
Noname manuscript No.
(will be inserted by the editor)

Instance Level Worst-case Query Bounds on R-trees

Yufei Tao · Yi Yang · Xiaocheng Hu · Cheng Sheng · Shuigeng Zhou

the date of receipt and acceptance should be inserted later

Abstract Even with its significant impacts in the database

area, the R-tree is often criticized by its lack of good worst-

case guarantees. For example, in range search (where we

want to report all the data points in a query rectangle), it is

known that, on adversely-designed datasets and queries, an

R-tree can be as slow as a sequential scan that simply reads

all the data points. Nevertheless, R-trees work so well on

real data that they have been widely implemented in com-

mercial systems. This stark contrast has caused long-term

controversy between practitioners and theoreticians as to

whether this structure deserves its fame.

This paper provides theoretical evidence that, somewhat

surprisingly, R-trees are efficient in the worst case for range

search on many real datasets. Given any integer K , we ex-

plain how to obtain an upper bound on the cost of answering

all (i.e., infinitely many) range queries retrieving at most K

objects. On practical data, the upper bound is only a fraction

of the overhead of sequential scan (unless, apparently, K is

at the same order as the dataset size). Our upper bounds are

tight up to a constant factor, namely, they cannot be low-

ered by more than O(1) times while still capturing the most

expensive queries.

Our upper bounds can be calculated in constant time by

remembering only 3 integers. These integers, in turn, are

generated from only the leaf MBRs of an R-tree, but not

the leaf nodes themselves. In practice, the internal nodes

are often buffered in memory, so that the integers aforemen-

tioned can be efficiently maintained along with the data up-

dates, and made available to a query optimizer at any time.

Furthermore, our analytical framework introduces instance-

level query bound as a new technique for evaluating the ef-

ficiency of heuristic structures in a theory-flavored manner
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(previously, experimentation was the dominant assessment

method).

1 Introduction

R-trees [2,5,8,10,16] are considered by many to be one of

the most important discoveries in spatial databases in the

past three decades. We believe there are at least two main

reasons. First, this access method works well in practice. Not

only has this fact been demonstrated in a large number of pa-

pers, but it is also why R-trees are now commonly supported

by commercial systems (e.g., Oracle, Microsoft SQL Server,

DB2, etc.). Second, perhaps more importantly, the structure

provides the de facto platform for studying algorithms for

processing a great variety of spatial queries: range search

[5], nearest neighbor search [7,15], skyline [12], to mention

just a few. In particular, it has led to an interesting notion

of optimality, namely, an algorithm is optimal if, for every

query, it incurs the minimum cost among all the algorithms

that use the same R-tree to solve that query. For example,

the best-first algorithm of citehs99 and the BBS algorithm

of [12] are well-known to be optimal in this sense for nearest

neighbor and skyline queries, respectively.

R-trees are often lashed with criticism on their heuristic

nature: they come with no attractive worst-case guarantees

on query performance. Take range search as an example. In

this problem, we are given a set P of 2d points (a.k.a. ob-

jects). Given a rectangle1 q, a range query reports all the

points of P covered by q. We want to build an R-tree on

P so that queries can be answered efficiently. It has been

shown [1,9] that: in the worst case, the query cost of an R-

tree is as expensive as a naive sequential scan that simply

reads the entire P , even when the query result is empty.

1 All rectangles in this paper are axis-parallel.
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The large gap between R-trees’ good practical efficiency

and terrible theoretical performance is intriguing enough

to have generated long-term debates between theoreticians

and practitioners on whether the structure deserves its fame.

What is missing towards reconciling both sides is the lack of

a convincing explanation on why the R-trees on real datasets

appear to be efficient for every query experimented, even

when they are compared to structures whose query time can

be proved asymptotically optimal [1]. A bold question that

remains unanswered is: perhaps those R-trees are efficient

in the worst case after all?

Care must be taken to interpret “the worst query cost”.

If this simply refers to the cost of the most expensive query,

then trivially it equals the total number of nodes in the R-tree

– all nodes must be accessed by the query whose rectangle

covers the entire data space. This, of course, is as mean-

ingless as declaring that, in one-dimensional space, a B-tree

on N points takes O(N/B) I/Os to resolve a range query

where B, called the block capacity, is the maximum num-

ber of objects that can be stored in a disk block. We all

know that, to characterize a B-tree’s behavior, we should

instead bound its query cost in an output-sensitive manner

as O(logB N +K/B), where K is the output size, i.e., the

number of points returned.

To pave the way for our discussion, let us look at

O(logB N +K/B) more closely. When given a specific B-

tree (i.e., N being a fixed value), we can as well regard that

complexity as a function of K , or formally

Qupper(K) = c1 + c2 ·K/B (1)

where c1 and c2 are positive values independent from K .

That O(logB N + K/B) is a worst-case query bound es-

sentially says that, Qupper(K) upper bounds the cost of

all queries whose output sizes are at most K (the number

of such queries can be infinite). In other words, function

Qupper(K) describes the relationship between the worst-

case query time and the output size, for the underlying B-

tree.

Our results. This paper focuses on 2d point data, for which

R-trees have been very extensively deployed, especially in

geographic information systems. We provide evidence that

R-trees on many real datasets are indeed efficient for range

search in the worst case. This is achieved by computing,

for a given R-tree, a function Qupper(K) that upper bounds

the cost of all range queries that report at most K objects.

Qupper(K) is given in the form of Equation 1, with all con-

stants made explicit (as opposed to constant hiding in big-

O complexities). We will see that the value of Qupper(K)

in practice is significantly smaller than the overhead of se-

quential scan, unless K = Ω(N) where all structures are

(asymptotically) as expensive as sequential scan because

Ω(N/B) I/Os is necessary just to report the qualifying ob-

jects.

We also prove that our upper bound functionQupper(K)

is tight up to a constant factor α, where α depends only on B

and the minimum node utilization f (i.e., the smallest num-

ber of elements in a non-root node). In other words, it is

impossible to reduce the upper bounds we claim by more

than α times, while still ensuring that the resulting values

correctly bound the cost of all queries. We coin the term α-

tight for a function Qupper(K) with such a property. For a

particular R-tree implementation (e.g., R*-trees, R+-trees,

Hilbert R-trees, etc.), our algorithm yields a Qupper(K) that

is α-tight with the same α for all datasets, that is, the quality

of our upper bounds is always guaranteed regardless of the

dataset.

The computation of the proposed Qupper(K) can be ac-

complished using only the leaf MBRs of an R-tree, but not

the leaf nodes themselves. In many systems, the internal lev-

els of an R-tree are buffered in memory, because the number

of all internal nodes is smaller than the dataset size N by

a factor of nearly f , which is at the order of 100 in prac-

tice. We show that, in these systems, function Qupper(K)

(or equivalently, values c1 and c2) can be efficiently main-

tained along with the data updates, and therefore, can be

made available to a query optimizer at any time.

Of course, our results do not contradict the previous un-

derstanding that, when given adversely designed datasets

and queries, the R-tree will have no advantage over sequen-

tial scan even for K = 0: in that case, our upper bound

will automatically degenerate into Qupper(K) = cN/B for

some constant c > 0. However, what is revealed by our re-

sults is that, dismissing the R-tree by citing its linear worst-

case query cost is too pessimistic. When it comes to a practi-

cal scenario where the hardness of a dataset is unknown, one

can apply our technique to examine how bad the query cost

be possibly be on an off-the-shelf R-tree, before deciding

whether specialized optimization needs to take place.

