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Abstract— First, a new Principal Component Analysis (PCA) learning theory is proposed, vari-
ants of some previous PCA theories are presented, and a concise and systematic summary
on PCA theories is tabularly provided. Second, three types of PCA nonlinear extensions are
proposed. Particularly the nonlinear extensions of two PCA theories MVNO and LMSER
are investigated in detail and and their new properties are revealed, based on which new
hierarchical clustering methods are proposed for both data discrimination and data com-
pression /reconstruction. Third, the localized PCA methods are also suggested.

1 Introduction

A lot of advances have been made on PCA learning type self-organizing networks for the decade since
Oja’s pioneer work on a single PCA neuron [5]. A long reference list for various PCA networks is given
in [14], and a detailed summary on PCA learning theories and recent developments on PCA extension is
given in [17]. Due to space limit, we here apologize to not repeat them again.

In the next section of this paper, we first present a new PCA learning theory called MVNO (Maximum
Variation of Normalized Output), and then give several variants and modifications of the theories pro-
posed in [17]. In addition, a more concise and systematic summary on PCA learning theories will be
provided 1n Table 1. Section 3 proposes three types of PCA nonlinear extensions and investigates the
nonlinear extensions of MVNO proposed in section 2 and LMSER proposed earlier in [14] with their
new properties revealed. In section 4, three hierarchical clustering algorithms are proposed for unsuper-
vised learning tasks of both discrimination-purposed and compression/reconstruction-purposed. Finally,
section 5 suggests that the localized PCA methods can also be used for these learning tasks.

2 PCA Learning Theories: New Results + A Review

We consider a linear network y = W'z (see the notes under Table 1 for the notations). Here, we propose
a new PCA learning theory called Maztmum Variation of Normalized Output (MVNO). The idea is that

we let y = DW'z being normalized by (W!W)~% and then maximize the variation of the normalized
output y. One cost function for this purpose is given as

maxJn, Jo = E(y'y) = tr(E(yy’)), y = (W'W) $DW'z. (1)

From E(yy*) = DW'S, WD(W'W)~1 and VwJ, = 0, we can get
L.WD(W!W)~1D = W(W'W) 1 DW'S, WD(WtW)~!

By single value decomposition we have W = ®D,, R', where ® is a n x k matrix with ®*® =, Ris k x k
orthogonal matrix, and D, is k x k diagonal matrix. Putting this W in eq.(1), after some derivation we
have £;® = ®A; and that A;[R*D(RD2 R*)"!D(RD2 R*)D~'] = [D;2R!D]A.. Since A is a diagonal,
the parts in “[.]” of the both sides should be diagonal. This is possible only when R = I, and then
ALl = D,;ZDA, or Dy = I. In other words, ® consist of k eigenvectors of ¥£,. Moreover, we have
Jn = tr(A;D?) which arrives its maximum when ® consists of the eigenvectors that correspond to the

k largest eigenvalues of ¥, with all the other solutions for ® being saddle points. In summary, eq.(1)
performs the true k-PCA.

By gradient ascent, we can implement eq.(1) via either batch rule or on line rule as given in Table 1.
Moreover, eq.(1) can also be extended into maxw f(EJ,) without changing performance. A variant of
eq.(1) is to let Jn = El|y1 —y2l|? for 3 = (W*W)~ 2 DW'z;,i = 1,2 with z, 2, being i.i.d. variables. It is
equivalent to eq.(1) since E||y1 — y2||?> = 2E¥'y. Another variant is to replace tr(E(yy')) by det(E(yy')).

For a systematical overview, we summarize the existing cost-function-based PCA theories in Table 1.

Best Reconstruction and Min-Distorted Reflection are proposed in [17]. Actually, Best Reconstruction
is a special case of the LMSER (Least Mean Square Error Reconstruction) theory proposed in [11, 14].
Maximum Relative Uncertainty (MRU) is proposed in [17]. As shown in [14, 17], these theories originally
perform only Principal Subspace Analysis (PSA). In the present paper, an extension made is to use
y = DW'z replacing the original y = W'z with diagonal elements of D being positive only. Along a line
of thought similar to MVNQ, it can be shown that the modification on MRU in Table 1 will perform the
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true k-PCA as lomg as D # I. One disadvantage that still remains is that the theory can only be
implemented in batch way but not in on line way. Another extension to is to use

maxpr, pr = tr[E(yy’)]/det[E(nn')) = B(tr(yy'))/det(W'W). (2)

We can also prove that this maximization performs the true k-PCA. However, it can be implemented by
either batch or on line rule as given in Table 1.

