CSCI3160: Finding a Negative Cycle

Prepared by Yufei Tao

Suppose that G = (V, E) is a simple directed graph where each edge (u,v) € E has a weight
w(u,v), which can be negative. It is known that G is strongly connected and contains at least one
negative cycle. In the tutorial, we learned the following algorithm for finding a negative cycle:

algorithm negative-cycle-detection
input: strongly connected G = (V, E) and weight function w

1. s < arbitrary vertex in V
2. dist(s) < 0 and dist(v) < oo for every vertex v € V' \ {s}
3. parent(v) < nil for all v € V
4. fori«+ 1to|V|—1do
5. for each edge (u,v) € E do
6. if dist(v) > dist(u) + w(u,v) then
7. dist(v) < dist(u) + w(u,v); parent(v) < u
8. for each edge (u,v) € E do
9. if dist(v) > dist(u) + w(u, v) then
10. parent(v) <— u
/* start tracing back the parent pointers until seeing a vertex twice */
11. initialize a vertex sequence S that contains only v
12. while parent(v) ¢ S do
13. append parent(v) to S; v < parent(v)
14. report a negative cycle: output the appendix of S starting from v and add v in the end

Next, we prove that the algorithm is correct.

Lemma 1. During the algorithm, if u is a vertex in V with parent(u) # nil, then dist(parent(u))+
w(parent(u), u) <= dist(u).

Proof. Let z = parent(u). When z just becomes parent(u), dist(z) +w(z,u) = dist(u). After that,

dist(z) can only decrease, while dist(u) stays the same until parent(u) is updated. O
Lemma 2. Suppose that there is a sequence of x > 2 vertices uj, ug, ..., uy such that parent(u;) =
uiy1 for every i € [1,x — 1] and parent(uy) = uy. Then, (ui,us), (uz,u1), (ug,us), ..., (Uz,Uzp—_1)

form a negative cycle.

Proof. Each of parent(uy), parent(uz), ..., parent(u,) was set by an edge relaxation. W.l.o.g.,
suppose that the edge relaxation for parent(u;) happened the latest. Consider the moment right
before the relaxation. At this moment, we must have

dist(uz) + w(ug,uy) < dist(uy)
By Lemma 1, we have

dist(ug) + w(usz, u2)
dist(ug) + w(ug, u3)

dist(ug)
dist(us)



dist(ug) + w(ug, ug—1) < dist(uz—1)
dist(u1) + w(ur,ug) < dist(u).
The above inequalities imply w(ug, u1) + > 5 w(wi, uiy1) < 0. O

Lemma 3. Consider the moment when the algorithm has come to Line 11. At this moment, if we
continuously trace the parent pointers starting from v, we encounter an infinite loop.

Proof. Suppose that this is not true. Then, the tracing must stop at s because every node — except
possibly s — has a parent. This yields a simple path m from s to v. Denote by £ the number of
edges on T; clearly, £ < |V| — 1. Denote the vertices on 7 as 2, 21, ..., z¢, where zp = s and zy = v.
Let d; be the value of dist(z;) at this moment, for each i € [0,¢]. Let us make several observations:

o parent(z;) = z;—1 for all i € [1,¢], but parent(zp) = nil.

e The fact parent(s) = nil implies dy = 0. To see why, recall that dist(s) is set to 0 at the
beginning of the algorithm. Thus, if dy # 0, then dist(s) must have been decreased during
the algorithm’s execution, in which case parent(s) cannot be nil.

e For cach i € [1,4], d; > d;—1 + w(zi—1,2;). At the moment when dist(z;) was reduced to d;
(which must be due to the relaxation of (z;_1, 2;)), it held that d; = dist(z;) = dist(zi—1) +
w(zi—1,2;). The value of dist(z;—1) could then only decrease after that, which implies d; >
di—1 +w(zi-1, 2)-

Claim: For each i € [1, /], we have
o di =Y w(zi1,%), and

e the value of dist(z;) was exactly d; at the end of the i-th round (and hence has remained so
till the end of the algorithm).

We will prove the claim by induction. For the base case, the claim becomes dist(z1) = di =
w(s, z1) at the end of the first round. Right after the edge (s, z1) was relaxed in the first round, it
held that dist(z1) = w(s, z1). In the rest of the algorithm, dist(z;) could only decrease, indicating
that d; < w(s,z1). On the other hand, as observed earlier, we have d; > w(s, z1). Therefore, it
must hold that d; = w(s, z1), and the value of dist(z1) was w(s, z1) at the end of the first round.

Assuming the claim’s correctness for ¢ < k, next we will prove the claim for ¢ = £ 4+ 1. By the
inductive assumption, dist(z) = d, = Z§:1 w(zi—1, i) at the end of the k-th round. Right after the
edge (zg, zx+1) was relaxed in the (k+1)-th round, it held that dist(zx11) = dist(zx) +w(zk, 2k+1) =
dr, + w(zk, 2k+1). In the rest of the algorithm, dist(zx41) could only decrease, indicating that
diy1 < di + w(zg, 2zk+1)- On the other hand, as observed earlier, we have di11 > d + w(zk, 2k+1)-
Therefore, it must hold that di11 = dx+w(zk, 2k+1) = Zfill w(zi—1, 2i), and the value of dist(zx4+1)
was di4+1 at the end of the (k + 1)-th round. This completes the proof of the claim.

However, according to the claim, the edge relaxation at Line 9 should not have happened. This
gives a contradiction, indicating that our initial assumption (that the lemma is wrong) cannot be
true. ]

The algorithm’s correctness follows from Lemmas 2 and 3.



