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Preface

This book contains both the full and the invited contributions to the 1990
EURASIP Workshop on Neural Networks, held in Sesimbra, Portugal,
February 15-17, 1990. Though sponsored by a European organization (the
European Association for Signal Processing, EURASIP), no restrictions
were placed on the origin of the participants in this workshop. Instead,
the selection of the full contributions was performed by an international
Technical Committee. The quality demands that were imposed are
reflected in the acceptance ratio, which was only about 40%.

The field of the contributions has not been restricted to an
overspecialized topic: one main characteristic of the connectionist
community is its multidisciplinarity. Psychologists may identify the
essential features of the world to be learned and propose original
learning schemes, biologists can describe architectures that have not
been studied previously by computer scientists, and engineers may
perform simulations and implementations of connectionist architectures,
while the help of mathematicians is most welcome to formalize these
nonlinear models suggested by nature. Authors of this book belong to all
these disciplines.

The two invited papers, by George Cybenko and by Eric Baum, deserve a
special mention. They deal with two different aspects of a subject which
we consider very important for the consolidation of the field: the formal
study of the capabilities of neural networks. George Cybenko introduces
the definition of a formal measure of problem complexity which is
relevant to neural networks and discusses some of its properties. Eric
Baum studies the relationships between training set size, network size
and generalization capability. We can only hope that these will form the
embryo of a body of theory that will allow neural network problems to be
approached with an engineering methodology, instead of the present trial-
and-error manner.
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IMPROVED SIMULATED ANNEALING, BOLTZMANN MACHINE,
AND ATTRIBUTED GRAPH MATCHING {
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Abstract. By separating the search control and the solution updating of the commonly
used simulated annealing technique, we propose a revised version of the simulated an-
uﬁw_:ﬁ method which vuomnnaa _un:nn mo__.;_ouu E:_ can namnna the ocawﬂﬂw*_on time.

] L.O. Chua and L. Yang, “Cellular neural networks : Theory”, and “Cellular neu-
ral networks : Applications”, IEEE Transactions on Circuits and Systems, CAS-35

we present a simple combinatorial optimization model for mo?_nm the attributed mnw_ur
matching problem of e.g. computer vision and give two algorithms to solve the model,
one using our improved simulated annealing method directly, the other using it via the
Boltzmann machine. Computer simulations have been conducted on the model using
both the revised and the original simulated annealing and the Boltzmann machine. The
advantages of our revised methods are shown by the results.

i] R.W. Cottle, “Complementarity and variational problems”, Symposia Mathematica
(Istituto Nazionale di Alta Matematica) 19 (1976) 177-208.

{] M. Fiedler, V. Ptak, “Some generalizations of positive definiteness and monotonic- *
ity”, Numerische Mathemat:k 9 (1966) 163-172.

i| J.L. Goffin, “The relaxation method for solving systems of linear inequalities”, Math-

ematics of Operations Research 5 (1980), 388-414. Introduction. Simulated Annealing (SA) has been widely used to solve various

1 3.J. Honfield.. “Neural e ) y combinatorial optimization problems such as TSP, VLSI design [1,2] as well as clustering
] J.J. o i oma networks and p yhe systems with emergent collective com- and attributed graph matching [3]. It has also been used in the Boltzmann Machine
putational abilities”, Proc. Nat. Acad. Sci. USA, 79 (1982), 2254-2558. (BM) [4, 5-7).

| K.G. Murty, “On the number of solutions to the complementasity problem and By separating the Metropolis Sampling (MS) process which is a major part of the
. SA process, into a search control process and a solution updating process, one of the
P g

spanning properties of complementary cones”, Linear Algebra and its Applications § present authors proposed an Improved Simulated Annealing (ISA) method (8,9] which
(1972) 65-108. will be reviewed and further analyzed in this paper. This method can be guaranteed
to always yield a better solution than SA. It is useful especially in the following cases,
which are often encountered in actual applications:

(1) The time spent on each MS process is not long enough to let the process reach

{] J.S. Pang, “Asymmetric variational inequality problems over product sets : applica-
tions and iterative methods”, Mathematical Programming, 31 (1985) 206-219.