Mazimum Variation by Gradient flow in O(n,:g has been studied by [1, 14, 8]. The one given in Table 1
is proposed by [14] which is an extension of ient flow [1] in O(n,n) to O(n, k) with k < n. Mazimum
Combined Variation is partly presented in [17] but with some new modifications here. It can be shown that
the theory performs PSA and the true k PCA under the condition that the constant ¢ > 0 is appropriately

given such that the diagonal matrices I + (—c:)iv--'_-llt:hziﬁz-_l[;[)2!\.,,)(4[)2.!'&:)‘1 or D2 = [1 4 (—c)%=1]]
have positive diagonal elements only. For example, for n = 1 we need ¢ > D?Apnaz or simply ¢ > 1.
Table 1: THEORIES AND LEARNING RULES

Functions Learning Rules

Theories PEA k-PCA Batch On-Tine Refs
Best Heconstruction Xu
min w E(e,), e, = |lz — WW g2 Yes No AW = o2ELe AW = o (91,93)
‘min w f(E(e,)) Yes No AW = 2Bl No This
Min-Distorted Reflection paper
- min WZ* E(er), er = |luigp1 — uil? Yes No AW = AW = Xu

0 4 k 8E(e k Be
orer = |luipy — 2|*, ujpy = W'y, Yes No C'Zn —sgvtl ‘*Zn 555 (94a)
Maz. Variation of Normalized Output
y=(W'w)-ipwis Yes Yes AW = a(zy"*D—
max w E(J,), J. = y'y D=1| D#£T Wy'y')
or Ja = |ly; = ya|2 Yes | Yes v'= (ww)—dy This
¥1.¥2 (21,22 ) are iid. AW =
‘max w f{E(J,)) Yes Yes al f,:“f" No paper
-max w f(Ja), Ja = det(E(yy")) Yes Yes AW = o221 No
Maz-Relative Uncertainty
y=DW'z,n=W"' ¢from N(0,I) AW = ofry'D- This
2
Smax w pr Yes Yes AW = —?-l-u-,—rd“ i g R paper
1

pr = d‘;im,)] D=I| Dg#1 e w(Wwiw)~1 and
max w f(pr) Yes Yes AW = No
or pr = —‘—L—l—rm! :(':.f;n‘::t) Yes Yes a&lfer No
or pr = f(=Elnp(y)) — g(—=Elnp(n)) Yes Yes No Xu
p(.) is Gaussian (94a)
Mazimum Variation with Lagrange
‘max wJp, s.t. W'W =] N/A Yes Solving No Fuk-
Jp = tr(Elyy']),y = W'z W = AW naga
or Ji = det[E(yy")] N/A Yes I: = E(zz") No (72)
orJp = -Elnp(W'z) N/A Yes No
z from Gaussian This
-max w f(JL) N/A Yes No paper
Mazimum Variation by Brock-
Gradient flow in O(n, k) ett(89)
~max w Eftr(yy")) Yes Yes AW = o(Z . WD AW = a(zy'D Xu(93)
y=DW'r D=1| D#£1] -WDW'S W) —WDyy') 0ja(93)
Mazimum Combined Variation
-max w Ja AW = afzy'D- This
Inm = tr(Z,) + cJ2 Yes Yes AW = cZW(W'W - )=
or Jy = det[T,] + cJ2 D=J| D£1I a%fﬁ'— No paper
Zy=E(yy'),y=DW!'z Yes Yes No
Ju =det(W'W —I), ¢>0is
a suitable constant

(i) =,y are n k (k > 1) dimensional vectors respectively and W is an n x k weight matrix. Without losing generality, it is assumed
E(z) = 0; r should be subtracted by E(z). When k = 1 (i.e., W is a vector w), all the theories reduces to PCA, i.e,, they let w to
be the first PC of z. Moreover, both MNVO and MRU reduce to identically max w tr(w'Ezs'w')/w'w studied by [6).