At the conceptual level, our technique introduces a new

framework for evaluating heuristic structures in general.

While previously experimentation has been the dominant as-

sessment method, this paper shows how to draw an alterna-

tive theory-flavored conclusion. Unlike worst-case analysis

that studies a structure’s performance on all datasets, our

analytical framework aims at its efficiency on an individual

dataset, sharing the same spirit as competitive analysis [17].

However, different from competitive analysis that gives only

the ratio from an algorithm’s cost to the optimum, our goal

is to derive the cost explicitly up to only a constant factor.

Paper organization. Section 2 surveys the previous work

related to ours. Section 3 formally defines the concept of

α-tight worst-case query bound. Then, Sections 4 and 5 ex-

plain our query bounds, prove their theoretical properties,

and elaborate the algorithms for their computation. Sec-

tion 6 experimentally evaluates the proposed techniques,

and establishes the worst-case efficiency of R-trees on real
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Fig. 1 An R-tree

datasets. Finally, Section 7 concludes the paper with a sum-

mary of our findings.

2 R-tree

In this section, we review the knowledge of R-trees needed

for our discussion. Since its invention [5], this structure has

been improved in numerous ways, giving birth to several

variants, most notably the R+-tree [16], the R*-tree [2], the

Hilbert R-tree [8], the STR-tree [10], and so on. Our descrip-

tion below applies to all these variants.

In an R-tree, all the data objects are stored at the leaf

level, while an internal node u contains an entry referenc-

ing a distinct child node v of u. The entry is associated with

the minimum bounding rectangle (MBR) of v, which is the

smallest rectangle that encloses all the objects in the sub-

tree of v. Figure 1 shows an R-tree on a set P of points

o1, ..., o16. For instance, the MBR of leaf node 1 (Figure 1a),

which stores objects o1 and o2, is rectangle r1 (Figure 1b).

As another example, the MBR of internal node 8 is r8.

In general, every non-root node has Θ(B) ob-

jects/entries. An R-tree uses linear, namely, O(N/B) space

where N is the cardinality of the underlying dataset. Given a

range query with search region q, the algorithm based on an

R-tree accesses all and only the nodes whose MBRs inter-

sect q. For example, in Figure 1, the query q demonstrated

visits nodes 11, 8, 10, 3, 6, and 7.

Several studies [4,11,18,19] propose various cost mod-

els for estimating the number of I/Os performed by a range

query. The estimates from those models are statistically ac-

curate when the data distribution obeys certain assumptions.

If this is not true, the estimates can arbitrarily deviate from

the actual numbers, and therefore, are unsuitable for worst

case analysis.

There exist linear-size structures that can process range

queries with good worst-case guarantees. The external ver-

sion of the kd-tree [3,13,14] supports a range query in

O(
√

N/B + K/B) I/Os, where K is the output size. The

priority R-tree [1] achieves the same performance when ob-

jects are rectangles. This query bound is asymptotically op-

timal in the worst case [6,9]. Nevertheless, the query com-

plexities of both the kd-tree and priority R-tree contain large

hidden constants such that they are often outperformed by

R*-trees in practice. The current paper (which concentrates

on point data) will demonstrate this for the kd-tree in the

experiments, whereas the experimentation of [1] points out

the same phenomenon for the priority R-trees (whose supe-

riority was established with contrived datasets in [1]). Nei-

ther the kd-tree nor the priority R-tree is implemented in any

commercial DBMS.

3 Instance-level query bound

Conventionally, if a structure has query complexity, for ex-

ample, O(logB N + K/B), it is required that the bound

should hold for all datasets – we say that such an upper

bound is universal. Although prevailing in theoretical com-

puter science, analysis based on universal upper bounds

rules pessimistically that R-trees are as bad as sequential

scan. To better capture the characteristics of an individual

R-tree, we need to perform analysis on that specific instance.

Next, we formalize this intuition on range search. Let

P be a set of points in two-dimensional space R
2. Denote

by T (P ) the instance of an R-tree variant on P . It will be

convenient to think of T as the construction algorithm of

that variant. For example, if T represents the construction

algorithm of R*-tree (or R+-tree, ...), then T (P ) is the R*-

tree (or R+-tree, ...) on P .

The query cost is defined as the number of leaf nodes

in T (P ) accessed by a query. We count only the leaf nodes

because, in practice, the internal levels are often pinned in

the buffer, so that visiting an internal node incurs no I/O.

The next definition clarifies what is an instance-level query

bound.

Definition 1 (INSTANCE QUERY BOUND) Let T (P ) be an

R-tree on a set P of N objects. A function Qupper(K) is

an instance query bound of T (P ) if the following holds for

each integer K ∈ [0, N ]: the cost of any range query with

output size at most K is no more than Qupper(K).

Note that even if K is fixed, there can be infinitely

many queries with output sizes at most K . The value of

Qupper(K) must bound from above the cost of all those

queries.
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Many functions satisfy Definition 1 but not all of them

are useful. For example, for a sufficiently large constant c,
Qupper(K) = cN/B is a trivial instance query bound, even

though it sheds no light on the quality of the given struc-

ture. The next definition is used to evaluate the quality of an

instance query bound.

Definition 2 (α-TIGHT BOUND) Let α be a value at least 1.

An instance query bound Qupper(K) is α-tight at K = τ

if for any α′ > α,

1

α′
·Qupper(τ)

no longer upper bounds the cost of all queries with output

sizes at most τ . Function Qupper(K) is α-tight if it is α-

tight at each integer τ ∈ [0, N ].

We refer to α as the tightness factor of Qupper(K).

The concept of α-tightness can be grasped from Figure 2,

where (i) the dashed curve represents the cost of the most

expensive query with output size at most K on an R-tree,

and (ii) the solid curve represents an instance query bound

Qupper(K) on the R-tree. As K ranges in its spectrum, the

ratio of the two curves is maximized at the k shown in the

figure. That maximum ratio is exactly the tightness factor

α of Qupper(K). Put differently, if we reduce Qupper(K)

by more than α times, the curve of the resulting Qupper(K)

will be strictly below the dashed curve at any K .

Constant α. We consider only α that is a constant indepen-

dent from N and K . The justification is that, for any func-

tion f(N) monotonically increasing with N , an f(N)-tight

instance query bound will be excessively loose when N is

sufficiently large.

A note about universal bounds. A universal query com-

plexity always implies a query bound at the instance level.

For example, as mentioned in Section 2, a kd-tree on N ob-

jects answers a range query in O(
√

N/B+K/B) I/Os. This

means that, for some constant c > 0, function Qupper(K) =
c
√

N/B + cK/B is an instance query bound. However,

this bound is not necessarily O(1)-tight. The reason is that

a universal bound is derived based on the hardest dataset.

symbol meaning

N dataset size

B block size

f smallest number of entries in a non-root node

K(q) output size of query q

cost(q) cost of query q

Qupper(K) instance query bound

α tightness ratio of an instance query bound

upcross(S) upward crossing number of rectangle set S

downcross(S) downward crossing number of rectangle set S

Table 1 Frequently used symbols

Consequently, on an easier dataset P , the structure’s per-

formance can be much better, such that the instance query

bound adapted from a universal bound no longer accurately

reflects the behavior of the structure’s instance on P .

