G-model.
[t is particularly suitable for unsupervised training of a recognizer/encoder that can be applied
directly to the testing data. This is a new scheme that has not been studied in the literature yet.

3.4 Unsupervised Forward-Backward RG-Net and Helmholtz Machine
For the case of RG-Net-1, let Py, (z) = Po(z) as given by eq.(5) and put it into eq.(7), we have

K(My, My) = H~Q+D, Q=301 5yms Pui(ylzi,0) 108 [Pary(2ily: ¥) Paa(v))
H=2% YL Yoo Pu(vlzi, 0) log Pa, (y]2:,8), D = —limysolog Nh?. (12)
The ALTMIN scheme now becomes:
Step 1 Fix ¢, ™" = arg mazs (Q — H) or find a #**¥ such that Ay (Q - H) > 0.
Step 2 Fix ¢, find ™% = arg mazy @
or find a ¥™** such that AyQ > 0 and Pi¥(y) = ]bzil Py, (ylzi, 67°¥).

It is interesting to see that @ — H is —F(d;4,Q) used by Dayan et al (1994) for Helmholtz
machine when Ppy, (v|z;, ) is represented by a Boltzmann machine like network. We have that (i)
Py, (yl=i, #) corresponds to Q.; (ii) log Par,(z, ¥, ¥) corresponds to — E,; (iii) Ps is Pu,(vlz,¢) =

P, (z1y, %) Pag, (v)/ Ty=y Pata(2ly, ¥)Par,(y) —the companion recognition model of Pag, (zly, ).

We can find the YING-YANG machine in this case is equivalent to Helmholtz machine. The
Step 1 of ALTMIN corresponds to the “sleep” phase algorithm (Hinton, et al, 1994) for the recog-
nition weights, and the Step 2 of ALTMIN correspond to the “wake” phase algorithm for the
generative weights. 5o, we get a new perspective for Helmholtz machine. Moreover, the new per-
spective also provides two new views. First, an algorithm that uses gradient approach to implement
the above ALTMIN will guarantee to converge, although we have not yet known the convergence
of the “wake-sleep” algorithm. Second, from the YING-YANG machine in the case of Backward
G-Net-1, we know that the key point for K{M,, M1) = —L + D is that

Pyt (2ly, ¥} Par, (¥) = Pagy(z]0) Par, (vl2:)

holds when M, is fixed. This is always possible when Py, (yz;) is free. However, for the case of
Forward-Backward RG-Net-I, Py, (v|zi) = Pu, (vizs, ) must be in the parametric family. Among
this family, there may or may not be an Py, (ylz:) to let the equality held. So the YING-YANG
machine and thus Helmholtz machine is not equivalent to maximum likelihood estimation of mix-
ture model in general. They are equivalent only when the family of Py, (z|y, 1) or/and Pay, (y|z:, 8)
is large enough such that the above equality can hold eventually.

Furthermore, the YING-YANG machine for the cases of RG-Net-II and RG-Net-11I can be
regarded as two variants or extensions of the Helmholtz machine.

3.5 Supervided Learning

Backward G-Net Weget K(M;,M;) = a—% E:‘;I E:=l log P, (zily, ¥) + D with D being
independent 1o o. That is, Min K(AM;, M2) is equivalent to the conventional maximum likelihood
estimation of ¥. When Py, (z|y, ¥) is given by eq.(4), it is also equivalent to the least square
training of an inverse networks. N

Forward R-Net Instead of Min K{M;, M), we need to use Min K(h?g.Ml} which
is equivalent to the conventional maximum likelihood estimation of 8 for Ppy,(ylz,6). When
Pp, (vlz, ) is given by eq.(2), it 1s equivalent to the least square training of a feedforward network
flz, W1). When Puy, (yiz,8) is given by eq.(3), it is equivalent to the mirtures of erperts model
(Jacobs, Jordan, Nowlan & Hinton, 1991: Jordan & Jacobs, 1994; Xu, Jordan & Hinton, 1994).
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Forward-Backward RG-Net is & new supervised learning scheme by which a forward and
an inversed networks are trained together.

3.6 New Learning Schemes

Several special cases of the YING-YANG machine also provide us new learning schemes, such as
Backward G-Net-IT and G-Net-111, Forward R-Net-11 and Forward-Backward RG-Net-I1 and RG-
Net-I11. These new schemes as well as the issue of using Parzen window estimator Py(z) instead of
the empirical estimator Py(z), and the issues on variants K (M2, My} and K (M), M)+ K (M2, M,)
deserve to be further explored.