(1) f(r), g(r) may be same or different. They are any positive and monotonously increasing differentiable functions for r 2 0 (may
need to satisfy some mild condition sometimes); e.g, f(r) =P g(r)=r% p 21931

(ili) @ is a given learning stepsize, D is a given k x k diagonal matrix with their elements being different.

3 PCA Nonlinear Extensions and Their Favorable Properties

Oja (1991) proposed several nonlinear Hebbian learning rules and demonstrated via experiments that
nonlinearity can let the learning resist strong noises or outerlier[7]. In the same period, the present
author also proposed nonlinear LMSER rule[11, 14]. It has been shown that the introduction of sigmoid
function to linear units can automatically break the symmetry of the homogeneous networks with the
behaviors similar to performing the true k-PCA. Two years later, this nonlinear LMSER rule has been
applied to signal representation and separation with intersting results[3]. Another type of PCA nonlinear
extension is given in [12, 13], where nonlinear factor is introduced into controlling the learning rate of
modified Hebbian rules for robust curve fitting and robust PCA. Moreover, the idea of extending Hebbian
learning to higher order curve fitting has also been proposed in [12]. Later, this idea has been further




turned into high order Hebbian learning by [10]. Recently, studies on PCA nonlinear extensions are
becoming quite interested in the literature, a recent summary is given in [17].

Here, Table 2 systemically proposes three types of extensions for the theories given in Table 1. Type I
& 11 are obtained by extending two main components in these theories, Type III combines the two. In
Table 2, only the cases for Best Reconstruction (or LMSER) and MVNO are directly given as examples.
But it is straightforward to write down the corresponding extensions for the rest of theories in Table 1.

Table 2: PCA NONLINEAR EXTENSIONS

Type 1 Type II Type 111
Linear transform W'z or DW 'z Square norm || - || Linear transform W'z or DW'z
Replaced by nonlinear Replaced by nonlinear Replaced by nonlinear
5(z): R™ =+ R* ¥(z): R" = [0, +c0) S(z): R =+ R*
S(z) = [s1(z), -, se(z)] rankfbrz=92y and also
Sigmoid L, norm Square norm || - ||2
si(z) = s(wlz), W = [wy, -, wi] ¥(z) = (Z;:l lz:|")M/® Replaced by nonlinear
t
s(w:x)z%% S T ¥(z) : R™ = [0, +00)
Polynomial Robust
si(z) is a polynomial of %(y) = |ly||? for |[!,|'J|2 £
eg, 8i(z) =co+ ). &%+ ) CraTpla ¥(y) = C for |lylI* > €
LMSER LMSER LMSER
min w Ellz — WS(W'z)|? min w E¥(z - WW'z) min w E¥(z — WS(W'z))
MVNO MVNO MVNO
min w Ely. )2, vo = (WW)"35(W's) | min w E¥(y), y= (W'w)"$Dpw's min w E¥(y,)

We focus on Type I to investigate the consequences of introducing nonlinearity. We consider the cases
that S(z) is sigmoid given in Table 2. It follows from Fig.(1) that the nonlinearity increases with 3. To
see how s(.) affects the results, here we first propose a variant of MVNO for a single unit

max £s? (w'z/|[ul]), with on line rule Aw = (a/||wl)s(w)s' W)le — (w/llwl)l, v=w'z/lw] ()

Observing Fig(2), we know that y denotes the distance of z to line w'z = 0. When s(.) is linear, the
larger the distance is, the larger its role is in the square function 52, However, with the increasing of
sigmoid nonlinearity, as shown in Fig.(2), most of samples with certain distances away from w'z = 0
have greatly reduced their contributions to s*(.) (to a small constant 1); while only those samples very
near w'z = 0 are still counted as they are in the linear case. Observing also Fig.(3), where the solid and
dashed lines denote respectively the direction of solution w and the corresponding line wz = 0, we get

Argument 1 The sigmoid nonlinearity shrinks the shape of data cloud by greatly discounting the samples
far away from wtz = 0 or from 0. The larger the nonlinearity s, the significance the shape shrunk. As
A changes its value, the solution w also changes continuously.