Generic and degenerate datasets. We say that P is generic

if no two points of P share the same coordinate on any di-

mension (such P is often said to be in general position). In

other words, any vertical or horizontal line in R
2 passes at

most one point in P . If this is not true,P is degenerate (how-

ever, P being a set implies the absence of duplicates, i.e., no

two points coincide with each other). In Section 4, we will

present our results for generic datasets. Section 5 will extend

the discussion to degenerate datasets.

4 An instance query bound on Generic Data

We will explain how to produce an instance query bound

on an R-tree T (P ) where P is generic. Since our discus-

sion will focus on the same P , T (P ) will be abbreviated as

T in this section. We will frequently use three topological

relationships between rectangles. First, a rectangle r inter-

sects another r′ if r∩ r′ 6= ∅. Second, r covers r′ if r′ ⊆ r.

Finally, r crosses r′ if r intersects, but is not covered by, r′.

4.1 The proposed bound

Denote by S the set of leaf MBRs in T . If T indexes N ob-

jects, |S| = O(N/B). Recall that f is the minimum number

of elements in a non-root node of T . It holds that:

f = Ω(B) (2)

where as mentioned before B, the block capacity, is the

largest number of objects in a node. For a particular R-tree

implementation, f/B is a constant in (0, 1]. For example,

in an R*-tree [2], each non-root node is at least 40% full,

namely, f = 0.4B.

Consider a range query with search rectangle q. When

no ambiguity can arise, we will use q to refer to the query

itself. Denote by cost(q) the cost of using T to answer q,

i.e., the number of rectangles in S intersecting q. We divide

cost(q) into two components:
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– costedge(q): the number of rectangles in S crossing q.

Refer to these rectangles as the crossing rectangles.

– costinside(q): the number of rectangles in S covered by

q. Refer to them as the inner rectangles.

As no rectangle is counted by both costedge(q) and

costinside(q), it holds that

cost(q) = costedge(q) + costinside(q). (3)

For example, in Figure 1, costinside(q) = 1 due to r6,

whereas costedge(q) = 2 due to r3 and r7.

Let K(q) be the output size of query q. Each inner rect-

angle in S represents a node that contributes at least f ob-

jects to the result, because all the (at least) f objects stored

in the node must be covered by q. Hence:

f · costinside(q) ≤ K(q). (4)

It is, however, difficult to capture costedge(q) with K(q). To

see this, consider q being a vertical line which does not pass

any point in P ; thus, K(q) = 0 whereas costedge(q) can be

large. To analyze costedge(q), we resort to a new concept:

Definition 3 (CROSSING NUMBER) Let S be a set of rect-

angles. Then:

– Given a point p = (x, y) in R
2, its downward quadrant

number is the number of rectangles in S that cross the

rectangle (−∞, x]× (−∞, y].
– The upward quadrant number of p is defined symmet-

rically with respect to the rectangle [x,∞)× [y,∞).

– The downward (upward) crossing number of S is the

maximum of the downward (upward) quadrant numbers

of all possible p.

Let downquad(p, S) and upquad(p, S) be the down-

ward and upward quadrant numbers of p, respectively. Sim-

ilarly, denote by downcross(S) and upcross(S) the down-

ward and upward crossing numbers of S, respectively. By

definition:

downcross(S) = max
p∈R2

downquad(p, S) (5)

upcross(S) = max
p∈R2

upquad(p, S). (6)

We give an example only about downcross(S) be-

cause upcross(S) is symmetric. Suppose that S consists of

r1, ..., r7 as in Figure 3 (which are the leaf MBRs in Fig-

ure 1a). For the point p shown, we have downquad(p, S) =

4 which is the number of rectangles in S crossing the

shadow area. It can be verified that p is a point in

R
2 maximizing the right hand side of Equation 5, i.e.,

downcross(S) = 4.

Lemma 1 For any range query with search region q,

costedge(q) ≤ downcross(S) + upcross(S).

Proof Let p1 (p2) be the bottom-left (top-right) corner

of q. Any rectangle counted by costedge is also counted

by the upward quadrant number of p1 and/or the down-

ward quadrant number of p2. Hence, costedge(q) is at most

upquad(p1, S) + downquad(p2, S), which by Equations 5

and 6 is at most downcross(S) + upcross(S).

We give the following function ofK as an instance query

bound:

Qupper(K) = downcross(S) + upcross(S) +K/f (7)

4.2 Tightness analysis

Next, we prove that the function in Equation 7 is an O(1)-

tight instance query bound. We say that a range query is

empty if it does not retrieve any object, i.e., its output size is

0. We first give a useful fact about such queries.

Lemma 2 There is an empty query whose cost is at least

(downcross(S) + upcross(S))/4.

Proof Let ℓ be a vertical line that intersects the largest num-

ber of rectangles in S; denote the number as c1. We argue

that there is an empty query with cost c1. In fact, if ℓ does

not pass any data point in P , ℓ itself is the query we are

looking for. Now assume that ℓ passes a point o ∈ P . Let r

be the MBR of the node storing o. Figure 4 shows two cases

depending on whether ℓ passes a boundary of r.

As P is generic, ℓ cannot pass any other point in P .

This implies two facts. First, ℓ does not pass the left or right

boundary of any rectangle in S except r. Otherwise, sup-

pose ℓ passes the left boundary of a rectangle r′ ( 6= r) of

S. Then, the leaf node whose MBR is r′ must contain a data

point whose x-coordinate is the same as o, resulting in a con-

tradiction. The second fact implied is that ℓ can pass either

the left or right boundary of r, but not both. Otherwise, r is

a vertical segment, which is impossible for a generic P .

The above facts validate the following reasoning. If ℓ

does not pass any boundary of r (Figure 4a), we can move it

infinitesimally either to the left or right, without affecting the
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Fig. 4 Proof of Lemma 2

set of rectangles in S it intersects. The ℓ after the movement

corresponds to an empty query with cost c1. If, on the other

hand, ℓ passes, say, the left boundary of r (Figure 4b), we

can still obtain such a query by moving ℓ infinitesimally to

the right. Hence, an empty query with cost c1 always exists.

Similarly, let c2 be the maximum number of rectan-

gles in S that are intersected by a horizontal line. By the

same argument as above, there is at least an empty query

with cost c2. Without loss of generality, suppose c1 ≥ c2.

Next, we will show that c1 is at least (downcross(S) +

upcross(S))/4.

We will first prove that downcross(S) ≤ c1 + c2. In

fact, let p = (x, y) be the point in R
2 having the maximum

downquad(p, S), which determines downcross(S). Due to

the choice of c1 (c2), at most c1 (c2) rectangles in S intersect

the right (upper) edge of the rectangle (−∞, x] × (−∞, y].

As downquad(p, S) counts each such rectangle at most

once2, downcross(S) = downquad(p, S) ≤ c1 + c2. A

symmetric argument shows that upcross(S) ≤ c1+c2. Now

we have:

downcross(S) + upcross(S) ≤ 2(c1 + c2) ≤ 4c1

which completes the proof.

Now we prove the first main result of this paper.