)] L. Vandenberghe and J. Vandewalle (1989), “Brain-state- in-a-box neural networks the equilibrium state.
with asymmetric coefficients,” Proc. 1989 Intern. Joint Conf. Neural Net., Vol.l, (2) The speed of annealing is too fast.
pp.627-630. * (3) The temperature specified for stopping the annealing process is not low enough.
In these cases, SA usually finds a bad solution, but ISA can still obtain a better
)] L. Vandenberghe and J. Vandewalle (1989), “Application of relaxation methods to solufion. In addition, ISA also has a simple but effective way to decide when a MS
the adaptive training of neural networks,” presented at the Intern. Conf. Mathe. process can be finished to start another MS process, and when the whole annealing
Theory Net. Syst., June 1989, Amsterdam. progess can be stopped in such a way that the time cost is reduced but the solution is

still satisfactory.

Furthermore, in this paper we will use the basic idea of ISA to improve the perfor-
mance of BM. Advantages similar to the ones given above are again obtained.

Qur work is motivated by the computer vision problem. Attributed graphs have
turned out to be very useful data structures when used for image representation and
understanding in computer vision systems [10-12]. They have also been successfully

t This work was supported by Tekes Grant 4196/1988 under Finsoft project
t1 Permanent address: Dept. of Mathematics, Peking University, P.R.China
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used to handle optimal task assignments in distributed computer systems [13]. In (3],
one of the authors proposed a way to use SA to implement attributed graph matching.
This paper will give another solution: a general attributed graph matching problem is
turned into a model of combinatorial optimization which is different from that in [3]. 3
With this model, we can either directly use SA or use symmetrically interconnected
neural networks via the BM to obtain the solution of attributed graph matching.
In sec. 2, the commonly used SA algorithm is analyzed. In sec. 3, the ISA is
given, its advantages are discussed, and it is applied on the BM. In sec. 4, a general
combinatorial optimization model for attributed graph matching is presented and solved -
by ISA and the revised BM. Finally, in sec. 5, the advantages of ISA are shown through
computer simulations with performance comparisons on both the optimality of solution

and the time costs.

2. Analysis of Simulated Annealing. In problem-solving with SA, each combina- 3
torial state s; is regarded as a configuration state of a physical system, the objective

function E(s;) as the system energy, and a parameter T is used to imitate temperature. &
For a given T, MS is used to simulate the thermodynamical equilibrium at which the =%

Boltzmann distribution

N‘.mﬁu.u

f(si) = S eEGU (1)

can properly describe the probability of the energy at each state. As T gradually -

decreases, f(s;) becomes sharp around the state of global minimum energy and will be

fixed at the state as T — 0, i.e., the global optimization solution can be obtained.
Generally, the commonly used SA could be described as follows:

Initialization: Generate a random state s as the present solution, and initialize E(s) #
and T = 7%, o
step 1 : Randomly make a small perturbation As to get a new state s + As with the
energy increment AE = E(s + As) — E(s);

step 2 : If AE < 0 goto step 3, otherwise, generate a random number { by sampling$

a uniform distribution over [0,1] and if e"2F/T < ¢, goto step 1; i

step 3 : s + As replaces s as the new present solution, and E := E + AE;
step 4 : Check whether the MS at the present T' reached its equilibrium; if not, goto
step 1;

step 5 : Reduce T into T' < T by some means (e.g.,T := AT). Check whether the
annealing process has terminated (e.g., T < Tmin); if yes, the present s wi __

its E(s) is taken as the final solution, stop; otherwise, goto step 1. i

1
There steps 1,2,3,4 implement the MS process and step 5 imitates the annealing pro-}
cedure. The effectiveness of SA depends on: (1) Whether each MS process reaches i

equilibrium, i.e., how long each MS process should take at each T. (2) Whether u..z_-
is high enough , Thnin is low enough. and T decreases slowly enough. A low T,
high Tpnin, sharply decreasing T’ and short time implementation for each MS process
will lead to low computer cost, but the solution is not so good. In contrast, very high 3
T very low Tmin, and slowly decreasing T will always result in an optimal or unwu.......
optimal solution, but usually the cost is substantially high. Although there are several

(a). B(sij41) < m\.ﬁhu__u.v_ if AE <0 in step 2
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investigations (including some theoretical analysis) on how to select the above pe
L ters, they are either preliminary or theoretical. The common way is still simply t
- 7O T, .., a fixed number of steps for each MS process in a heuristic way, and
. decrease exponentially by T := AT(0 < A < 1) [1][7].
i The above procedure contains a drawback related to the sequence of solution

8;; denote the present solution of the j-th iteration at T}, one iteration being onc
" from step 1 to step 5. Then all the present solutions produced during the implemen
* of SA will form an updating sequence {(s;;,7 = 0,1,...),s = 0,1,.. .}. The sec
_ records the updating history of the present solution, as well as of the track that
i how the search is controlled. The relation between s; ; and s; ;41 has three possib

: s

- b Bt Bt it = ke step 2

(c). E(sij+1) = E(si;),if AE >0 and e~AB/Ti < £ in step 2.

