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Abstract. In this paper we propose a regularized relaxation based graph
matching algorithm. The graph matching problem is formulated as a con-
strained convex quadratic program, by relaxing the permutation matrix
to a doubly stochastic one. To gradually push the doubly stochastic ma-
trix back to a permutation one, a simple weighted concave regular term
is added to the convex objective function. The concave regular function
is not a concave relaxation of the original matching problem. However,
it is shown that such a simple concave regular term has a comparative
performance as the concave relaxation of the PATH following algorithm,
which works only on undirected graphs. A concave-convex procedure
(CCCP) together with the Frank-Wolfe algorithm is adopted to solve
the matching problem, and some experimental results witness the state-
of-art performance of the proposed algorithm.

Keywords: graph matching, CCCP, Frank-Wolfe algorithm, convex
relaxation.

1 Introduction

Graph matching plays a central role in many graph based techniques. For in-
stance, graph is frequently used as the structural representation of objects in
computer vision and pattern recognition, and consequently the graph matching
algorithm is usually used to solve the object matching problem [1]. Graph match-
ing involves identifying each vertices pair between two graphs in some optimal
way, or inherently finding a good permutation matrix between the two adjacency
matrices of both graphs. The problem is in nature a NP-hard combinatorial opti-
mization problem with factorial complexity, except for some graphs with special
structure, such as the planar graphs which has shown to be of polynomial com-
plexity [2]. Consequently, an exhaustive enumeration based matching algorithm
is computationally prohibited, except for some small-scale problems.

Tomake the problem computationally tractable,many approximate approaches
have been proposed, to seek an acceptable trade-off between the complexity and
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matching accuracy. As summarized in [3], approximate matching algorithms can
be roughly categorized into three groups, tree search basedmethods, spectralmeth-
ods and continuous optimization (relaxation techniques). Here, we concentrate
on the relaxation techniques, which involve relaxing the combinatorial matching
problem to a continuous one [4–6]. The key point lies in the fact that optimiza-
tion over a continuous set is usually easier to be approximated than its discrete
counterpart. Two well-known relaxation techniques in literature include gradu-
ated assignment [5] and PATH following algorithm [6], both of which work directly
on adjacency matrices.

Given two graphs GD = (VD, ED) and GM = (VM , EM ) where V and E re-
spectively denote the sets of vertices and edges and by formulating the matching
problem as

P = arg min
P∈P

f(AD, AP (M)), AP (M) = PAMPT , (1)

where A denotes adjacency matrix, P is a permutation matrix, AP (M) denotes
the adjacency matrix of the permutated graph of GM by P , P denotes the set
of permutation matrix, and f(·) is a cost function which usually takes a convex
quadratic form, both gradual assignment and PATH following algorithms relax
domain of the objective from set of permutation matrix P to it convex hull,
i.e., set of doubly stochastic matrix D. In this way, eqn. (1) becomes a convex
quadratic program. A soft assignment schema controlled by a parameter was
introduced by the graduated assignment algorithm to control the non-convexity
of the problem, and a double normalization is used to constrain the matrix a
doubly stochastic one. As the parameter increases to large enough, a permutation
matrix is expected to be obtained though usually a clean-up step is further
needed.

Different from the gradual assignment algorithm, the PATH following algo-
rithm introduces a weighted concave relaxation to control the non-convexity of
the objective. Specifically, by adopting the square of Frobenius matrix norm as
the cost, the objective in eqn. (1) is firstly relaxed as follows

fv(P ) = vec(P )TQvec(P ), P ∈ D, (2)

where vec(P ) is the column-wise vector representation of P , and Q = (I ⊗AD−
AT

M ⊗ I)T (I ⊗AD −AT
M ⊗ I) ∈ R

N2×N2

is a symmetric definite positive matrix.
The concave relaxation introduced by PATH following algorithm is given by

fc(P ) = −tr(�P )− 2vec(P )T (LT
M ⊗ LT

D)vec(P ), P ∈ D, (3)