Theorem 1 The Qupper(K) in Equation 7 is an α-tight in-

stance query bound of T , where

α =

{

2(
√

1 + 2B/f + 1) if f ≥ B/4

2B/f otherwise
(8)

Proof The fact that Qupper(K) is an upper bound on any

query with output size K follows directly from Equation 3,

Inequality 4, and Lemma 1. The rest of the proof focuses

on its tightness. Let β ≤ f/B be a parameter whose con-

crete value will be decided later. Set c = downcross(S) +

upcross(S).

2 If the rectangle is covered by (−∞, x]×(−∞, y], it is not counted

by downquad(p, S).

We will first show that Qupper(τ) is (2/β)-tight at any

τ ∈ [min{N, cβB}, N ]. In fact, a query q1 with output size3

τ accesses at least τ/B leaf nodes. Hence:

cost(q1) ≥ τ/B

(from τ/B ≥ cβ) ≥ (τ/B + cβ) /2

(from β ≤ f/B) ≥ (βτ/f + cβ) /2 (9)

=
1

2/β
Qupper(τ).

Thus, for any α′ > 2/β, the value 1

α′
Qupper(τ) will be

strictly smaller than cost(q1), namely, Qupper(K) is (2/β)-

tight at τ .

Next, we show that Qupper(τ) is (4 + 4βB/f)-tight at

any τ ∈ [0,min{N, cβB}). Let q2 be the most expensive

empty query. By Lemma 2, cost(q2) ≥ c/4. Hence:

cost(q2) ≥
c(1 + βB/f)

4(1 + βB/f)

(from τ < cβB) >
c+ τ/f

4(1 + βB/f)
=

Qupper(τ)

4(1 + βB/f)

meaning that Qupper(K) is (4 + 4βB/f)-tight at K = τ .

The earlier analysis suggests that the tightness factor of

Qupper(K) is the maximum between 2/β and 4 + 4βB/f .

Our goal now is to choose a β to minimize the maximum.

As 2/β decreases as β grows while 4 + 4βB/f increases,

their maximum is minimized when they are equal. Solving

2/β = 4 + 4βB/f gives:

β =

√

1 + 2B/f − 1

2B/f
(10)

Recall that we have a constraint β ≤ f/B (as is needed

in Inequality 9). When f ≥ B/4, the β in Equation 10 al-

ways satisfies the constraint. Setting α = 2/β (which is also

4 + 4βB/f ) establishes the case f ≥ B/4 in Equation 8,

after some straightforward simplification.

When f < B/4, β cannot take the value in Equation 10.

We instead set β = f/B, which makes 2/β = 2B/f , and

4 + 4βB/f = 8. This proves the other case of Equation 8,

noticing that 2B/f > 8.

Because of Equation 2, the tightness factor α in Equa-

tion 8 is at most a constant. In particular, for R*-trees where

f = 0.4B, we haveα ≈ 6.9, whereas for bulkloaded R-trees

(like STR-trees) where f ≈ B, we have α ≈ 5.5.

4.3 Generating the instance query bound

We proceed to discuss how to generate function Qupper(K)

of Equation 7 from an R-tree. The generation requires only

3 Such a query always exists for a generic P . To see this, move a

vertical sweep line ℓ rightward starting from x = −∞, and stop as

soon as τ points are on or to the left of ℓ. The swept region is a range

query with size τ .



Instance Level Worst-case Query Bounds on R-trees 7

the set S of leaf MBRs. We note that |S| ≤ N/f where

f (the minimum node utilization) is at the order of 100 in

practice, that is, the size of S is only a fraction of N . Further-

more, S is readily available from the internal nodes pinned

in the buffer. Hence, the gathering of S incurs no I/O, and

neither does the generation of Qupper(K). We will show

that the generation can be completed in O(|S| log |S|) CPU

time.

Since f is known, the only terms to be decided in

Qupper(K) are downcross(S) and upcross(S), as given

by Equations 5 and 6, respectively. We will only explain how

to compute downcross(S), because a symmetric algorithm

works for upcross(S). In the sequel, let n = |S|.

From rectangles to points. We apply a transformation that

allows us to attack instead a different problem on points (as

opposed to rectangles). Construct a set A of 2n points as

follows: for each rectangle r in S, add to A its bottom-left

and top-right corners. Furthermore, associate the bottom-left

corner with a value 1, and the top-right corner with −1. In

other words, each point a ∈ A carries a weight, denoted as

weight(a), that is either −1 or 1. Figure 5 illustrates the

transformation for the rectangles in Figure 3. Here, A is the

set of white dots, whose weights have been annotated next

to them.

Given a point p = (x, y) in R
2, denote by sum(p,A) the

total weight of the points in A that are covered by the rectan-

gle (−∞, x]×(−∞, y]. For example, consider the point p in

Figure 5, which is the same as in Figure 3. sum(p,A) = 4

because the shadow area covers six points with weights 1,

and two points with weights −1. Notice that sum(p,A)
is equivalent to downquad(p, S) (see Figure 3 again). The

next lemma shows that this is true in general.

Lemma 3 For any point p ∈ R
2, it holds that sum(p,A) =

downquad(p, S).

Proof Let r be a rectangle in S, and let a1 and a2 be the

bottom-left and top-right corners of r, respectively. Let q be

the rectangle (−∞, x] × (−∞, y]. It is easy to see that, r

crosses q if and only if a1 is in q but a2 is not. The lemma

then follows.

Therefore, instead of downcross(S), we can compute

maxsum(A) defined as:

maxsum(A) = max
∀p∈R2

sum(p,A). (11)

It follows from Lemma 3 and Equation 5 that

maxsum(A) = downcross(S).

From the whole space to |A| lines. Equation 11 still relies

on all the points in R
2. Next, we show that the equation can

be calculated by focusing on much fewer points. Given a

horizontal line ℓ, let max-line-sum(ℓ, A) be the maximum

sum(p,A) of all points p on ℓ, namely:

max-line-sum(ℓ, A) = max
p∈ℓ

sum(p,A). (12)

p

1

−1

1

1

1

1

1

1

−1

−1

−1

−1
−1

−1

Fig. 5 Conversion for computing the downward crossing number of

the set of rectangles in Figure 3

1

−1

1

1

1

1

1

1

−1

−1

−1

−1
−1

−1

p ℓ

Fig. 6 Illustration of max-line-sum(ℓ, A)

Consider, for example, Figure 6 where the white dots consti-

tute A. For the line ℓ as shown, max-line-sum(ℓ, A) = 4,

as is decided by the sum(p,A) of the black point p.

For each point a ∈ A, denote by ℓ(a) the horizontal line

that passes a. It holds that:

maxsum(A) = max
∀a∈A

max-line-sum(ℓ(a), A). (13)

To understand the above, imagine moving a point p up and

down in the data space, and keep monitoring its sum(p,A).

It is clear that sum(p,A) remains the same as long as it

does not hit the ℓ(a) of any a ∈ A. Therefore, to compute

maxsum(A), we do not need to consider the sum(p,A) of

all points p in the data space; it suffices to concentrate on

those p on the |A| horizontal lines defined by the points in

A. This is the implication from Equation 13.

4.4 Computing maxsum(A)

In this subsection, we describe a simple divide-and-conquer

algorithm to compute maxsum(A) based on Equation 13.

Our strategy is to first calculate max-line-sum(ℓ(a), A) for

every a ∈ A. Then, maxsum(A) can be obtained by an-

other scan of A.