As shown in Fig.(4), for the two data clouds with their overall mean being around zero, we can observe that

sigmoid nonlinearity focus on these samples in order to find a boundary w'z = 0 which lets s* (w*z/||w||) =~
1 for as many as possible samples. That is, it seeks a narrow band that centers at w'z = 0 such that the
number of samples fallen within the band are smallest. The width of the band is decided by §. However,
as shown by the two pairs of shorter line segments in Fig.(5), such a boundary seeking property may not

work well for two data clouds with their total center not at zero, since maz Es®(w’z/||w||) only drives w
rotating around zero. To overcome this problem, we modify eq.(3) into

max Bs*(y), Aw =vylz - p— (w/lwl)y), Ap=—yw,y = (a/lwl)s@)s' (), v =w'(z-u)/lwl 4)
It is better to initialize by the mean vector of the data (the same for p in egs.(5)(5)(9) given later).

In Fig.(5), the long dashed line segment denotes the line w*z = 0 found by eq.(4), with the direction of
its w given by a solid half segment. In summary, we have

Argument 2 For two data clouds separated by a gap (it may contains small amount mized samples),
sigmoid nonlinearity makes the mazimization eq.(4) focus on the boundary samples of the two clouds in
order to find a boundary w(z — p) = 0 such that within a small width of it there are as few as possible
samples. In other words, the w*(z — u) = 0 bestly separates the two clouds.

This new discovery of nonlinear PCA type learning is very interesting and supplies a basis for our new

clustering methods in the subsequent section. It also provides for interpreting nonlinear Hebbian learning
a new perspective far different from the very recent statistical interpretation given by [9].

It is not difficult to see that an equivalent but simplified variants of eqs.(3)(4) can be
max 4 Es?(w'z), s.t. |w|| =1, with on line rule Aw = as(y)s'(y)[z — wy], y=v'z,
max wa Es?(y), st |lwll =1, Aw =7z —p—wy, bu=—yw,v=as(y)s'(y), y = w'(z - 4). (5
For the nonlinear MVNO given in Table 2, the counterparts of eqs.(3)(4) are given by
max , Es?(w'z)/wiw, Aw = (as(y)/w'w)[s'(y)z — (s(y)/v' w)w], y = w'z
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max u,qo Bs?(w'(z — p))/w'w, Aw=1s'(y)(z - p) - (s(v)/w' w)w], Ap = —yw,
y=u'(z—p), 7= as(y)s' (v) (6)
For linear s(.), eq.(6) is exactly the same as eqgs.(3)(4). When s(.) is nonlinear, the results are different.
However, our experiments have shown that their qualitative properties are similar and that Argument
1& 2 holds too. Rewriting s(w'z) as s(#'w'z/||w||) with 8’ = |fw|i, we observe that MVNO tries not only
to locate the direction of line w'z = 0, but also to adjust the scale of the band width shown in Fig.(2)
by modifying #’ = ||w|| even when g for s(.) is fixed. This may be a favorable property.

Next we turn to observe, from the viewpoint of data reconstruction, how the nonlinear s(.) acts. We
consider the single unit case for nonlinear LMSER given in Table 2, its learning rule is firstly proposed
in [11, 14] and is repeated below

min E|z — ws(w'z)|]?, Aw = afz(z — zw) + §' (w'z)(W'z — 2w'w)z)], z = s(w'z), (7)

The results of the linear PCA, nonlinear LMSER eq.(7) and nonlinear MVNO eq.(6) are shown in Fig.(6).
The longest dashed line is the principal component direction found by the linear PCA. The solid lines
denote the directions of w found by eq.(7) and eq.(6), and the dash-dotted lines denote the corresponding
lines w'z = 0. From this figure, first we can observe that the results of linear PCA, nonlinear LMSER,
nonlinear MVNO are different. This confirms our previous analyses in [17] that PCA nonlinear extensions
become different although they perform the same in the linear cases. Second, by counting the average
reconstruction error z — ww'z for the linear PCA and z — ws(w'z) for nonlinear LMSER and MVNO,
we get the error of 6.12, 19.07 and 22.93 respectively. The results seem to suggest that linear PCA is the
best in the reconstruction error, while the nonlinear LMSER and MVNO are not good choices.