Obviously, {(E(si;),j = 0,1,...),¢ = 0,1,...} is not a monotonically unincr
' sequence.

Possibility (b) allows the present solution to escape from local minima.
. the key point of the MS process in SA. But it also allows the possibility that th
* solution E(sg,) (suppose SA stopped after p steps at T;) may be worse than
* earlier solutions E(s;;),7 < p,i < ¢. This may happen especially if the replacen
. T; by Tiy; occurs before the MS process at T reaches its equilibrium, or T®
. high enough and T',;,, not low enough, or T' decreases too fast. As stated in sec.1
~ cases are often encountered in practice since there is still no appropriate way to
 these parameters.

; The above analysis explains why the solution by simulated annealing is som
* even worse than that by some conventional heuristic methods, and it also explai

£ curve phenomenon in Fig.7d in ref. [2].

r

"3, ISA and a Related Improvement on BM. Although necessary for the
* control to escape from local minima, possibility (b) above impacts a bad influe
. the updating sequence of the present solution. The contradiction can be sol
“ separating the search track and the updating sequence of the present solution. W
& retain {(s; j,7 = 0,1,...),i = 0,1,...} as the search track, and construct a new se
3;,; as the updating sequence of the present solution:

 d00 = s0,05if E(sij41) < E(si;) then &;j41 =3i;; otherwise 3§41 =

and if s; x is the last state at T; and s;4,,9 is the first state at T}, then

S5 if E(si+1,0) < E(six) then &iy10 = sik; otherwise $i410 = §is.

Th is modification results in ISA which has the following three advantages:

" (1). All the good features of SA can be retained (since the search track
changed), but a better final solution can be obtained since {(E(S;;),7 = 0,1,.
0,1,...} is now monotonically unincreasing.

" (2). At a given T}, if in g successive states §; ; = §; j41 = ... = §; j4, hol
q is large enough, it could be considered that the equilibrium has been approxi
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reached. So, a simple and effective way to check whether MS process could be stopped
at temperature T} is to check whether ¢ > go (a given threshold).

(3). Let §; , denote the last present solution at T;. If in p successive temperatures
iki = i41kiyy = -+ = Si4p,, holds, and p is large enough, it could be considered
that any further reduction of T is useless. So, a way to check whether the whole
annealing process could be stopped is to check whether p > py (a given threshold).

The first advantage makes the solution obtained by ISA better than that obtained
by SA at nearly the same computing cost. The last two advantages can considerably
reduce the computing cost but still keep a good solution.

The algorithm for implementing ISA is given as follows:

TV 1 . . T

A he-presen o ol —ahd-1n

8, 4= s, E=E@)

E(s) and T = T®; set Thnin, Jmaz) o, Po; Let p=0,¢=0,j =
.mm = m_.. mw.n = .m“
step1:1f j > jmaz, goto step 6; otherwise, j := j + 1, randomly make a small
perturbation As to get a new state s + As with the energy increment AE =
E(s + As) — E(s);

step 2: If AE > 0, generate a random number { by sampling a uniform distribution
over [0,1]. If e 2E/T < ¢, goto step 1;

step 3 : s + As replaces s as the new present solution, and E := E + AE;.

step4: If E < E; then E; := E and §:= s + As , g:= 0; Otherwise g := g + 15

step 5 : If g < go, goto step 1;

step 6 : f E; < E; then E, := E; and p := 0; Otherwise p:=p+ 1;

step 7: If p < po and T > Tpnin , reduce T into T' < T by some means(e.g., T := AT),

¢ := 0 and k := 0 and goto step 1; Otherwise, the present 5 with its E(3) is
taken as the final solution, stop.