Divide. Consider that the points in A have been sorted by

their x-coordinates (otherwise, simply perform the sorting in

advance). At the end of our algorithm, the points in A will

have been sorted by y-coordinates. If A has only a single

point a, set max-line-sum(ℓ(a), A) = 1 if the weight of
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a is 1; otherwise, max-line-sum(ℓ(a), A) = 0. Next, we

consider that |A| ≥ 2.

Divide A by a vertical line into partitions A1 and A2 of

the same size. That is, A1 (A2) includes all the points on

the left (right) of the line. For each Ai, invoke our algorithm

recursively. On return, by the earlier description, we know:

– for each a ∈ Ai, the value max-line-sum(ℓ(a), Ai) is

ready;

– the points of Ai have been sorted by y-coordinates.

Conquer. We now merge A1 and A2 back into A, and in the

meantime, acquire max-line-sum(ℓ(a), A) for each point

a ∈ A. The merge processes the points in ascending or-

der of y-coordinates. Equivalently, one can imagine lifting a

horizontal sweep line ℓ from the bottom. A point a in A1 or

A2 is processed when it is hit by ℓ. At all times, we maintain

three integers:

– max-line-sum(ℓ, Ai) where i = 1, 2: this is as defined

in Equation 12, but replacing A with Ai;

– weightsum(ℓ, A1): the total weight of all the points in

A1 already swept, or formally:

weightsum(ℓ, A1) =
∑

a ∈ A1 on/below ℓ

weight(a).

These values can be updated easily whenever ℓ hits a

point a ∈ Ai, namely, ℓ = ℓ(a). Specifically, at this mo-

ment, we perform:

1. max-line-sum(ℓ, Ai)← max-line-sum(ℓ(a), Ai);
2. if i = 1, then weightsum(ℓ, Ai) ←

weightsum(ℓ, Ai) + weight(a).

Then, max-line-sum(ℓ(a), A) is determined as follows:

Lemma 4 max-line-sum(ℓ(a), A) equals the maximum

between max-line-sum(ℓ, A1) and

weightsum(ℓ, A1) +max-line-sum(ℓ, A2).

Proof Let p be the point on the sweep line ℓ that maximizes

sum(p,A). Hence, sum(p,A) = max-line-sum(ℓ, A).

Let s be the split line that separates A1 and A2. If p is on

the left of s, then p is also the point on ℓ that maximizes

sum(p,A1). On the other hand, if p is on the right of s, then

p is also the point on ℓ that maximizes sum(p,A2). Further-

more, in this case, sum(p,A) equals weightsum(ℓ, A1) +

sum(p,A2). The lemma thus follows.

Example. Let us illustrate the merge phase using Figure 7.

A1 (A2) includes all the points on the left (right) of the split

line. Each black (white) point carries weight 1 (−1). Ini-

tially, max-line-sum(ℓ, A1) = max-line-sum(ℓ, A2) =

weightsum(A1) = 0. The first point hit by the sweep

line ℓ is a1 ∈ A2, with max-line-sum(ℓ(a1), A2) = 1

having been computed from recursion. At this mo-

ment, we set max-line-sum(ℓ, A2) = 1, after which

ℓ2

split line

a1
ℓ(a1)

a2 a3
ℓ(a2)

ℓ(a3)

ℓ(a4)a4

mls(ℓ(a1), A2) = 1
mls(ℓ(a2), A1) = 1

mls(ℓ(a3), A2) = 2

mls(ℓ(a4), A1) = 1

mls = max-line-sum

Fig. 7 Divide and conquer (black points have weight 1 and white

points have weight −1)

max-line-sum(ℓ(a1), A) can be determined from

Lemma 4 as max{0, 0 + 1} = 1.

The second point swept by ℓ is a2 ∈ A1. The

processing of this point sets max-line-sum(ℓ, A1)
to max-line-sum(ℓ(a2), A1) = 1, incre-

ments weightsum(A1) to 1, and decides

max-line-sum(ℓ(a2), A) = max{1, 1 + 1} = 2

by Lemma 4. Likewise, the processing of the

next point a3 sets max-line-sum(ℓ, A2) to

max-line-sum(ℓ(a3), A2) = 2, and calculates

max-line-sum(ℓ(a3), A) = max{1, 1 + 2} = 3.

The processing of a4 is analogous, noting, however, that

(since it has weight −1) it decreases weightsum(A1)
back to 0. After setting max-line-sum(ℓ, A1)

to max-line-sum(ℓ(a4), A1) = 1, we decide

max-line-sum(a4, A) to be max{1, 0 + 2} = 2. The

rest of the algorithm proceeds in the same manner.

Running time. Let F (x) be the CPU time of our algorithm

on a dataset A with size x = |A|. The divide and conquer

steps require O(x) time. Hence, for x > 1:

F (x) = 2F (x/2) +O(x).

Combing the above with F (1) = O(1) gives F (x) =

O(x log x). We thus have arrived at the second main result

of the paper:

Theorem 2 Given a set S of leaf MBRs, we can gener-

ate the instance query bound Qupper(K) of Equation 7 in

O(|S| log |S|) CPU time.

4.5 Refreshing the instance query bound along with

updates

Our instance query bound Qupper(K), which is a function

described by only 3 integers, provides a query optimizer

with an extra piece of information, i.e., a constant-tight up-

per bound on the query cost, once the query’s selectivity has

been estimated. If the dataset is static, the same Qupper(K)
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can be utilized forever. Next, we discuss how to maintain

Qupper(K) in the presence of insertions and deletions.

A crucial observation is that, Qupper(K) does not

change, as long as the set of leaf MBRs remains the same –

even though the contents of some leaf nodes may have been

altered. Qupper(K) needs to be re-computed only if one of

the following occurs:

1. There is a node split/merge.

2. (For insertion) the new point does not fall inside any ex-

isting leaf MBR, or (for deletion) the deleted point lies

on an edge of a leaf MBR.

Changes can occur to leaf MBRs only in the above scenar-

ios.

Fortunately, these scenarios are not frequent as long as

the data distribution remains stable with the updates (as is

true in many applications). To see this, first note that, after a

split/merge, a node needs to acquire/lose Ω(B) objects be-

fore the next split/merge can happen. For example, for R*-

trees, a node must acquire at least 0.3B objects or lose at

least 0.1B objects (this is quite pessimistic because, in gen-

eral, the node may receive both insertions and deletions, so

that its number of objects varies even slower). Therefore,

splits and merges are infrequent, especially when leaf nodes

have a similar chance to receive an update. Further, since

a leaf node has at most 4 points on its MBR, the chance

of deleting one of them is limited. Also, for a distribution

to remain stable, insertions are essentially “filling up” the

holes left by deletions. Thus, if most deletions are within

leaf MBRs, then so are most of the insertions.

Remember that the re-generation of Qupper(K) is done

completely in memory. Furthermore, our generation algo-

rithm incurs only O(|S| log |S|) time – recall that |S| is the

number of leaf nodes, which is smaller than the dataset size

by a factor of f (minimum node utilization, at the order of

100). Hence, the maintenance of Qupper(K) is not expected

to incur expensive overhead, especially after cost amortiza-

tion over an individual update.

5 An instance query bound on Degenerate Data

Now, we remove the constraint that P must be generic. In

fact, given a degenerate P , our instance query bound on

T (P ) is exactly the same as Equation 7, and hence, can

be generated in the same manner. The analysis, however, is

slightly more complicated. We start with the lemma below

which replaces Lemma 2.