4. The EM Algorithm and Variants for SVQ, MAP-VQ and VQ
4.1 The EM Algorithm and Stochastic Vector Quantization

Let us consider eq.(8) for the case of G-Net-I in depth. Suppose t.tm.tT
PM&{*:"F; ﬂ.l} = PH,{*-'F; My, Sy] = {le-dfilzr'-l.ﬂﬂc' dlz=my)" 7 {tl'——mr?. {13}
Let Lytocns = K (M, M2) denoting the current Kullback divergence, it follows from eq.(8) that

| v [2
Lrtnhc e L;Ig;fm TL;iﬂ:ﬁ-ﬂ"

Lo = D= Q4 Ty Ps(IB Pas(0), Loena = H = Ty Pty () 108 Puss(9), (14)
L yoens = 5 iy by Pas, (vlzi)[(2i — my) T (20 — my) + log |Zy[] - log (RN) + bo, (15)
Lioens = r T Syen Pty (v12:) 108 P (312:) — Ty Pars(¥) log Pasz(v). (16)

where b = 0.5d log2n is a constant. The corresponding ALTMIN scheme now becomes

Paey(=ily.m3 S5 )Pt (v) N .
E_i TF'M:{I.I!.:Mi':.E;r::'JP;r':{F]’ P;d';w[ﬂ = 2N'i‘ ny =3 ;-1 Pa(ylzi), (17)

M-step mi® = £ TN, Pa,(vlzi)i, T3 = & 0L, Par (vlza)lzi — my)izs — mg]™. (18)

which is the EM algorithm for the finite Gaussian mixture specified by eq.(10) and eq.(13). It
surely converges with several advantages (Xu & Jordan, in press). The experimental results on
unsupervised clustering have also shown its superior performance in comparison with the k-means
algorithm (Xu & Jordan, 1983).

With Py, (v]2:), we can code each vector z; into a discrete code y by stochastic coding, i.e.,
picking y with probability Pas, (y]z:); then after sending to the receiver end,we can decode from y
a reconstruction of z; by #; = E[z|y] = my. In other words, we have a Vector Quantization (VQ)
scheme which quantizing = into my,y = 1,---, k, we call the scheme Stochastic V@ (SVQ) .

The codebooks given by SVQ minimize Lyiocne— the Fullback divergence between the data
density and the density represented by the codebooks. This Kullback divergence is a more reasonable
criterion than the conventional Mean Square Error (MSE) for measuring the quality of a VQ system.
This point will become more clear when we further set up their relationship later in sec. 5. It
can be justified also by two further facts. One is that Lyecha 15 also the stochastic complexity for
the autoencoder by Hinton & Zemel (1994), which represents the Minimum Description Length
(MDL) for the SVQ system. The other is that L}, . represents the average bits for encoding
the residual errors by the VQ system and L?,_,, represents the wasted bits of the transmission
channel's capacity specified by the VQ system (Xu, 1995a).

4.2 The EM Variant and Maximum Posterior Vector Quantization

A useful variant of SVQ is Marimum Posterior VQ (MAP-VQ), by which we pick y =
arg maz, Py, (ylz,), or equivalently we pick y with probability
s J 1, if y= arg mazy Par(vlzi)
It also means that we minimize K (M, Ma) subject to the constraint that Py, (v|zi) must come
from the family of densities P(y|z) such that P(y|z) = 1 for only one y and P(y|z) = 0 for all the
other y. Putting the constraint into eqs.(13)-(16}), we have
Lma, = L.l-'ngp - E:zl PH:[F} !D‘E PH:[FL

LI];up = fk E:;] ﬁ:l f{yli‘i]l{-"i - my}ﬂ”}:;lixi - m.,} + ]°S|Eyﬂ —dlogh = log N + b, {20}

with a hard-cut version of the EM algorithm:

E-step P, (ylzi) =



E-step Pa,(v]zi) = Pas,(zily,m E"“)Pﬂ‘:[y]fzy_ Pasy(zily. m?, Z5'%) Pad(v),
{yles) is obtained by eq.(19); and PRee(y) = 3.y = S0, Tlols).

M-step mp® = L E Iylzi)zs, I3 = Ei_l Hylz:) (=i = m§¥) [z = my4]T.

Furthermore, 1ett.mg J.'.."““,hi and me,“ denote the minimum of L,toche and Lmap respec-

tively, and noticing that the above discussed constraint, we can directly get a useful conclusion
Meraa < Lmep- That is, the Marimum Posterior VQ is inferior to Stochastic V@Q.