where �ij = (DM (i, i) − DD(j, j))2, with D and L denoting the degree and
Laplacian matrices of the graph, respectively. The concave relaxation holds the
same global minimum as the original matching problem, that is, minP∈P fc(P ) =
minP∈P fv(P ). Based on the convex and concave terms above, the objective
function of the PATH following algorithm is given by

fpath(γ, P ) = γfv(P ) + (1− γ)fc(P ), P ∈ D, (4)
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where γ ∈ [0, 1] controls the non-convexity of the objective: A large γ means that
fpath(P, γ) tends to be convex; by contrast, a small γ makes fpath(P, γ) concave.
Thus, by gradually decreasing γ for 1 to 0, the objective becomes finally a concave
one, and its minimization results in a permutation matrix.

However, the PATH following algorithm cannot be used to solve the matching
problem between directed graphs because the term in eqn. (3) cannot guarantee
to be concave for directed graphs. In this paper we introduce a much simpler con-
cave term which can be applied on both directed and undirected graphs. Though
the simple concave term is not a relaxation of the original matching problem, it is
shown that it has a comparative performance as eqn. (3) on matching accuracy.
Section 2 is devoted to the proposed method, some experimental illustrations
and discussions are given in section 3, and finally section 4 concludes the paper.

2 Proposed Method

The objective function for the graph matching problem is firstly proposed, and
then the CCCP together with Frank-Wolfe algorithm is proposed to minimize
the objective.

2.1 Objective Function

The proposed objective function takes a similar form as eqn. (4), with the same
convex relaxation but with a different concave term. To make the algorithm
applicable also for matching problems on directed graphs, we propose to use the
following simple concave term,

fc(P ) = −vec(P )T vec(P ), P ∈ D. (5)

Then, the graph matching problem is formulated as follows,

min fγ(P ) = γvec(P )TQvec(P )− (1 − γ)vec(P )T vec(P )

s.t. P ∈ D. (6)

It is obvious that minimization of the concave term given by eqn. (5) results in
an extreme point of D, i.e., a permutation matrix. Thus, by gradually decreasing
γ from 1 to 0, minimization of the objective will make P gradually converge to a
permutation matrix. At the beginning when γ = 1, the objective degenerates to
the convex relaxation, whose global minimization denoted by Pv can be obtained
by such as the Frank-Wolfe algorithm. Actually, a permutation matrix can be
directly obtained by an optimal assignment procedure which casts the doubly
stochastic matrix Pv to a permutation matrix Pp via

Pp = argmax
P∈P
〈Pv, P 〉, (7)

where 〈·〉 denotes an inner product. The assignment can be solved by the Hungar-
ian algorithm [7], with the computational complexity O(N3). Such a hard-cut
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operation based graph matching algorithm, named QCV (quadratic convex),
may however bring a big error in the result, as to be witnessed by the experi-
mental results in section 3. By contrast, as γ gradually decreases, P is gradually
pushed away from Pv in such a way that update of P is guided to approach a
permutation matrix with smaller matching error. This point can be intuitively
understood in the following way. During the convergence process the update di-
rection of P comprises two parts, gv(P ) and gc(P ), the directions provided by
the convex and concave terms, respectively. Guidance from gv(P ) is to minimize
the increase of the convex term, which, if can be globally minimized during the
whole process, is equal to the difference between the best matching error and the
global minimization of the convex relaxation gotten by Pv. On the other hand,
gc(P ) provides no informative search direction since any permutation matrix
gives the same global minimum for the concave term. Thus, in the global mini-
mization sense it is under the guidance of gc(P ) that P is expected to approach
a permutation matrix with a relatively small matching error.

