CSCI2100: Quiz 1

Name:

Student ID:

Each multiple-choice question has only one correct answer unless otherwise stated.

Problem 1 (16%). Which *two* of the following are *not* atomic operations of the RAM model? No marks are given unless you correctly identify both.

Answer: [

A. Calculate a/b where integers a and b are stored in two registers.

B. Calculate \sqrt{a} where integer a is stored in a register.

C. Suppose that a register A stores a value 275; write the content of a register B into the memory cell at address 275.

D. Calculate a^b for integers a, b stored in two registers.

Answer: BD

Problem 2 (8%). Which of the following functions is not $O(n^{2.5})$. Answer: [

A. $\frac{n^{1000}}{2^n}$

B. $(\log_2 n)^{98}$

C. $938593729n^2$

D. None of the above.

Answer: D

Problem 3 (8%). Which of the following functions is $O(n \log \sqrt{n})$. Answer: [] A. $358 \cdot n \log_2 n$ B. $n^{1.2}/\log^5 n$ C. $(1.01)^n$ D. $n \cdot (\log_2 n)^{1.0003}$

Answer: A

Problem 4 (8%). Which of the following functions is $not \Theta(n \log n)$. Answer: []] A. $n \log_{395} n$ B. $895n \log_2 n + 98\sqrt{n}$ C. $n^{1.07} + 8n \log_{207} n$. D. $n \log_2 n - n^{0.99}$.

Answer: C

Problem 5 (20%). Complete the blanks of the following proof of $n^2 + 25n = O(n^3)$.

Proof. We need to find constants c_1, c_2 such that _______ for all ______

 Towards this purpose, let us inspect the inequality:

$$n^{2} + 25n \leq c_{1} \cdot n^{3}$$

$$\Leftrightarrow n^{3} + 25n \leq c_{1} \cdot n^{3}$$

$$\Leftrightarrow 25n \leq (c_{1} - 1)n^{3}$$

$$\Leftrightarrow 25 \leq (c_{1} - 1)n^{2}.$$

By setting $c_1 = _$ and $c_2 = 1$, the above holds for all _____ This concludes the proof.

Answer: "such that $n^2 + 25n \le c_1 \cdot n^3$ for all $n \ge c_2$ ". "By setting $c_1 = 26$ ". "holds for all $n \ge c_2$ ".

Problem 6 (15%). Given an array A of n integers, describe an algorithm to check whether A is already sorted in ascending order. Your algorithm must finish in O(n) time.

Solution. For each $i \in [1, n - 1]$, check whether $A[i] \leq A[i + 1]$. If this is false for any *i*, output "no". Otherwise, output "yes".

Problem 7 (25%). Suppose that \mathcal{A} is a deterministic sorting algorithm with worst-case running time $\Theta(n^2)$. Prof. Goofy asserts that merge sort must be faster than \mathcal{A} on every possible input. Is Prof. Goofy's claim correct? If you believe so, provide a proof of the claim. Otherwise, give a specific algorithm \mathcal{A} that serves as a counterexample. (Hint: You may find your solution to Problem 6 useful.)

Solution. No. For a counterexample, let \mathcal{A} be the following algorithm:

- Check whether the input array is already sorted (e.g., using your solution to Problem 6).
- If so, the algorithm terminates immediately.
- Otherwise, the algorithm applies selection sort.

The worst-case running time of \mathcal{A} is $\Theta(n^2)$. However, \mathcal{A} finishes in O(n) time when the input array is sorted, whereas merge sort still runs in $O(n \log n)$ time regardless of whether the input array is sorted.