4.3 The Relationship to Vector Quantization

In the special case that £, = ¢/ in eq.(13) and Py,(y) = 1/k, we have that eq.(19) is
equivalent to
, if y = arg miny||z; — my||?
I(yl=i) = { b LYo irswin, I (21)

That is, the Maximum Posterior coding becomes the pearest neighbor coding. We call the
special case Nearest Neighbor VQ (NN-VQ). In addition, eq.(20) is simplified into

LIyn = #,EM‘;E+Iogk+dioga'—d'[ngh-lngﬂ+ﬁu. . (22)
Euse = § Lyay Tica 1(0lz)llzi - my I, (23)

and the E step of the bard-cut EM algorithm is simplied into:

e ;IT"'TTT" g . N
E-step Py, (y]z:) = Zwﬂ' = serE eyt I(ylz:) is given by eq.(21), and ny = )., I(yl=:)
We call this EM algorithm variant by the simpiified hard-cut EM algorithm.

It fo!'zws from eq.(22) that the minimization of Ly is equivalent to the minimizationof Eyse
for the { xed number k of code vectors. That is, the NN-VQ is actually the conventional VQ in
this special case. The classical approaches for the conventional VQ include the k means algorithm,
the LBG algorithm and various CL algorithms. The above hard cut EM algorithm provides a new
alternative.

Since Lyw is a special case of me subject to some further constraints, we can directly get
another conclusion L:i:- < Lm{r', with LT denoting the minimum of Lyn. That is, the
NN-VQ or the conventional VQ 15 inferior to the MAP-VQ. The reason is that the convectional
VQ imposes two extra assumptions that each codebook covers the same number of samples (ie.,
Py, (y) = 1/k) and that each codebook covers a cluster with the same spheric-shape volume {i.e.1
variance), while the MAP-VQ has no these two assumptions. Together with the conclusion given
at the end of sec.4.2, we give the strongest recommendation on SVQ.

5. Selecting Number of Code-Vectors and Its Automatic Implementation
5.1 A Criterion for Selecting Number of Code-Vectors

For all the existing clustering or VQ as well as CL approaches, the number k of clusters or
eode book is fixed in advance manually. How to appropriately select k remains 2 crucial hard open
problem for decades in both the literature of statistics and VQ engineering. In Xu, Krzyzak, Oja
(1993), an appropriate k is obtained by a heuristic approach called Rival Penalized Competitive
Learning (RPCL). Here, we show that the Kullback divergence K (M), M3) (that is, Lycochas Limap
and Ly ) provides a systematical solution for selecting k.

We start at selecting k by using Lyy for the conventional VQ. From eq.(22), we observe that
Earsp decreases towards to zero when k increases towards to V. However, the term logk increases
to its maximum logN as k increases towards to N. Thus, the minimization of Lyy with n:spect to
k forres an appropriate k. From Lyy, we also see that the appropriate k d:pends on the variance
o-. The minimization of Ly with respect to o- results in that the best variance is ¢? = ;E,q,-sg
Putting it into Lyy, we have Lyy = logk + § ¢ log Emse — dlogh — log N + bg. In other words,
we have a simple number k ‘selection criterion:

Miny J(k), J(k) =logk + §log Emse. (24)

This criterion brings almost no extra computing to the exisiting VQ algorithms. What needs
to do is to try a number of k by increasing k until J(k) reaches a minimum.
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Simularly we can also selert k for MAP VQ and SVQ by using Logp and Laeena o fact in
¢q.{20} and eq.(16) the 1erm i < - E:=] Pur,iy) log Puy,(y) < log k has the same function as the
term logk in Lyx.

Let L{k) denouing Lsrocha. Lmap and Ly x at k, an obvious selection procedure for all the three
cases is plotting a curve L{k) versus k via attempting a number values for k. At each k, the EM
algorithm or its variant given in sec.4 is used to obtain a solution with the value L({k). However,
the disadvantage of the procedure is quite computing consuming.

5.2 A General VQ Procedure with Automatic Selection on Number of Code Vectors

For MAP-VQ and SV(Q, we can have the following much effective procedure which can auto-
matically selecting an appropriate k during the implementation of the EM algorithm or its variants:

Initialization: Given a large enough k such that it 15 larger than the number of true clusters,
Set the starting values of oy or Iy = tT;.f for all y to be equal by letting o, to be the same positive
number that 1s around one k th of the variance of the whole dala set. Let all my to be selected such
that they are rondom located among the dala samples, e.g., let them been located at k randomly
picked samples from the data set with a small random deviation (r.e., my = z; + ¢ with e being a
random vector from Gaussian N(0,0°1) with a small o). Set Pp,(y) = 1/k for all the y.