However, the conclusion will become considerably different if we examine the whole data-
compression /reconstruction process. The first step is data-compression which produces the compressed
signals w'z or s(w'z) that are to be encoded for transmission. The second step is to reconstruct the
signals at the receiving end by ww'z or ws(w'z). For the second step, we hope that the reconstruction
error is as small as possible. But for the first step, we hope that the coding bits for w'z or s(w'z) are
as small as possible to reduce the transmission time and cost. In Figs.(7)(8)(9), the z-axis denotes each
of the 1000 data points in Fig.(6). The y-axis gives the value of w'z or s(w'z) for each data point. For
the linear PCA, the dynamic range of w'z is quite large and thus a lot of bits are needed to encode each
data point. However, s(w‘z) almost only takes value either +1 or —1 by nonlinear LMSER and MVNO
(denoted by Vmax in the ﬁgure%, That is, only one bit is needed to encode each data point in the most
cases; or in other words, a dipole {—w, w} 1s used such that each data point is approximated by either

: the bits to encode ¢ :
w or —w. If we call the average of the ratio g "2 e-encede s TTwiz) 88 the data compression rate,

we can use the ratio of this data compression rate to the reconstruction error as an index to measure

the overall quality of a data-compression/reconstruction process. Based on the above analysis and our
current experimental results, we further propose:

Argument 3 The sigmoid nonlinearity can significantly (probably by magnitudes) improve the ratio of
the data compression rate to the reconstruction error. The nonlinear LMSER is better than the nonlinear
MVNO, and is probably the best one among all the possible PCA nonlinear extensions.

This suggests a new technique for data-compression/reconstruction, which will be roughly described in
the next section and will be studied in detail in a separated paper.

Now we are ready to move to the cases of multiple units. The on line learning rules for the nonlinear
MVNO and LMSER in Table 2 are given by
AW = a[z2'D — Wz2t], 2 = (W'W)"1S(W'z), D = diag[s}(w1), -, sk ()],
AW = af(z — Wz)z' + z(z - Wz)'WD]), (8)
For the data with nonzero mean, they can be extended into
AW =of(z — p)'D = Wz2'], Ap= -WDz, z= (WW)"1S(W'(z — p)), D = diag[s}, - - -, s}],
AW =af(z - p—=Wz)z' + (2 — p)(z — p— Wz2)'WD)], Ap= (I - WDW*)(z — WS(Wtz)), (9)

The above MVNO rules can also be simplified into variants corresponding to eq.(5) by simply let-
ting z = S(W'z),z = S(W'(z — p)) in eqs.(8)(9). In addition, we can also extend eq.(3) into
max w ES*((W'W)~3W'z)S((W'W)~iWtz) for multiple units.

Fig.(10) gives an example of using the two rules in eq.(8) for the cases of two units. The two solid
lines are the directions of wy, w; obtained by MVNO (denoted by Vmax in the figure), while the dashed
lines are the two vectors w;,w; in their real length obtained by LMSER. In Fig.(11), the solid lines
and dashed lines still correspond MVNO and LMSER respectively, but now the lines are the boundaries
wiz = 0,whz = 0. The result again confirms our previous analyses in [17] that PCA nonlinear extensions
become different although they perform the same in the linear cases. More interestingly, after a while of
observation, we can find that the experiment supports our following arguments.

Argument 4 For a data set with zero mean, the nonlinear MVNO rule in €q.(8) finds k boundaries
acrossing at zero in order to divide the data into 2k parts that are both as separately as possible and as



equal as possible. For a data set with nonzero mean, the nonlinear MVNO rule in eq.(9) finds k boundaries
acrossing at p in order to divide the data into 2k parts that are both as separately as possible and as equal
as possible.

Argument 5 For a data set with zero mean, the nonlinear LMSER rule in eq.(8) finds k vectors
wy, -+, wg such that each data point z can be labeled by a k-bit binary number byby---bx (b; = —1
or 1) and well approzimated by the linear sum of 3, biw;. For a data set with nonzero mean, the nonlin-
ear LMSER rule in eq.(9) finds k vectors wy, - -, wk such that each data point ¢ can be labeled by a k-bit
binary number byba - - -bi (b; = —1 or 1) and well approzimated by the linear sum of p+ ) ; biw;.