Lemma 5 There is an empty query whose cost is at least

(downcross(S) + upcross(S))/8.

Proof The argument is similar to the proof of Lemma 2, but

extra care is needed to deal with the new case where many

MBRs have their boundaries on the same vertical/horizontal

line.

Let ℓ be the vertical line such that the number of rectan-

gles in S crossing ℓ is the largest. Let R be the set of those

rectangles, and c1 = |R|. Note that for a degenerate P , an

MBR can degenerate into a vertical segment, and hence, can

be contained in ℓ. We will argue that there is an empty query

with cost at least c1/2. This is obvious if ℓ passes no point

in P . Next, we focus on the opposite.

Let Rleft (Rright) be the set of rectangles r ∈ R such

that ℓ crosses the left (right) edge of r. Rleft and Rright

are disjoint because R has no rectangle that degenerates

into a vertical segment. Let Rcut be the set of rectangles

of R that are in neither Rleft nor Rright. Assume without

loss of generality that |Rleft| ≥ |Rright|. It follows that

|Rleft ∪ Rcut| ≥ |R|/2 = c1/2. We move ℓ infinitesimally

to the right, after which ℓ intersects exactly the rectangles in

Rleft∪Rcut, and does not pass any data point. We thus have

found an empty query with cost at least c1/2.

Define c2 symmetrically with respect to horizontal lines.

Suppose without loss of generality that c1 ≥ c2. Slightly

modifying the argument in the proof of Lemma 2, it is easy

to show that downcross(S) + upcross(S) ≤ 4c1. The

lemma then follows.

Lemma 6 For any τ ∈ [1, N ], there is a range query whose

output size is between τ/2 and τ .

Proof For τ = 1, this is obviously true because each point

in P can be a range query. Next, we assume τ ≥ 2. Consider

first the scenario where there is a vertical line ℓ that crosses

at least τ/2 points in P . Then, from ℓ, we can cut out a

segment that covers exactly τ/2 points, and thus can serve

as a query stated in the lemma.

It remains to consider the case where every vertical line

passes less than τ/2 points. We construct a query as fol-

lows. Sweep a vertical line ℓ rightward from x = −∞. In

the meantime, monitor the number of points on or to the left

of ℓ, and stop as soon as the number becomes no less than

τ/2. At this moment, the number must be less than τ ; oth-

erwise, there are at least τ/2 points on the final ℓ, which as

mentioned earlier cannot happen. We thus set the area hav-

ing been swept by ℓ as the search region of a query, whose

output size falls in [τ/2, τ).

Now we present the equivalent of Theorem 1:

Theorem 3 For a degenerate P and f ≥ 2, the Qupper(K)

in Equation 7 is an α-tight instance query bound on T (P )

where

α =

{

4(
√

1 + 2B/f + 1) if f ≥ B/4

4B/f otherwise
(14)

Proof Omitted because it is similar to the proof of Theo-

rem 1, except that Lemmas 5 and 6 should be applied.
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(a) LA (131,461 points) (b) TCB (556,696 points)

(c) CA (2,249,727 points) (d) NE (19.9 million points)

Fig. 8 Datasets in our experiments

Note that the α in the above theorem doubles the one in

Theorem 1, and is therefore also a constant.

6 Experiments

In this section, we will examine the worst-case efficiency of

R-trees on real datasets by applying the techniques devel-

oped in earlier sections. We will also evaluate the cost of

maintaining our instance query bounds along with data up-

dates. All experiments were performed on a machine with a

3GHz CPU and Linux as the operating system.

Datasets. We deployed four real datasets:

– LA contains 131,461 points in the streets of Los Angeles.

– TCB is a collection of 556,696 points that represent

places in Iowa, Kansas, Missouri and Nebraska.

– CA has 2,249,727 points in the streets of California.

– NE is a set of 19,909,725 point locations across the

north-eastern region of the US.

The sizes of these datasets range from around 100k to nearly

20 million. Their distributions can be visualized in Figure 8.

All datasets are publicly downloadable: LA, TCB and CA

from the R-tree Portal (www.rtreeportal.org), and NE from

the US Census Bureau (www.census.gov/geo/www/tiger).

R-trees and kd-tree. We examined two R-tree variants:

– the R*-tree [2], which is widely acknowledged as the

most query-efficient among all the incrementally-built

R-trees (i.e., constructing an R-tree by inserting each

data point in turn).

– the STR-tree [10], which is a well-known bulkloaded R-

tree, and is known to have better query efficiency than

R-trees created by other bulkloading algorithms.

seqscan cost STR instance R* instance

query bound query bound

LA 386 77 +K/339 103 +K/135
TCB 1, 633 142 +K/339 207 +K/135
CA 6, 598 288 +K/339 584 +K/135
NE 58, 387 883 +K/339 1, 328 +K/135

Table 2 Instance query bounds of R-trees vs. the cost of sequential

scan

Throughout the experiments, the size of a disk block is

fixed to 4096 bytes, under which the block capacity B of

an R-tree equals 339. As mentioned before, each leaf node

in an R*-tree is at least 40% full, i.e., it contains at least

f = 135 entries. On the other hand, an STR-tree is packed,

meaning that each leaf node (except possibly one) contains

the maximum number of entries, i.e., f = B = 339.

In several experiments, we will report the cost of sequen-

tial scan, abbreviated as seqscan, i.e., the naive solution that

simply reads the entire dataset to answer a range query. The

cost is equivalent to the smallest number of blocks required

to store the underlying dataset.

Since worst-case query cost is used as the performance

yardstick, it would be interesting to see how R-trees com-

pare to a structure whose query efficiency has been theoret-

ically proved asymptotically optimal. In the relevant experi-

ments for this purpose, we used the kd-tree [3] as a theoret-

ical representative, particularly, its external-memory variant

in [13], which uses linear O(N/B) space, and answers a

range query optimally in O(
√

N/B+K/B) I/Os, where N

and K are the dataset and result sizes, respectively.

For each structure, all its internal nodes were pinned in

the memory buffer. In all cases, the size of a buffer was al-

ways below 1

230
of the underlying dataset’s size (in general,

a leaf node of an R*-tree is roughly 69% full [19]; hence, on

average a leaf node stores 0.69B = 234 objects).

Instance query bounds of STR- and R*-trees. The first set

of experiments will show that, the R-trees on the datasets in

Figure 8 significantly outperform seqscan in terms of worst-

case query efficiency, unless the query result accounts for

a significant portion of the dataset. We emphasize that our

approach will rigorously prove the aforementioned fact, as

opposed to empirical demonstration.

Table 2 lists the instance query bounds Qupper(K) de-

termined (Equation 7) by our algorithm, for the STR- and

R*-trees on various datasets, together with the cost of se-

qscan. Recall that, given an instance query bound (e.g., the

STR bound 883+K/339 on NE), one can plug in any value

of K to get an upper bound on the cost of all queries whose

result sizes are at most K (e.g., any query outputting at most

K = 339 points incurs at most 884 I/Os on the STR-tree of

NE). It is thus clear that, on every dataset, the STR- and R*-

trees entail only a fraction of seqscan’s overhead when K is

small – this is especially true for K below 1% of the dataset
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Fig. 9 Instance query bounds vs. witnessed query cost

cardinality. Also observe that this phenomenon is more evi-

dent when the dataset cardinality increases.