In contrast to the above simple concave term, the concave relaxation given by
eqn. (3) also provides a search direction gc(P ) which also provides a meaningful
guidance for the update of P in the global optimization sense. However, starting
from Pv, the search direction gc(P ) provided by the concave relaxation is the
same as gv(P ), i.e., the direction from Pv to the global optimal point. Therefore,
gc(P ) is somewhat redundant to gv(P ), and gc(P ) just strengthens gv(P ) but
does not provide additional useful guidance. This is to some extent confirmed
by the experimental comparisons in section 3 which witnesses that, on matching
undirected graphs, the two concave terms have a comparative performance on
accuracy (see Tab. 1 and Figs. 1 and 2 for details).

2.2 Algorithm

For each fixed γ, the objective function given by eqn. (6) is a constrained
quadratic program which is generally neither convex nor concave, to solve which
some local search technique seems to be unavoidable. Here, we firstly utilize the
concave-convex procedure (CCCP) to decompose the objective function into a
sequential constrained convex quadratic program, which is then solved by the
Frank-Wolfe algorithm.

The CCCP algorithm consists of sequentially minimizing the following con-
strained convex function,

fk+1(P
k+1) = fv(P

k+1) + vec(P k+1)T∇fc(P k), P k+1 ∈ D, (8)

where P k+1 denotes the P to be found in step k, and fv, fc the convex and
concave terms respectively. Since ∇fc(P k) = −2(1 − γ)vec(P k) is a constant
with respective to P k+1, eqn. (8) is formulated as the following constrained
convex quadratic program:

minfcccp(P ) = γvec(P )TQvec(P )− 2(1− γ)vec(P k)T vec(P ), s.t. P ∈ D. (9)
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The Frank-Wolfe algorithm, as a reduced gradient method, is adopted to solve
the above constrained convex quadratic program. Specifically, it comprises the
following four steps.

step 1: Initialize P 0 = P ∗ and let t = 0, where P ∗ denotes the result obtained
by the previous CCCP loop.

step 2: Find an extreme point Xt (a permutation matrix) of D by solving the
linear program

min 〈∇fcccp(P t), Xt〉, s.t. Xt ∈ D, (10)

where ∇fcccp(P ) is given by

∇fcccp(P ) = 2γ(A′
DADP −A′

DPAM −ADPA′
M + PAMA′

M )− 2(1− γ)P ∗.
(11)

step 3: Find a step size α ∈ [0, 1] to minimize fcccp(P
t + α(Xt − P t)), and

update P t+1 = P t + α(Xt − P t).
step 4: If |〈∇fcccp(P t), Xt−P t〉| < ε|fcccp(P t) + 〈∇fcccp(P t), Xt−P t〉| where

ε is a small positive constant, return P t+1. Otherwise, let t = t + 1 and go
back to step 2.

In the algorithm, the linear program in step 2 can be solved by the Hungarian
algorithm with a complexity O(N3), and the line search can be efficiently im-
plemented by for instance a backtracking algorithm [8]. The stopping criterion
in step 4 is applicable, thanks to the convexity of the objective function fcccp.

Finally, the graph matching algorithm is summarized by Algorithm 2.1.

�

�

�

�

Algorithm 2.1. GraphMatching(AD, AM )

Pn ← 1N×N/N, n← 0, γ ← 1
while γ ≥ 0&P /∈ P
do Pn+1 ← CCCP(Pn, γ), γ ← γ − δγ, n← n+ 1

return (Pn)

Storage complexity of the algorithm is O(N2) and since the computational
complexities of the Hungarian algorithm and matrix multiplication involved in
the algorithm are both O(N3), the computational complexity of the algorithm
is roughly O(N3).

3 Experimental Illustrations

Three experiments on synthetic data are conducted to evaluate the proposed
algorithm. Five algorithms, including Umeyama’s algorithm (U for short) [9],
PATH following algorithm [6] (on undirected graphs only), QCV algorithm given
by eqn. (7), graduated assignment algorithm [5] (GA for short), and the proposed
algorithm are experimentally compared on both undirected and directed graphs.
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For problems with small scale (N = 8 for instance), an exhaustive search is used
to get the ground true solution. All of the algorithms were implemented by
Matlab 2009b, with a MEX function to implement the Hungarian algorithm.