It is interesting to compare this data representation scheme with the classical vector quantization(VQ)
method. For VQ, when k codebooks are used, each of them is directly used to approximate a data point;
that is, for a set of data there are in total only k different representations. However, for our above scheme,
k +1 codebooks (including ) are used by combination, and there are in total 2F different representations
for a data set. So, our scheme is much more powerful. We can expect to get a great ratio of the data
compression rate to the reconstruction error if it is used for data-compression/reconstruction.

4 New Clustering Algorithms for Data Discrimination and Representation

Based on the arguments in section 3, we can design several unsupervised algorithms for the purposes of
both data discrimination and representation.

The straight way for unsupervised data discrimination follows from Argument 4: we use the nonlinear
MVNO in eq.(9) to classify data into 2k clusters, as shown in Fig.(11).

The straight way for data-compression/reconstruction follows from Argument 5: we use the nonlinear
LMSER n eq.(9) to get k + 1 codebooks wy, - -+, wk and p, and then encode each data point by p +
S(W*(z — p)) or quantize S(W*(z — p)) into a k bit binary digit bibs - - -by. Finally, we reconstruct the
data by p+ WS(W*(z — p)) or p+ 3_; biw;.

In Table 3, we propose three hierarchically-structured clustering algorithms. The basis idea behind the
algorithms is the same—building a binary tree T by sequently dividing a set into two subsets. That is,
for the current data set D, we use one single-unit-rule, like egs.(3) (4) (5) & (6) or even linear PCA rule,
to obtain vectors wn, pn, and check if the values of ef,ef, e are above some prespecified thresholds.
If yes, we divide D, by the boundary wt,(z — pn) = 0 into two subsets DL, D2. In turn, we repeat
the same procedure on D}, D2, until the tree stops its growing. The variables e, €3, e} are the current
reconstruction error or discrimination measure given by -

e = Foep, 2 — wnwh(z — )P, €§ = Toep, Iz — waS(wh(z = wa))lI%,
tr(Varye (oopn)>0(FEDRIHV ATyt (o )>0(FEDRI]

n
e s
3 NalEut (emum)>0ED R~ E gt (2 umycoBEDAI

N, is a number of samples in D,.  (10)

Ewt(z-ua)>0(T € D) is the mean vector of samples with w!(z — pn) > 0 in Dy, Var denotes their
covariance matrix.

Fig.(12) provides a simple example for demonstrating the advantage of Algorithm [. Here, the first linear
Table 3: Three Hierarchical Clustering Algorithms

Algorithm I
(for data compression)

Algorithm II
(for data compression)

Algorithm IIT
(for data discrimination)

Initial.

Put the data set D in open with idex [=0. Presepecily thresholds e}, e5, €3, and let T=null

QZ~=2Z=pa-

Step 1

If open=empty, goto Step 3; otherwise, take the Ist element out of open, denote 1t by n with D, and I(n)

find the mean pn of D
find the linear 1st PC of D, as wy,

use one unit nonlinear LMSER
in eq.(9) to get its w, it as Wn, fa

use one unit nonlinear MVINO
in either eq.(4) or eq.(5) or eq.(6)
to get its w, 4 BS Wa, in

generate a node n in T

at the index I(n), attached with a tuple [Da,I(n), wa, fn]

Step 2

get e, by eq.(10);
if e} < e, goto Step 1;

get e% by eq.(10);
if e2 < ef goto Step 1;

get e, by eq.(10);
if e3 < el goto Step 1;

otherwise, divide D, into DX and D2 by w(z — pa) =0,
ie, DL = {z € Dn,w'(z — pa) > 0} and D2 = {z € D, wp(z = pa) < 0}
get new indexes by cascading I(n1) = I(n)0,I(n2) = I(n)1,
and put two elements [D}, I(n,)] and [D},I(n;)] at the end of open list; then go to Step 1

Step 3

The current tree T is used as output, the training stops

QzZ=m—nupC

Oz~00020

Tnput a data point z, starts from the root node of T, repeat the procedure below:

Suppose that the current node is n with index I(n) and the attached vectors wWa, fin,
classify = to its son with I(ny) = I(n)0 if w' (z — pa) > 0, otherunse to its son with I(ng) = I(n)1
The procedure is repeated until z is finally classified to a leaf node ny of T
with I(ny) =iyiz- - ik and the attached vectors wy, uy.

