
Theoretically Optimal and Empirically Efficient R-trees with
Strong Parallelizability

Jianzhong Qi1, Yufei Tao2, Yanchuan Chang1, Rui Zhang1

1School of Computing and Information Systems, The University of Melbourne
jianzhong.qi@unimelb.edu.au, yanchuanc@student.unimelb.edu.au, rui.zhang@unimelb.edu.au

2Department of Computer Science and Engineering, Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

ABSTRACT
The massive amount of data and large variety of data distri-
butions in the big data era call for access methods that are
efficient in both query processing and index bulk-loading,
and over both practical and worst-case workloads. To ad-
dress this need, we revisit a classic multidimensional access
method – the R-tree. We propose a novel R-tree packing
strategy that produces R-trees with an asymptotically op-
timal I/O complexity for window queries in the worst case.
Our experiments show that the R-trees produced by the pro-
posed strategy is highly efficient on real and synthetic data of
different distributions. The proposed strategy is also simple
to parallelize, since it relies only on sorting. We propose a
parallel algorithm for R-tree bulk-loading based on the pro-
posed packing strategy, and analyze its performance under
the massively parallel communication model. Experimental
results confirm the efficiency and scalability of the parallel
algorithm over large data sets.

PVLDB Reference Format:
Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang. The-
oretically Optimal and Empirically Efficient R-trees with Strong
Parallelizability. PVLDB, 11(5): xxxx-yyyy, 2018.
DOI: https://doi.org/10.1145/3177732.3177738

1. INTRODUCTION
Spatial databases have been traditionally used in geo-

graphic information systems, computer-aided-design, mul-
timedia data management, and medical studies. They are
becoming ubiquitous with the proliferation of location-based
services such as digital mapping, augmented reality gaming,
geosocial networking, and targeted advertising. For exam-
ple, in mapping services such as Google Maps, the “search
this area” functionality supports querying places of interest
(POIs) such as shops within a given view area (cf. Fig. 1a).
In a popular augmented reality game, Pokémon GO [1], ev-
ery player has an avatar placed in the game map based on
the player’s geographical location. The players can interact

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 5
Copyright 2018 VLDB Endowment 2150-8097/18/01... $ 10.00.
DOI: https://doi.org/10.1145/3177732.3177738

(a) Shops (blue and red dots) in a map view

(b) Gaming objects in a game view

Figure 1: Window queries in real applications

with gaming objects (e.g., “pokémons”) in the game view
through their avatars (cf. Fig. 1b). Managing POIs or gam-
ing objects in a view which usually has a rectangular window
shape is a typical application of spatial databases.

In these applications, there may be hundreds of millions
of spatial objects (e.g., shops, restaurants, pokémons, etc.)
with a variety of distributions to be managed. Meanwhile,
there may be millions of service requests from users, e.g.,
Google Maps is answering millions of queries per day [2], and
Pokémon GO is attracting over 30 million active users [3].
Reporting POIs or pokémons in a given area in real time
under such settings poses significant challenges.

Spatial indices are important techniques to address such
challenges. They offer fast retrieval of spatial objects. We
revisit a classic spatial index – the R-tree [29]. Our aim
is to achieve an R-tree structure that is efficient in both
window query processing and tree bulk-loading, and over
both practical and worst-case workloads. R-trees have at-
tracted extensive research interests [12, 15, 17, 30, 34, 45]
and industrial applications [4, 5]. An R-tree is a balanced



tree structure designed for external memory based spatial
object indexing. Every node in an R-tree may contain mul-
tiple entries. In the leaf nodes, the entries are minimum
bounding rectangles (MBR) of the data objects (and point-
ers to them); in the inner nodes, the entries are MBRs of
and pointers to the child nodes. An R-tree node usually
corresponds to a disk block, the size of which constrains the
capacity of the node, i.e., the maximum number of entries
per node, denoted as B. Given an R-tree, a window query
returns all the data objects (e.g., POIs or pokémons) in-
dexed in the tree that are within or intersect a given query
window which is usually a rectangular region of interest.

R-trees have good query efficiency in practice when they
are constructed with carefully crafted heuristics [17, 34, 37,
45]. However, all these heuristics suffer from the limitation
that they do not produce an R-tree with attractive perfor-
mance guarantees in the worst case. The Priority R-tree
(PR-tree) [15] is an R-tree structure that has a theoretical
query performance guarantee. It answers a window query
with O((n/B)1−1/d + k/B) I/Os in the worst case, which is
known to be asymptotically optimal [12]. Here, n, d, and k
denote the data set size, the dimensionality, and the output
size, i.e., the number of objects satisfying the query, respec-
tively. The PR-tree is designed for rectangles. As a follow-
up study shows [30], the PR-tree may not have satisfactory
empirical performance on data objects of a small size (e.g.,
point data) or queries with small query windows; it also suf-
fers in bulk-loading performance; and the tree construction
is difficult to parallelize.

