
CSCI3160: Regular Exercise Set 7

Prepared by Yufei Tao

Problem 1. Let x and y be two strings of length n and m, respectively. Suppose that x[n] = y[m].
Prove: the following are true for any LCS z of x and y:

• Let k be the length of z. It holds that z[k] = x[n] = y[m].

• z[1 : k − 1] is an LCS of x[1 : n− 1] and y[1 : m− 1].

Problem 2. Let x be a string of length n, and y a string of length m. Define opt(i, j) to be the
length of an LCS of x[1 : i] and y[1 : j] for i ∈ [0, n] and j ∈ [0,m]. In the lecture, we already
discussed how to calculate opt(i, j) for all possible (i, j) pairs. Based on that discussion, explain an
algorithm that can output an LCS of x and y in O(nm) time.

Problem 3 (Matrix-Chain Multiplication). The goal in this problem to calculate A1A2...An

where Ai is an ai × bi matrix for i ∈ [1, n]. This implies that bi−1 = ai for i ∈ [2, n], and the
final result is an a1 × bn matrix. You are given an algorithm A that, given an a × b matrix A
and a b× c matrix B, can calculate AB in O(abc) time. To calculate A1A2...An, you can apply
parenthesization, namely, convert the expression to (A1...Ai)(Ai+1...An) for some i ∈ [1, n− 1], and
then parenthesize each of A1...Ai and Ai+1...An recursively. A fully parenthesized product is

• either a single matrix or

• the product of two fully parenthesized products.

For example, if n = 4, then (A1A2)(A3A4) and ((A1A2)A3)A4 are fully parenthesized, but
A1(A2A3A4) is not. Each fully parenthesized product has a computation cost under A; e.g., given
(A1A2)(A3A4), you first calculate B1 = A1A2 and B2 = A3A4, and then calculate B1B2, all
using A. The cost of the fully parenthesized product is the total cost of the three pairwise matrix
multiplications.

Design an algorithm to find in O(n3) time a fully parenthesized product with the smallest cost.

Problem 4 (Longest Ascending Subsequence). Let A be a sequence of n distinct integers. A
sequence B of integers is a subsequence of A if it satisfies one of the following conditions:

• A = B or

• we can convert A to B by repeatedly deleting integers.

The subsequence B is ascending if its integers are arranged in ascending order. Design an algorithm
to find an ascending subsequence of A with the maximum length. Your algorithm should run in
O(n2) time. For example, if A = (10, 5, 20, 17, 3, 30, 25, 40, 50, 60, 24, 55, 70, 58, 80, 44), then a longest
ascending sequence is (10, 20, 30, 40, 50, 60, 70, 80).

Problem 5*. In this problem, we will revisit a regular exercise discussed before and derive a faster
algorithm using dynamic programming.

Let A be an array of n integers (A is not necessarily sorted). Each integer in A may be
positive or negative. Given i, j satisfying 1 ≤ i ≤ j ≤ n, define subarray A[i : j] as the sequence

1



(A[i], A[i+1], ..., A[j]), and the weight of A[i : j] as A[i] +A[i+1]+ ...+A[j]. For example, consider
A = (13,−3,−25, 20,−3,−16,−23, 18); A[1 : 4] has weight 5, while A[2 : 4] has weight −8. Design
an algorithm to find a subarray of A with the largest weight in O(n) time.

Remark: We solved the problem using divide-and-conquer in O(n log n) time before.

2