For Algorithm III, this ijip - - - ik is the resulted class label for z.

For Algorithm I & II, after the tree T is pre-sent to the receiving end as the codebook,
the iyig - -ix plus sy = a(w}(;c — piy)) can be used as the code for z for transmission,
then at the receiving end, we use i1y -+ ik to find the corresponding node at the codebook T'
and get the corresponding w, u; finally we reconstruct it by p+ way.

1. T is a tree which grows from the root as the algorithm goes on. A node n at the depth d in the tree is indexed by I(n) = Qiyig - - ig
with i; = 0 or 1. Its two sons have indexes Oiyiz -+ faigq1, fag1 =0, 1. Each node n is attached by a tuple [I(n), wna, #a].
2. open is a list. Each elemnent in the list corresponds to a node to be grown latter. It consists of a tuple [D,, I(n)].
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principal component (PC) vector is computed. The PC wg on the whole set is firstly get such that the
boundary Tp: w§(z — po) = 0 divides the set into two subsets; then the PC on each decides the boundaries
Ti1,Ti2. As a result, we get an one-node-tree with two leaves. The average reconstruction error is 21.28

if only wo, po are used for representing the data set; however it reduces considerably into 14.27 if the
one-node-tree is used to represent the data set.

Figs.(13)(14) provides a simple example for demonstrating Algorithm III with eq.(4) used in Step 1.
First, at the root of the tree the boundary Tj is found to separate the data into two parts as its two sons
(one of them is more clearly shown in Fig.(14)); then the two sons are further well separated by other
two boundaries Ty, T},. As a result, the data has been divided into four well separated clusters.

5 Localized PCA

As shown in Fig.(15), when a data set consists of several clusters, it is not appropriate to still globally
regard the data as a whole by only using a global PC to represent the set. The long solid line in Fig.(15)
denotes the global PC, and obviously it will give a large reconstruction error. So, we should pay more
attention on the local structures of the data. Actually, the hierarchical algorithms given in Section 4 are
a kind of efforts along a same direction.

Another alternative effort is to first make clustering analysis on data set to separate it into several clusters,
and then to represent each cluster by its mean and the PC vectors. This method can be regarded as a
good combination of the classical clustering-based VQ and PCA, thus will improve the performances of
both. This idea was first suggested in Elﬁ] and in the talk for [15] given on WCNN’93-Portland without
details. Some similar but different local PCA methods are recently given in [18][4].

This method consists of two separated steps. By the first step, with an assumed known number K of
clusters we use the finite Gaussian mixture
K R e L B e K
P(z|0) = ) ;- a; Plelps, Ey), Plzlu; Ej) = N p @20, 355 =1
to model the data set, and use the the following EM iterative algorithm [15]

(%)
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to classify the data into clusters by h;(t) and to get the mean u; and covariance X; of each cluster. The
second step is to solve one or severall Cs of each cluster either simply by eigen-analysis ¥; W; = W;A;
of each covariance or by one of nonlinear rules proposed in the previous sections.

The above proposed first step has a advantage over the use of k-means algorithm for clustering as suggested
by [4]. The k-mean is based on the assumption that each cluster has the same covariance matrix, which
will seriously distort the real shape of each cluster and give incorrect PCs for each cluster.

The results of the localized PCA can be either used for unsupervised classification for subspace represen-
tation of each classifier or distributed data encoding/reconstruction.

Another different way for localized PCA is to solve the p;, W; of each cluster by maximizing:

M N M N M
J.= =3 io Tim wiillzi — pj = WiS(Wj(z — pi))I? — B =1 imy wii Inwjs, D5, wyi = 1.
1 > wj; > 0 denotes the probability of z; from the cluster j. It is implemented by the two iterative steps:

First, with p_(fﬂ,W_,m’s fixed and from Eﬁx“’ji = 1 and V,;,J = 0, we can get wj; =
e-fl'r-'—ﬂj—WjS(W}(r—#j})il’fﬂ/ij‘il e llzi=pi=W;S(Wi(z=p))I*/8 Second, with the wji’s fixed we update

p5, W; by one gradient ascent step on J; =— Z?; wiillei — py — Wi S(WEz — p5))II%.
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