We re-examine the construction of R-trees and aim for
high window query efficiency over point data, which is a
common way for representing locations on digital maps. Spa-
tial objects with extents can also be efficiently transformed
into points for query processing, as a recent study [52] shows.
We target application scenarios such as digital mapping,
where the data sets are relatively static and can be batch-
updated. We construct R-trees that are query cost optimal
for static data. Our R-trees handle dynamic data updates
efficiently as well, although the optimality may be compro-
mised. We also offer efficient techniques for periodical R-tree
rebuilding to preserve the query cost optimality.

We propose an R-tree packing strategy that creates R-
trees with the worst-case optimal window query I/O cost

O((n/B)1−1/d + k/B). This strategy has a simple proce-
dure and the R-trees produced have high practical query ef-
ficiency. A key step we take before packing the data points
is to map them into a rank space such that their coordinates
are mapped to their ranks in each dimension. Ties in one
dimension are broken by the coordinates in the other dimen-
sion. As a result, we obtain data points with no repetitive
coordinates in either dimension. We then simply pack ev-
ery B data points into a leaf node (except possibly the last
leaf node) of an R-tree in the ascending order of the Z-order
values of the data points in the rank space. The Z-order
is an ordering created by the Z-curve [41] which is a com-
mon type of space-filling curves (SFC). The inner nodes of
the R-tree are created by packing every B child nodes into
a parent node (except possibly the last node in each level)
again in the ascending order of the Z-cure values and recur-
sively from the bottom to the top of the tree. An inner node
entry stores a pointer to a child node and its MBR.

Since our R-tree packing strategy relies only on sorting, it
takes O((n/B) logM/B(n/B)) I/Os to bulk-load an R-tree,

where M is the size of the memory. A key advantage of this
strategy is that it is highly parallelizable, which is an im-
portant feature in the big data era. Bulk-loading an R-tree
with this strategy well suits the popular massively parallel
communication (MPC) model [13], which paves the founda-
tion for designing algorithms for MapReduce systems [22].
We propose a parallel bulk-loading algorithm that takes
O(logs n) rounds of computation, where s = n/g and g
is the number of machines participating in the parallel al-
gorithm. The (parallel) running time of our algorithm is
O((n logn)/g), while the total time (summed over all ma-
chines) is O(n logn). For modern machines, s is large, e.g.,
at the order of millions, allowing the proposed algorithm to
bulk-load an R-tree with a very large number of data points
in just a few rounds of computation.

While the rank space has been used by the computational
geometry community to develop theoretical bounds [21, 24],
we observe for the first time that rank-space conversion can
be leveraged to build a worst-case optimal structure for win-
dow queries. Furthermore, it is perhaps surprising that we
are able to achieve the purpose by combining the rank space
with an SFC, because SFC-based indexes were previously
thought to have poor worst-case query costs. Indeed, as
shown in [15], if an SFC is used directly (i.e., in the original
data space) for indexing, there exist window queries which
retrieve few points, but have I/O costs linear to the data set
size. In fact, even analyzing the query cost of an SFC-based
index is non-trivial. The limited literature on this topic [32,
39, 47] has focused on the average query cost, which is ana-
lyzed indirectly by studying the clustering behavior of SFCs.

In summary, this paper makes the following contributions:

1. We propose the first SFC-based packing strategy that
creates R-trees with a worst-case optimal window query
I/O cost.

2. The proposed packing strategy suggests a simple R-
tree bulk-loading algorithm that relies only on sort-
ing. We propose such an algorithm under the mas-
sively parallel communication model (and thus, works
on MapReduce systems) with attractive performance
guarantees.

3. We perform extensive experiments on both real and
synthetic data. The results confirm the superiority of
the proposed R-tree packing strategy: on real data,
the query I/O cost of the R-trees that we construct is
up to 44% lower than that of PR-trees [15] and similar
to that of STR-trees [37], which are a classic type of
sorting based bulk-loaded R-trees; on highly skewed
synthetic data, the query I/O cost of the R-trees that
we construct is 12% lower than that of PR-trees and
20% lower than that of STR-trees. The proposed bulk-
loading algorithm also outperforms the PR-tree bulk-
loading algorithm in running time by 86% over large
data sets with 20 million data points.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 details the proposed R-tree
packing strategy and the worst-case window query I/O costs.
Section 4 describes the proposed parallel R-tree bulk-loading
algorithm. Section 5 discusses data update handling. Sec-
tion 6 studies the empirical performance of the proposed
algorithms. Section 7 concludes the paper.