In a real system, a query optimizer would choose seqs-

can, unless the cost of an alternative index-driven plan is,

say, 10 times lower (as seqscan benefits from sequential ac-

cesses). Our instance query bounds give a reliable threshold

of K , below which an R-tree should definitely be selected.

Take NE as an example. As long as K ≤ 1, 679, 745 (8.4%

of the cardinality of NE), the worst cost of the STR-tree, as

calculated from Table 2, is at most 5, 838, namely, 10 times

lower than seqscan.

Tightness of our instance query bounds. Recall that our

instance query bounds are O(1)-tight, where the constant

was proved in Section 4.2 to be at most 5.5 (6.9) for STR-

(R*-) trees. We will demonstrate that the constant is lower

in reality.

As explained in Definition 2 (and illustrated in Figure 2),

to accurately measure the tightness factor α, we would need

to know, for each K ∈ [1, N ], the maximum cost of all
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queries reporting at most K objects; let us denote that cost

as Qmax(K). Since it is challenging to calculate Qmax(K)

accurately, we disfavor ourselves by presenting a conserva-

tive estimate α̂ that is at least as large as α. In other words,

the actual tightness factor can only be smaller (i.e., better)

than what we are to demonstrate next.

To obtain α̂, we resort to a witness function

Qwitness(K), where Qwitness(K) is the cost of the most

expensive query with output size at most K , among a

set of generated queries (the generation will be elaborated

shortly). Since Qwitness(K) considers only a subset of

queries considered by Qmax(K), we know that

Qwitness(K) ≤ Qmax(K) (15)

holds at every K . Given an instance query bound

Qupper(K), we decide its conservative tightness factor as:

α̂ = max
∀K

Qupper(K)

Qwitness(K)

By Inequality 15, we can see α̂ ≥ α from:

max
∀K

Qupper(K)

Qwitness(K)
≥ max

∀K

Qupper(K)

Qmax(K)
= α.

Next, we explain how to generate the set of queries used

to obtain Qwitness(K). We considered only slab queries,

namely, the search region of a query is a vertical slab in the

form of [x1, x2] × (−∞,∞). Once x1 (i.e., the slab’s left

boundary) has been fixed, x2 is determined by sliding the

right boundary gradually until the slab covers exactly K ob-

jects. As for x1, we set it to every possible x-coordinate in

the underlying dataset. In other words, if the dataset has N

objects, then N queries are created.

Figure 9a plots the Qupper(K) and Qwitness(K) of the

STR and R*-trees on dataset LA for the entire spectrum

of K , while Figure 9b gives the two functions for the first

1% of the spectrum. The conservative tightness factors of

the STR- and R*-trees are 3.85 and 3.23, respectively. Fig-

ures 9c-9h present the corresponding results on the other

datasets. Note that, in all these figures, the two curves for

STR are very close to each other. The tightness factors of

the STR- and R*-trees are illustrated in figures’ captions.

The next experiments examine how the tightness of our

instance query bounds changes with respect to the dataset

cardinality. Towards this purpose, for each dataset in Fig-

ure 8, we created 5 (sometimes miniature) replicas, by ran-

domly selecting 20%, 40%, ..., 100% of its objects (appar-

ently, the 100% replica is the same as the original dataset).

For each replica, we measured the tightness factors of the

corresponding STR- and R*-trees, as are presented in Ta-

ble 3. The general observation is that, the tightness factor of

an R-tree variant also depends on the data distribution, but

appears to be less sensitive to the dataset size.

R-trees vs. an asymptotically optimal structure (namely,

the kd-tree). A common understanding from the spatial and

20% 40% 60% 80% 100%

LA 3.67 4.00 3.94 3.84 3.85

TCB 3.64 3.54 3.58 3.56 3.47

CA 3.64 3.54 3.59 3.57 3.56

NE 3.66 3.66 3.64 3.64 3.65

(a) STR-trees

20% 40% 60% 80% 100%

LA 3.59 3.95 3.82 3.84 3.23

TCB 2.87 3.43 2.27 3.56 2.22

CA 3.90 4.12 4.10 4.42 4.68

NE 3.11 3.07 3.04 3.15 3.04

(b) R*-trees

Table 3 Tightness factor as a function of dataset size
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Fig. 10 Worst-case competitive ratios of R-trees over kd-trees

theory communities is that, an R-tree will lose to a theo-

retical structure proven worst-case efficient when they are

compared in terms of the worst query cost (see, for exam-

ple, [1]). Next, we revisit this understanding with the tools

developed in this paper.

Our methodology is as follows. Consider an R-tree and

a kd-tree on the same dataset. For a fixed K , let Qmax(K)

(as defined before) be the cost of the most expensive query

with output size at most K on the R-tree. Define Qkd
max(K)

similarly for the kd-tree. Then, the R-tree’s worst-case com-

petitive ratio at K equals:

rcomp(K) = Qkd
max(K)/Qmax(K).
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Fig. 11 Cost of maintaining an instance query bound vs. total cost of an update on an R*-tree (ins-del ratio = 8)
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Fig. 12 Update cost vs. ins-del ratio

Because it is non-trivial to obtain the exact Qmax(K)

and Qkd
max(K), we favor the kd-tree by calculating an esti-

mate r̂comp(K) such that r̂comp(K) ≤ rcomp(K). In this

way, if r̂comp(K) > 1, we know that rcomp(K) must also

be greater than 1, making it rigorously safe to claim that the

R-tree is better.

We derive r̂comp(K) as follows. For the kd-tree, we

compute its witness function Qkd
witness(K) as described in

the experiments of Figure 9. For the R-tree, we use directly

its instance query bound Qupper(K) obtained by our tech-

nique. Then:

r̂comp(K) = Qkd
witness(K)/Qupper(K).

Since Qkd
witness(K) ≤ Qkd

max(K) yet Qupper(K) ≥
Qmax(K), it follows that r̂comp(K) ≤ rcomp(K).

Figure 10a plots, for each dataset, the (conservative)

competitive ratio r̂comp(K) of the STR-tree (regarding the

kd-tree on the same dataset) as a function of the selectivity

K/N . We observed that the ratio always crosses 1 for large

K . Furthermore, such a “crossing K” appears to decrease

as the dataset size grows (remember that the cardinalities of

LA, TCB, CA and NE are in ascending order). This obser-

vation implies a somewhat unexpected discovery: even in

terms of the worst-case efficiency, for a wide range of K ,

the STR-tree can actually be better than a structure whose

worst-case efficiency is theoretically proven to be optimal.