There Tpmin, jmaz, respectively, are given thresholds for the minimum temperature o

and for the maximum time of the MS process at each T;. The two thresholds together
with go and po control when the MS process at each T finishes and when the whole
annealing stops. ks

The same method can be applied to the BM in a straightforward way. The BM is
a symmetrical interconnected neural network with energy expression:

—0.5 M:U M:” wyjeic; + w O;c;
=1

=] j=1

E =

where 8; is a threshold associated to neuron ¢;. The basic solution step is as follows: At
a given T, select a neuron c;, calculate its energy gap AE; (i.e., the difference between _
the energy of the two global states, one with neuron ¢; off (¢; = 0) and the other with
neuron ¢; on (¢; = 1)) by ;
n
D.mw.-, = M wi;C; — m_.
i=1,j#i

and let the neuron ¢; take the value ¢; = 1 with probabilty
pi = 1/(1 + exp(—AE;/T)).

(30)

-~ element U;; =
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Then, select another neuron and repeat the same process until the equilibriumis re
The whole process starts at a high temperature T' , and gradually decreases T' on
equilibrium is reached, until a low enough T value is reached.

The BM can be revised in a similar way as SA in sec. 3. What we need
is to also set up a new updating sequence of the present solutions. This can b«
as follows: In addition to a binary array A which indicates the current global st
the network, another binary array B is used to record the global state of the ¢
minimal energy. Initially, both arrays A = B record a randomly chosen global
Then A will be updated once each neuron ¢; changes its value according to probab
given by Eq.(4), but B is updated by B = A only when the energy of the current

state is lower than the energy of the state recorded in B. In this way, a monoto
: i i the

o = & a1 a On s ootained ALnen

process is stopped, the current state recorded in B could be taken as the final so

4, Attributed Graph Matching by ISA and the Improved BM. Attr
Graphs have shown superior adequacy when used for image representation and
standing in computer vision [10-12]. They have also been successfully used e
handle optimal task assignment in distributed computer systems [13].

To fix the notation, assume an attributed graph G = [(V,V,),(E, E,))-
V = (v1,v2,...,0n) is the node (vertex) set and V, = (avi,avs,...,avy) its nc
tribute set, and E = (e;,€2,...,€p) is the edge set and E, = (ae;,aey,...,aep) it
attribute set. Both for nodes and edges, each attribute may be either a symbolical
merical variable. The problem of matching two attributed graphs, G = [(V, V), (J
and G' = [(V',V)),(E', E.)] with node sets V = (v1,v2,...,05), V' = (vy,75,.
means setting up a one-to-one correspondence between the nodes of a subset of
G'. Generally speaking, there will be m!/(m — n)! (assume m > n) combinati
constructing one-to-one correspondences between nodes of a subset of G and G'.
ically, when n = m the problem is called attributed graph matching; when n <
problem is called attributed subgraph matching.

Usually, there is some cost associated with constructing a one-to-one corr
dence between a node v € V and a node v' € V' and between an edge e € E :
edge ¢' € E'; denote the costs by d(v,v') and d(e, e') respectively. Specifically, d
d(e,e') can be calculated from the differences between the attributes of v an
and ¢'). e.g, for numerical attributes, d(v,v') may be the square distance betwe
attributes of v and v'. Thus, for each combination, we can sum up all the d(v,1
d(e,e') to get a total cost D(G,G'). The goal of attributed graph matching is to
among all the possible combinations one that has the minimum value of D(G,
the optimal match between G and G, or a near minimal value of D(G,G") for
match between G and G'.

To form the objective function in practice, define a binary n x m matrix |i

- which each row i corresponds to a node v; of G and each column j correspon:

node v} of G'. If a one-to-one correspondence is assigned to a pair of nodes v;, v

1, otherwise U;; = 0. For a feasible matching possibility, the sur
elements U;; equals n (here, suppose n < m), and there should be one and o
element U;; = 1 in each row and at most one element U;; =1 in each column.
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there should be one and only one element Q_..q_ = 1 both in each row and each column .
when n = m. The value of the whole matrix is considered as a combinatorial m«aﬂn. 4

A combinatorial optimization model is proposed as follows: among all the combina
torial states choose one which makes the following objective function take the _E._EEI
value:

(i) Forn = m A

NHQMAMUQ:.IS MUMUQ.C

=1 j=1 =X 1=l

n m “
+b(av; — acwvu + 2¢ MU MU (aer; — nn":.vq_.n
r=1,r#ig=1,4g#j
and AE(U;j5,1 — 0) = —AE(U;;,0 = 1)
" By using the procedures of SA and ISA proposed in sec. 3, the following algori
are obtained directly for solving the model of Eq.(5):

