CSCI3160: Regular Exercise Set 3

Prepared by Yufei Tao

Problem 1. Let S be a set of n intervals {[s;, fi] | 1 <i < n}, satisfying f; < fo < ... < f,. Denote
by S’ the set of intervals in S that are disjoint with [s1, f1]. Prove: if 7/ C S’ is an optimal solution
to the activity selection problem on S’, then T" U {[s1, f1]} is an optimal solution to the activity
selection problem on S.

Solution. We will prove the claim by contradiction. Suppose that 7" U {[s1, f1]} is not an optimal
solution to the activity selection problem on S. As proved in the class, there exists an optimal
solution T (to the activity selection problem on S) which includes [s1, fi]. It thus follows that
|T"U{[s1, f1]}| < |T| (otherwise, T"U{[s1, f1]} would be an optimal solution to the activity selection
problem on S).

Since every interval in T\ {[s1, f1]} is disjoint with [sq, f1], all the intervals in 7'\ {[s1, f1]} must
come from S’. As T" is an optimal solution the activity selection problem on S’, we know:

T\ {[s1, f1]}|
|T|

|

>
= [T"U{[s1, A} =

thus causing a contradiction.

Problem 2. Describe how to implement the activity selection algorithm discussed in the lecture in
O(nlogn) time, where n is the number of input intervals.

Solution. Let S be the set of n intervals given, where each interval has the form [s, f]. Sort the
intervals in ascending order the f-value. Denote the sorted order as [s1, fi], [s2, f2], .-, [Sn, fn] Where
f1 < fo < ... < fpn. Proceed as follows:

1. T =A{[s1, fu]}; last = 1

2. fori=2ton

3. if s; > flust then

4. add [s;, fi] into T'; last =i

After sorting, the above algorithm runs in O(n) time.

Problem 3. Prof. Goofy proposes the following greedy algorithm to “solve” the activity selection
problem. Let S be the input set of intervals. Initialize an empty 7T, and then repeat the following
steps until S is empty:

e (Step 1) Add to T the interval I = [s, f] in S that has the smallest s-value.
e (Step 2) Remove from S all the intervals overlapping with I (including I itself).

Finally, return T' as the answer.
Prove: the above algorithm does not guarantee an optimal solution.

Solution. Here is a counterexample: S = {[1,10],[2, 3], [4,5]}. Prof. Goofy’s algorithm returns
{[1,10]}, while the optimal solution is S = {[2, 3], [4, 5]}.

Problem 4**. Prof. Goofy just won’t give up! This time he proposes a more sophisticated greedy
algorithm. Again, let S be the input set of intervals. Initialize an empty 7', and then repeat the
following steps until S is empty:



e (Step 1) Add to T the interval I € S that overlaps with the fewest other intervals in S.
e (Step 2) Remove from S the interval I as well as all the intervals that overlap with I.

Finally, return T' as the answer.
Prove: the above algorithm does not guarantee an optimal solution.

Solution. The following nice counterexample is by courtesy of the site
http://mypathtothes.blogspot.com/2013/03/greedy-algorithms-activity-selection. html.

S = {[1,10],2,22],[3, 23], [20, 30], [25, 45], [40, 50], [47, 62], [48, 63], [60, 70]}

Prof. Goofy’s algorithm returns 3 intervals (one of them must be [25,45]), while the optimal
solution consists of 4 intervals.

Problem 5* (Fractional Knapsack). Let (wy,v1), (w2,v2), ..., (wy,v,) be n pairs of positive
real values. Given a real value W < > w;, design an algorithm to find x1, x9, ..., x, to maximize
the objective function

subject to
o 0 <uz; <w; for every i € [1,n];
® 2?21 ZT; S w.

Remark: You can imagine that, for each i € [1,n], the value w; is the ‘weight’ of a certain item,
and v; is the item’s ‘value’. The goal is to maximize the total value of the items we collect, subject
to the constraint that all the items must weight no more than W in total. For each item, we are
allowed to take only a fraction of it, which reduces its weight and value by proportion.

Solution. Assume, w.l.o.g., that :;—11 > :;—22 > ... > 5—2 Our algorithm runs as follows:

1. for i< 1tondo
2. x;  min{W, w;}
3. WFW—.%’Z'

Next, we prove the algorithm returns an optimal solution. Consider an arbitrary optimal solution
x3, x5, ..., x. Observe that > " ; zF must be exactly W (think: why?).

Suppose that the optimal solution differs from the solution returned by our algorithm. Let ¢ be
the smallest integer such that z; # 7 (this means xz; = 7, ...,2:—1 = x}_;). By how our algorithm
runs, we know x; > xj. Define A = x; — af.



We argue that xj, | + 7,9 + ... + x5, > A. If this is not true, then

t—1 n t—1 n
(i) + () = (Em) + 2+ (3 =)
t—1
< (;xi)+(xt—A)+A

t—1
= (i_lxi)—i—xt
< W

This means Y | z} is strictly less than W, giving a contradiction.

We now adjust the optimal solution as follows:
e First, increase zj by A to make z} = ;.

e Second, reduce a total amount of A arbitrarily from z},,, 7,5, ..., z;;. This is possible because
T+ xi o+ tay > A

Because % > 2L for any i > t, the new solution achieves at least the same value for the objective
function

*

€T
2:7@@2
w;

i=1
compared to the original solution and therefore must also be optimal.

We now have obtained an optimal solution that agrees with our solution on the first ¢ numbers,
i.e., one more than before. By repeating the above argument, we can obtain an optimal solution
that agrees with our solution on the first £ + 1 numbers, then another optimal solution agreeing
with ours on the first ¢ + 2 numbers and so on. Eventually, we obtain an optimal solution that is
completely the same as our solution. This proves the optimality of our solution.



