Exercises: Tangent and Gradient

Problem 1. Let f(t) = [3, 4] + t[1, 2]. Give a tangent vector of the curve at the point corresponding to f(2).

Solution. We know that f(t) = [3 + t, 4 + 2t]. Taking the derivative gives f'(t) = [1, 2]. Hence, [1, 2] is a tangent vector at the point correspond to f(2).

Problem 2. Let $f(t) = [\sin(t), \cos(t^3), 5t^2]$. Give a tangent vector of the curve at the point corresponding to f(2).

Solution. Since $\mathbf{f}'(t) = [\cos(t), -3t^2\sin(t^3), 10t]$, a tangent vector at the point corresponding to $\mathbf{f}(2)$ is $\mathbf{f}'(2) = [\cos(2), -12\sin(8), 20]$.

Problem 3. Give a tangent vector of point $(2, \sqrt{2})$ on the ellipse $x^2 + \frac{y^2}{2} = 5$.

Solution. Introduce $x(t) = \sqrt{5}\cos(t)$ and $y(t) = \sqrt{10}\sin(t)$. Hence, the curve can be described by $\mathbf{f}(t) = [x(t), y(t)]$. We thus have: $\mathbf{f}'(t) = [-\sqrt{5}\sin(t), \sqrt{10}\cos(t)]$. Point $(2, \sqrt{2})$ corresponds to $\mathbf{f}(t_0)$ with $\sqrt{5}\cos(t_0) = 2$ and $\sqrt{10}\sin(t_0) = \sqrt{2}$. Hence, a tangent vector at the point is $\mathbf{f}'(t_0) = [-\sqrt{5}\sin(t_0), \sqrt{10}\cos(t_0)] = [-1, 2\sqrt{2}]$.

Problem 4. Let $f(t) = [t^2, -2t, -t^3]$. Give a tangent vector of the curve at point (9, -6, -27).

Solution. First, we get $f'(t) = [2t, -2, -3t^2]$. Note that point (9, -6, -27) corresponds to f(3). Hence, a tangent vector at the point is f'(3) = [6, -2, -27].

Problem 5. Compute the following gradients:

- 1. $\nabla f(3,4)$ where f(x,y) = (4x+3)(2y-1).
- 2. $\nabla f(3, 4, 5)$ where $f(x, y, z) = 3x^2yz$.

Solution.

- $\nabla f(x,y) = [\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}] = [4(2y-1), 2(4x+3)].$ Hence, $\nabla f(x,y) = [28, 30].$
- $\nabla f(x,y,z) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right] = \left[6xyz, 3x^2z, 3x^2y\right]$. Hence, $\nabla f(3,4,5) = \left[360, 135, 108\right]$.

Problem 6. Let $g(x,y) = (f(x,y))^c$. Prove that $\nabla g(x,y) = c(f(x,y))^{c-1} \nabla f(x,y)$. **Proof.** $\nabla g(x,y) = \left[\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right] = \left[c(f(x,y))^{c-1}\frac{\partial f}{\partial x}, c(f(x,y))^{c-1}\frac{\partial f}{\partial y}\right] = c(f(x,y))^{c-1}\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right] = c(f(x,y))^{c-1} \nabla f(x,y)$.

Problem 7. Let $f(x, y, z) = 3x^2yz$. Let $\boldsymbol{u} = [1/3, 1/3, 1/3]$. Compute directional derivative of f(x, y, z) in the direction of \boldsymbol{u} at point (5, 2, 3).

Solution. $\nabla f(x, y, z) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right] = \left[6xyz, 3x^2z, 3x^2y\right]$. Let us normalize \boldsymbol{u} into $\boldsymbol{v} = \frac{\boldsymbol{u}}{|\boldsymbol{u}|} = \frac{\left[\frac{1/3, 1/3, 1/3}{\sqrt{3}}\right]}{\sqrt{3}/3} = \left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$. Hence, the directional derivative of f(5, 2, 3) towards the direction of \boldsymbol{v} (namely, of \boldsymbol{u}) is $\nabla f(5, 2, 3) \cdot \boldsymbol{v} = \left[180, 225, 150\right] \cdot \left[\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right] = 555/\sqrt{3}$.

Problem 8. Let $f(x, y, z) = 3x^2yz$. Find the unit vector \boldsymbol{u} that maximizes the directional derivative of f(x, y, z) in the direction of \boldsymbol{u} at point (5, 2, 3).

Solution. As explained earlier, $\nabla f(5,2,3) = [180, 225, 150]$. Hence, the directional derivative of f(5,2,3) is maximized in direction of the unit vector $\boldsymbol{u} = \frac{[180, 225, 150]}{[[180, 225, 150]]} = \frac{[180, 225, 150]}{\sqrt{4221}}$.