Figure 10b demonstrates the corresponding results for R*-

trees. Interestingly, the previous phenomenon was not ob-

served: the R*-tree appears to be always worse than the kd-

tree in terms of worst-case efficiency.
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aspect ratio 1

16

1

8

1

4

1

2
1 2 4 8 16

STR, weakly data dependent 18.5 17.5 15.7 18.3 20.1 19.7 17.1 15.8 14.5

R*, weakly data dependent 36.0 36.9 35.0 36.4 43.0 43.2 40.5 38.6 33.8

STR, strongly data dependent 2.2 2.4 2.4 2.4 2.5 2.5 2.6 2.5 2.4

R*, strongly data dependent 4.1 4.1 4.2 4.2 4.2 4.3 4.3 4.1 3.9

(a) LA

aspect ratio 1

16

1

8

1

4

1

2
1 2 4 8 16

STR, weakly 15.9 15.7 15.4 16.8 16.7 15.3 12.2 10.5 10.0

R*, weakly 15.1 13.7 11.4 11.1 11.3 11.1 10.0 9.2 8.3

STR, strongly 2.9 3.0 3.1 3.3 3.4 3.5 3.6 3.6 3.7

R*, strongly 4.3 4.3 4.4 4.4 4.4 4.4 4.4 4.3 4.2

(b) TCB

aspect ratio 1

16

1

8

1

4

1

2
1 2 4 8 16

STR, weakly 11.3 17.3 21.8 22.2 23.3 23.4 22.5 21.5 16.9

R*, weakly 16.6 22.2 26.7 29.3 32.0 32.5 33.0 33.0 29.4

STR, strongly 4.6 4.8 4.9 5.0 5.0 5.0 5.1 5.1 4.9

R*, strongly 6.0 6.1 6.3 6.3 6.1 6.1 5.9 5.7 5.5

(c) CA

aspect ratio 1

16

1

8

1

4

1

2
1 2 4 8 16

STR, weakly 11.0 14.2 15.0 15.4 12.7 11.2 12.0 9.5 10.3

R*, weakly 12.8 17.0 16.5 18.4 19.5 17.3 17.6 17.7 25.8

STR, strongly 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 2.0

R*, strongly 2.6 2.7 2.7 2.7 2.7 2.7 2.7 2.8 2.8

(d) NE

Table 4 Average worst-actual ratios

Cost of updating instance query bounds. The next set of

experiments is designed to assess the overhead of maintain-

ing the proposed query bound, when an R-tree is updated

with insertions and deletions. Towards this purpose, for each

dataset in Figure 8, we first create an R*-tree using 90%

of the objects. The remaining 10% objects are placed in an

update pool. Then, we form a workload of 10,000 updates,

where each update is either an insertion with probability p,

or a deletion with probability 1 − p. An insertion randomly

removes an object from the pool, and inserts it into the R*-

tree. Conversely, a deletion randomly deletes an object in the

R*-tree, which is then added to the pool. STR-trees are not

considered because they are inherently static.

The value of p controls the ratio between the numbers of

insertions and deletions in the workload. We refer to the ratio

as the ins-del ratio. For example, if p = 1/2, the workload

has an expected ins-del ratio of 1, whereas if p = 8/9, then

the ins-del ratio is expected to be 8.

Setting the ins-del ratio to 8, Figure 11a shows the re-

sults for dataset LA. The dotted curve gives the average (per-

update) cost of maintaining our instance query bound (with

respect to the updates already performed in the workload),

as a function of the number of updates. For comparison, the

solid curve gives the average cost of an entire update, again

as a function of the number of updates. Figures 11b-11d

demonstrate the results of the same experiment on TCB, CA

and NE, respectively. Note that the y-axes of Figures 11a-

11c are in log-scale.

Recall that the total cost of an update involves the time

of performing I/Os. Each update requires at least 2 I/Os (one

for reading, one for writing). The number of I/Os can be

larger if overflows or underflows occur. It is evident that,

in all cases, the overhead required to maintain our instance

query bounds accounts for only a fraction of the total update

time, confirming the discussion in Section 4.5.

To inspect the influence of the ins-del ratio, we doubled

this ratio from 1 to 8, and for each ratio, measured the av-

erage (per-update) time of maintaining the instance query

bound in handling an entire workload. The results are pre-

sented in Figure 12 for all datasets. As before, in each dia-

gram, we included the average time of performing an entire

update as a benchmark. It is clear from these results that the

maintenance cost of our bounds is consistently low regard-

less of the ins-del ratio.

Average vs. worst-case performance. It is widely believed

that R-trees’ average query efficiency is much better than

their worst case performance. The final set of experiments is

designed to evaluate this belief. Our approach is as follows.

LetQ be a set of queries with non-zero cost. For each query

q ∈ Q with output size K(q), define its worst-actual ratio

as Qupper(K(q))/cost(q), where cost(q) is the actual cost

of answering q using the underlying R-tree, and (as before)

Qupper(.) is our instance query bound on the R-tree. We

define the average worst-actual ratio of Q as the average

of the worst-actual ratios of all the queries in Q. A large



Instance Level Worst-case Query Bounds on R-trees 15

average worst-actual ratio indicates that the R-tree’s average

efficiency on Q is much better than predicted in the worst

case.

Next, we describe the generation of the query setQ. For

this purpose, we considered two factors: aspect ratio ρ and

centroid distribution. The aspect ratio of a query rectangle

q is the ratio between the lengths of q along the y- and x-

dimensions, respectively. Fixing the area of each q to be 1%

of the data space, we doubled the value of ρ from 1

16
all the

way to 16 (e.g., when ρ = 1, then each edge of q covers 10%

of a dimension). For each specific ρ, we generatedQ by two

centroid distributions: weakly and strongly data-dependent,

respectively. In the former, the centroid of each q ∈ Q dis-

tributes uniformly at random in the data space; however, if

q does not access any leaf node (i.e., it has zero cost), it is

re-generated until cost(q) becomes non-zero. In the latter

distribution, the centroid is placed at each point of the in-

put dataset with the same likelihood. In any case, every Q
consists of 10000 queries.

Table 4a demonstrates the results on dataset LA. Focus-

ing on the STR-tree, the first row gives the average worst-

actual ratios of query sets Q with various ρ, all of which

were generated in the weakly data-dependent manner. The

second row shows the same results for the R*-tree, whereas

the next two rows are with respect to query sets under the

strong data-dependent distribution. Tables 4b, 4c, and 4d

present the corresponding results for datasets TCB, CA, and

NE, respectively.

We make several observations from the above tables.

First, when queries are weakly data dependent, the aver-

age efficiency of both the STR- and R*-trees is indeed much

better than their worst-case performance, judging from the

fact that all the average worst-actual ratios are quite large

for such queries. Second, (again) for weakly data-dependent

queries, the cost tends to be smaller when the query is more

quadrate. Both observations, however, fade away when it

comes to strongly data-dependent queries—the worst-actual

ratios are considerably lower for such queries. The main rea-

son behind this phenomenon is that these queries are less

selective, i.e., they output more result points. Accordingly,

both the predicted worst-case cost and their actual cost in-

volve a heavy term proportional to K/B, which reduces the

worst-actual ratio considerably. This fact also dampens the

effect of the aspect ratio on the worst-actual ratio.

7 Conclusions

This paper has presented new progress towards answering

the open question: how to prove that R-trees are (signifi-

cantly) more efficient in practice than pessimistically pre-

dicted in theory? We have developed a set of theoretical

tools for explaining this phenomenon in a rigorous man-

ner, in contrast to all the previous heuristic attempts. Besides

their merits in theory, our techniques also make a practical

impact by allowing a query optimizer to impose a tight up-

per bound on the cost of any range query, once its selectivity

has been estimated. Such information can be vital to query

optimization, especially in scenarios where a critical limit

on response time is demanded. We have also demonstrated

that incorporation of our techniques into an existing system

incurs only negligible extra overhead. We leave as an open

problem how to derive constant-tight instance-level query

bounds for rectangle data.
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