" Algorithm AGM-SA
. Initialization: Set an N x M Matrix [U;;] by randomly deciding each of its elemer
_uo 1 or 0; initialize E by Eq.(5), and T = T(%); set Trmin, kmaz; let k = 0;

n n n on on step1:If k > kma: goto step 4; k : = k + 1; Choose with equal probabiliti
+b M M.?e._ =av P+ nMU M M M (ae;;=aej; qugr 5a) integer ¢ among {1,2,..:;N] E& an integer 7 among {1,2;..;;M}; Computt
i=1 j=1 i=1 j=11=1l%i k=1k#] 2 by Eq.(6);

step 2 : Generate a random number { by sampling a uniform distribution over
If ezp[—AE/T)) < £ goto step 1;

mnnﬁm U;; :=1-U;j and E := E 4 AE;

step 4 : f T > Tpin then T':= AT (0 < A < 1) and k := 0 and goto step 1; othe:

3 the present [U;;] with value E is taken as the final solution and stop.

(ii) Forn < m

E= QMAMH Usj — +QAMMQC ~-n)’ 7

=1 j=1 F=1 =l

+@MMU?¢.1S U iMM Y. Y (aey; — aely ) Usglpe Gs._*_

i=1 j=1 i=1 j=1I=1l#ik=1,k#j

" Algorithm AGM-ISA

voH or 0, w:m let another N x M Matrix [U};] take the same values as [Ui;); Init
2 HAE wIminy Emaszs Qmazs Pmaz; et p = 0, ¢ = 0, k=0,§=35E= .m_?v. E;
EE =

+ step 1: k :=k+1; Choose with equal probabilities an integer ¢ among [1,2,...,N
: an integer j among [1,2,...,M]; Compute AE by Eq.(6);

q step 2 : If AE < 0 goto step 4, otherwise, generate a random number £ by sam
a uniform distribution over [0,1]; If ezp[—AE/T]) > £ goto step 4;

where ae;;, ae, denote the attribute vectors of the edges e(v;,v) and m?._d__cC. respec-
tively. The first two terms attempt to insure a one-to-one correspondence between V -
of G and V' of G'. The 3rd and 4th terms attempt to minimize the total costs of all ;
d(v,v') and d(e,e'), respectively. The coefficients a, b, and ¢ are weight parameters. =.."
is now possible to use the SA or ISA to minimize ;nmm objective functions. Y

As one of the present authors pointed out in [3], the two key points in using SA
to solve the graph matching problem are how to perturb the present state (i.e, from:
present state s to a new state s + As) and how to locally calculate the corresponding
energy increment AE. For the model of Eq.(5), we treat the two tasks in a simple way.
of randomly inversing an element U;; into U;; := 1 — U;; and then locally np—nawn_na
its resulted AE by

(i) Forn=m

" “step A Uyi=1-U; and B := E+ AE;

b step 5: If E < E; then E; := E and [U};] := [U;;] and g := 0; Otherwise ¢ := ¢
step 6 : If ¢ < gmaz, goto step 1;

" step 7: If E;3» E; then E, := E; and p := 0; Otherwise p:=p + 1;

tep8: If p < pmazr and T > Tip, then T := AT (0 < X < 1)and g := 0 and &
and goto step 1; Otherwise, the present [U};] is taken as the final solt
and use Eq.(5) to calculate its E and stop.

AB(Ui;,0 = 1) = M Uik 4 2a M Uj —
k=1,k#j k=1,k#i

When we wish to solve the same problem with BM or Improved BM, Eq.(5
e further rewritten into the following form:
(i) Forn=m

E=-05 M” MU MU M wijelijUe — M MU Uii9:;,

=] j=1 I=1 k=1 =y =)

n

m
i
+b(av; — nen..uu + 2¢ M M (aeri — aeg;)Urq

r=1,r#i g=1,0#]
and AE(U;j,1 — 0) = —AE(U;;,0 — 1)
(ii) Forn <m

wijae = —20(8it + &) — 2¢(1 — &;)(1 — 51 )(ae;; — aep)?,
0;; = —4a + blav; — nemvu

AE(U;;,0 = 1) = 2a M Ui + 2a M:U MSU Uy — 24

k=1,k#j r=1,r#i g=1,9%]
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where 6;; is the Kronecker delta;
(ii) Forn < m

B= |c.mMU MUM M” _u_;ch_._» = MU Muqnu iy
i 1 k=1

je=1 ye=l

never returned to the optimal one; even after 119194 perturbations , the so
still a bad and unfeasible one, as given in Fig.2(d). These experiments also

that for AGM-SA, T},,;, not only greatly influences the time cost but also influe
' 'optimality of the solution.