Step 1: Run the EM or the Hard-cut EM for SVQ/MAP-VQ respectively for one E-step and
one M-step.

Step £: Check o*™ or T, If oy is zero (or below o threshold) or ZU*Y 15 singular, discard
the code book my and ol its related parameters, then let k = k — 1 and goto Step I; otherwise
directly goto Step 1.

The two steps are repeatedly implemented until the procedure converges or is forced to stop.

This procedure will get the code books with those redundant ones discarded. This procedure
can be theoretically justified. When cr: = 0 or singular E, we have P(z|y; my, L) = é(z — m,).
Thus, as long as my # z; for any i, we have Fay, (viz;) = 0 {and thus I(y{z;) = 0) for all z;, and in
turn Pps,(y) = 0. Therefore, the contribution of code y to all the updating of the EM algorithm

‘is zero and thus is equivalent to being discarded. That is, the code y is selected out. This is a very
interesting point— the code number selection occurs automatically.

We can alse clear up an influential earlier misunderstanding on the EM algorithm and the
Gaussian mirtures. For the cases of unequal T, = aﬁf or ¥, with different y, it was sometimes
observed experimentally that some ﬂ'a may approach zero or that £; becomes singular ( Dudak
Hart, 1973; and others later). It was regarded as a problem and a2 number of measures, e.g.,
bounding cj from below (Hathaway, 1985), were proposed to avoid this problem. Now, we can
get & very interesting new insight on the old “problem™—it is actually a favorable property that
makes the selection of the number of code-vectors possible.

6. Adaptive EM Algorithm and Competitive Learnings
6.1 An Adaptive EM Algorithm

The EM algorithm and its variant should be implemented when the whole data set is available.
Neal & Hinton (1993) proposed a family of incremental EM algorithms based on sufficient statistics
and a set of sparse algonthms that emphasize a small set of significant probabilities. However,
these algorithms still need to keep a memory for all the samples encountered, and thus are not
adaptive or on line algorithms.

We start at an incremental EM algorithm that is somewhat similar to one by Neal & Hinton
(1993), but not based sufficient statistics. The incremental formula is obtained from the EM

algorithm eqs(17)&(18) by directly considering the changes of P{{) (y) to P (y), mff) to m+)
and EL"" to EL“'”, caused by the change of PBE {vlz:) into Pﬁf”fﬂirt} for the sample z,. We get
Pt (vize) = P Pa (zelml?, E) T8, P (1) P, (zelm®, 28) 29)
hlylze) = [Py (ulze) - Pid(ulze)/e, P (9) = P () + hulze),
ay = PO/ P W), By = 1P ), my Y = aym? + Bh(yled) 2,
ELH'” = ayﬂF} + Byh(ylz:)[z: = mﬁ”]l:; - m:.:r‘j]T‘ (26)

*It also means that an alternative way is to discard the code book my by checking if Pu,(y) = 0.
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Since P}:ﬂ (vlz¢) needs to be kept for every z,, the algorithm is not adaptive but incremental,
A simple trick to avoid the problem is to let Pj;i{yi.r,] = (. However, the trick is too rough as an
appreximation to keep the solution right.

We can get a belter estimate for PE! (ylze) by using eq.(25) again via a set of the second latest
values mi'-:}, EE,"”, Pg:”[y] that are kept in memory. With the estimate, the algorithm indeed
becomes adaptive and has no need to keep any past samples.

In sequel, we justify this adaptive algorithm by showing that it brings several very interesting
insights to the existing major CL algorithms. )

6.2 Its Relationship to Competitive Learnings

First, we do the winner-take-all on P}:T”(ylz;}. ie., let Pi;:"”{m:.} = 0 for all the y except
of F};:'”(cizt} = 1 for ¢ = arg maz, Pﬁ:‘u(rlzﬂ. and also we simply let Pﬁz (vlz:) = 0 for all the
y. In this case, h(c|z,) = 1/t and A(y|z;) = O for other y. From eq.(26), we have m{*") = m{")
for all the y except of

' m{er+l] = mi‘] + (Be/t)(ze - mE:]}, ¢ = argmax , P_.E:j”{r[:t}. (27)

