
CSCI3610: Special Exercise Set 2

Problem 1. Given an array A of size n, design an algorithm to output all the inversions in A
using O(n log2 n+ k) time, where k is the number of inversions reported.

Problem 2. Prove: if you can solve the dominance counting on n points in f(n) time, then you
can count the number of inversions in an integer array of length n in f(n)+O(n) time. (Hint: you
can convert the inversion counting problem to an instance of dominance counting.)

Problem 3. Assuming m ≥ n, give an algorithm to multiply an m × n matrix with an n × m
matrix in O(m2 ·n0.81) time. (Hint: apply Strassen’s algorithm to multiply ⌈m/n⌉2 pairs of order-n
matrices.)

Problem 4. Assuming m ≥ n ≥ t, give an algorithm to multiply an m × n matrix with an n × t
matrix in O(m ·n · t0.81) time. (Hint: apply Strassen’s algorithm to multiply pairs of t× t matrices.)

Problem 5. Let A1, A2, ..., Ak be k arrays, each of which has been sorted. These arrays are
mutually disjoint, namely, no integer can appear in more than one array. Design an algorithm to
merge the k arrays into one sorted array in O(n log k) time, where n is the total length of the k
arrays. Note: these arrays may have different lengths.

1