The first experiment is to simulate the scenario of graph matching without
any prior. In the experiment, 100 pairs of graphs with size N = 8 are randomly
generated by the following procedure: For each entry Aij (Aji = Aij in the case of
undirected graph) randomly generate a uniformly distributed number r ∈ [0, 1]; if
r > 0.5 (meaning that sparsity of the graph is around 0.5), randomly generate its
weight Aij = w ∈ [0, 1], or otherwise Aij = 0. The first experimental results are
listed in Tab. 1, from which it is witnessed that the PATH (on undirected graphs
only) and our algorithms have a much better performance on accuracy than the
U, QCV and GA algorithms. It is also observed that PATH and our algorithm
have a comparative performance on accuracy, as echoed by the discussions in
section 2.1.

Table 1. Comparative experimental results on four types of graphs with N = 8,
summarized from 100 random runs

graph types error OPT U QCV GA PATH Ours

mean 3.5473 8.7955 6.3547 6.3483 4.1323 4.0591undirected graph models
std 1.0678 3.3016 2.5465 2.1100 1.4218 1.3254

mean 5.5269 11.0624 7.9136 9.6330 - 6.3928directed graph models
std 0.8921 2.2747 1.8446 2.1368 - 1.2297

The second experiment is to evaluate the noise robustness of the algorithms.
In the experiment, the second graph in a graph pair was generated based on the
first one by adding some noises which is controlled by a noise level. Specifically,
given a noise level δ ∈ [0, 1] and a randomly generated adjacency matrix AD,
AM is gotten by the following steps.

1. Set AM ← AD, and for each (AM )ij , randomly generate two variables r1
and r2 ∈ [0, 1].

2. If (AM )ij > 0: if r1 < δ, (AM )ij ← 0; or otherwise, (AM )ij ← (AM )ij + δr2.
3. If (AM )ij = 0: if r1 < δ, (AM )ij ← r2.

4. Randomly generate a permutation matrix P , and set AM ← PAMPT .

The noise level increases from 0 to 1 by a step size 0.1. On each noise level,
100 graph pairs with N = 8 are generated according to the above process. The
experimental results on the two types of graphs are shown in Fig. 1. Similar to the
first experimental result, the PATH and our algorithm outperform significantly
the other three algorithms.

The third experiment is to evaluate the scalability of the five algorithms with
respective to graph size, on both accuracy and complexity. In the experiment,
10 groups of graph pairs with different sizes are included for comparison, with
the size increasing from 5 to 50 by a step size 5. In each group, 50 graph pairs
are generated in the same way as the second experiment with a noise level 0.1.
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Fig. 1. Changes of the matching error with respective to noise levels, summarized from
100 random runs

On accuracy, similar experimental results as the above two are obtained on
all of the 20 groups of graph pairs, as witnessed by Figs. 2. The time-cost
of the five algorithms are shown in Fig. 3, in which the slopes of the five
curves corresponding to U, QCV, GA, PATH, and our algorithm are around
2.412, 2, 633, 3.135, 2.762, and 2.737, respectively, which imply that the GA suf-
fers the biggest complexity and U is the simplest one.
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Fig. 2. Changes of the matching error
with respective to graph sizes, summa-
rized from 50 random runs on each size
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Fig. 3. Time-cost of the five algorithms
with respective to the graph size, summa-
rized from 50 random runs on each size

4 Conclusions

In this paper we showed that a simple weighted concave function has a compar-
ative performance to the concave relaxation for the graph matching problem.
The point is that the simple concave function can be utilized on matching differ-
ent types of graphs, but by contrast, the concave relaxation is usually difficult
to find. Actually, to the best of our knowledge, only the concave relaxation
on undirected graphs without self-loops has been reported in literature [6]1.

1 Just before finishing the final version of this paper, we reported two type of concave
relaxations for directed graph models, see [10, 11].
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The CCCP together with the Frank-Wolfe algorithm is then proposed to solve
the matching problem. On four different types of graphs, our algorithm showed
a state-of-art performance on accuracy.
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