This looks the same as the conventional CL! Actually, eq.(27) provides one critical improvement

over it by making the winner-take-all based on P{*+1)(yjz,) or
y = arg miny [(z = my))T(55) Oz - m{?) + log 124" - log Py7) (u)]. (28)

It reduces to y = arg min, ||z~ m{”|| only in the special case that P{f) (y) = 1/k, £§) = ¢?1.
In other words, the conventional CL works well with this very restrictive assumption. It has ignored
four important factors. The first is Pﬁi[g} which represents the winning frequency of the unit y.
It acts interestingly in the opposite direction to those exisiting heuristic approaches, based on
conscience or frequency sensitive (Desieno, 1988; Ahalt at al, 1990 and others). In fact, the action

attermnpts to drive the losing code away such that ihe autematic selection of code vectors can be
realized. The other three factors are each cluster’s volume size, shape and orientation. They

are considered in eq.(28) via the general Eé,']' without assumption. Furthermore, we can also use
Behl(elz:) = B[t — Pig (¢|z.)]/t as an adaptive estimate of the learning rate.

Second, by considering two sets of nonnegative real numbers a;,b;,j = 1,- - -, k with E} aj =
1,3 5% =1, we will surely have a; — b; > 0 and a; — b; < 0 for some i # j unless a; = b;
for all j = 1,---, k. From h(ylz;) = [P{gH(ylz.) = PP (ylz.))/t, we know that there is some

i # j such that A(jlze) > 0 and h(ilz¢) < 0 in the same time, unless h(y|z,) = 0,y = 1, -+ k
which means that the algorithm has converged already. This fact justifies the use of de-learning in

RPCL (Xu, Krzyzak& Oja). Furthermore, let ¢ = arg maz, P};‘:’”(ylxlj being the winner that is
the same as zbove, and r = arg maz, 4. Pg:'”(yh.] being the rival of the winner, we enforce

P,E‘,:{L,lrld-‘-'t] = PrﬁL.H.(i'lz‘] =0 for all y except of
41 plii)
Ploithe(clze) = prmmristiemy Pobih (rlzd) = 1= PERY, (elz),
(g P‘” [z} ¢ ¢
PneL,H|{c1=t} = P“}ﬂCiS-I'[:Pﬁ'I'{'|-‘:l}' Pi‘L'MJI"[II} =1- F.E.L,Mntﬂil't}_

In this case, from eq.(26) we have mE.H” =my’ for all y except of

mi ) = ml + o (z = m), it = m 4y (2, — ml),
7e = Pl (clz) = B, p(clz) 3 = PERD (rlae) = P, o (rlze)- (20)
Faor the 4., -, one must be positive and the other negative, according to the above argument.
Eq.(20) is almost the same as RPCL except two points. One is that it impoves RPCL by picking
the winner and rival based on Pﬁfll[ylz.-} instead of on ||z, --m,[,.']'"’. The other is that the learning
unit is not fixed at the winger, can be the rival too. This is less restrictive. Actually, if we want. we

can continue the winner-take-all on F‘E.:'”(cjz;]. Pi;:'”{ﬂ:‘] until P;E:-T”[d::] grows larger than
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Pj:,] (¢|¢), then in that case we get exactly that the winner learns and the rival de-learns, je.
1

we get RPCL. Not only this justifies RPCL as an approximation of our adaptive EM algorithm
and provides us new hints for selecting the learning and de-learning rates, but also it explains why
RPCL can automatically select an appropriate cluster number.

9. Concluding Remarks

The YING-YANG machine unifies naturally the existing major unsupervised and supervised
learnings. It also provides new learning schemes, which deserve to be further explored.

The YING-YANG machine may also be used as a new coherence learning model for visual
processing. We can regard that the visual information processor have two passages—the bottom-
up recognition/encoding passage and the top-down generative passage. The YING-YANG machine
learning attempts to make the two passages as a whole to be maximum coherence instead of only the
outputs of the two passages to be maximum coherence (Becker & Hinton, 1992) or the distribution
of the output of one passage and a priori distribution to be maximum coherence (Yuille, Smirnalis
& Xu, 1995),

The Stgchasf;jg VQ is strongly recommended because of its minimum Kullback divergence
between the data density and the density represenied by the code books, the easy on parallel
coding, its implementation by the EM algorithm and the beauty on automatically selecting the
appropriate cluster number during the parameters’ learning. Also, it is able to turn the onginal
EM zlgerithm into an adaptive version, which is not enly able to justify the current major CL
algorithms, but also improve them in several aspects.
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