. (2) Second, AGM-ISA was used. The same conditions (including the ran.
condition and the initial match) and the same group of parameters as those in
" ment (1) were used. In the first trial with g.. = +00 and pnaz = +00, also aft.
¢ perturbations, the algorithm stopped at the global optimal solution as given ir
. This is obviously better than that obtained by AGM-SA both in the time cos
b perturbations saved) and the optimality of solution. Forthermore, the optimal

® will never be lost by further lowering Tmin. In another trial, we let guq. -

Wijiik = —2a(bi1 + 1) — 2¢(1 — Sa)(l — _m._.w:nm_...__. — nmﬂwvu_ 3
8i; = —2a(n + 1) + blav; — nc.“_.uu. (78) ..”

Compare Eq.(7) with the energy expression Eq.(3); it is not difficult to see that 4
Uij, Ui correspond to neurons s;, s;, respectively, w;; 1k corresponds to nosumn:cuu wij,

............. =p

and 6;; to 6;. If the edges of G and G’ are undirectional, i.e., e;; = e;; and €;; = ¢;, J
and if the distance function d(.,.) satisfies d(z,y) = d(y,z), then it is easy ﬁo see that _
Wijtk = Wik ij, i.€., wij = wj;. Therefore, if each element U;; is regarded as a neuron,
then matrix [U;;] constitutes a symmetrically interconnected neural network that BM
can work on. v

As a result, BM and The improved BM can also be directly used to solve the model 4
of Eq.(5). Due to the limited space, we do not here introduce the details which can be |
found in [14].

Pmaz = 19, but kept all the other parameters unchanged. The algorithm stopp
only 7384 perturbations. The global optimal solution was still obtained.

6. Summary. The search track and the updating sequence of the present
in SA has been separated by constructing a new present solution updating se
As a result, an improvement has been made to SA, on both the optimality of
and the computing cost. We have also shown that a similar improvement can |
on BM, too.

After modeling the attributed graph matching problem by the objective :
of a combinatorial optimization problem, SA and BM as well as their correspon:
proved versions were used to solve the model. The advantages of the improved
over their original forms were shown through computer simulations with perfc
comparisons on both the optimality of solution and the time cost.

5. Computer Simulations. One of our attributed graph matching problems is shown
in Fig.1. There are two attributed graphs G, G', each having 8 nodes and 10 edges.
On each node and edge there is an attribute. Each node attribute is denoted by a
digit and each edge attribute is denoted by a circled digit. G' has the same topological
structure as G, but its node labels are all wrong. The cost of one-to-one correspondence &
of nodes (edges) between G and G' are defined by the square distance between their
corresponding attributes, i.e., d(v;,v}) = (av; — av;)? and d(e;;,e;;) = (ae;; — aej; 2
where av; (av}) is the attribute of node v; (v}) and ae;; (ae};) is :ﬁ attribute of edge
eij (e};), for edges e;; = e(vi,vj), ¢}; = m?m_cb. mvaﬁmnm:F for e;;, e;, if oneis 8§
pseudo-edge (i.e., there is no real edge between the two nodes) and the other is not, we
define d(e;j, €;;) = 10® to penalize the correspondence; but if both are pseudo-edges, we *
define d(e;j, ¢};) = 0. These costs are used for computing the total matching cost E by
Eq.(5) and Dm. by Eq.(6). In these formulas, the parameters are a = 1000.0, b = __b
and ¢ = 1.0.
(1) First, AGM-SA was used. For a group of parameters T = 2000, Thnin = umP_

kmaz = 500, and A = 0.95, the initial match was randomly generated as given in|
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A_«nnw:oamu_ the algorithm stopped since the present T' = 475.65 < Tmin. The final
solution E = 3010.25 is bad and not feasible as shown in Fig.2(b). Then we kepi
other parameters unchanged, but decreased Tpn;n, to 10.0. After 52105 peturbations

as given in Fig.2(c), but with the extra cost of 38077 perturbations. Hereafter,
still kept the other parameters unchanged, but continuosly reduced Ty,;n to 1.0. Af
74649 perturbations, the algorithm stopped at T' = 0.9591. However, due the drawba
pointed out in sec.2.2, the solution mistakenly jumped from the optimal one to an
unfeasible one with E = 1025.5. Then as we continued to lower T),;,, the solution
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