2. RELATED WORK
We review studies on spatial queries and access methods,

with a focus on R-trees.
Spatial queries and access methods. We focus on

the window query (rectangular range query) which is a ba-
sic type of spatial queries [51]. A window query returns all
data objects that satisfy a certain predicate with a given
query window, i.e., a (hyper)rectangular region of interest.
Common query predicates include containment and inter-
section, which require the data objects to be fully contained
in or intersect the query window, respectively.

A straightforward window query algorithm sequentially
checks every data object and returns an object if it satis-
fies the query predicate. This algorithm takes O(n/B) I/Os
regardless of data distribution and output size. Spatial in-
dices have been used to obtain higher query efficiency. We
focus on the R-tree index [29]. For a comprehensive review
on spatial indices, interested readers are referred to [25].

R-trees. As discussed earlier, the R-tree is a balanced
tree structure. The maximum number of entries per tree
node (node capacity) B is constrained by the block size,
while the minimum number of entries per tree node (except
the root node) is Ω(B). The root node needs to contain at
least 2 entries unless it is also a leaf node. Thus, the height
of an R-tree indexing n objects is bounded by O(logB n).

A window query is processed by a top-down traversal over
the nodes of an R-tree whose MBRs satisfy the query. When
the leaf nodes are reached, data objects in them satisfying
the query are returned. A series of studies [17, 19, 31, 40,
45] propose heuristics to optimize the node MBRs during
dynamic data insertion. The R*-tree [17], for example, con-
siders the MBR overlaps and region perimeters to decide the
node into which a new object should be inserted.

R-tree packing and bulk-loading. A different stream
of research considers how to construct an R-tree by packing
data objects into the leaf nodes directly rather than insert-
ing them individually. The entire R-tree is bulk-loaded in
a bottom-up fashion. Most R-tree packing algorithms [23,
30, 34, 37, 43] rely on some ordering of the data objects and
hence have an I/O cost of O((n/B) logM/B(n/B)), which is
the cost for sorting n objects (recall that M is the num-
ber of objects allowed in the main memory). Specifically,
Roussopoulos and Leifker [43] sort the data objects by their
x-coordinates and pack every B objects into a leaf node.
Leutenegger et al. [37] first sort the data objects by their x-

coordinates, and then partition the data into
√
n/B subsets.

Objects in each subset are sorted by their y-coordinates and
packed into the leaf nodes. Other studies use the Hilbert or-
dering [23, 30, 34]. R-trees bulk-loaded based on Hilbert
ordering have good window query performance on nicely
distributed data [30]. However, these R-trees do not have
worst-case optimal query performance.

There are also top-down bulk-loading algorithms, e.g.,
Top-down Greedy Split (TGS) [26]. TGS partitions the data
set into two subsets repeatedly until B approximately equi-
sized subsets have been obtained. The MBRs of these B
subsets form entries of the root. Each partition uses a cut
orthogonal to an axis that yields two subsets with the mini-
mum sum of costs, where the cost is based on a user-defined
function, e.g., the area of the MBR of a subset. There are
O(B) candidate cuts, where the hidden constant lies in the
different cuts in different dimensions and on different order-
ings (e.g., lower x corner, center, etc.). In each dimension

and with a particular ordering, the ith cut puts i · n/B ob-
jects in one subset and the rest in the other subset. TGS has
been shown to produce R-trees with good query efficiency,
but it has a high worst-case I/O cost, O(n logB n), for R-tree
construction. This is because it needs to scan the data set
B times to create the B partitions of a node (assuming that
the orderings used for partitioning have been precomputed).
If viewed from a recursive binary partition perspective, the
I/O cost of TGS is effectively O((n/B) log2 n) [15].

Agarwal et al. [12] propose an algorithm to bulk-load a
Box-tree, which can be converted to an R-tree that obtains a
worst-case query I/O cost of O((n/B)1−1/d+k logB n). This
work is more of theoretical interest. No implementation or
experimental results have been given for the algorithm.

The PR-tree [15] is an R-tree that offers a worst-case

window query I/O cost of O((n/B)1−1/d + k/B), which is
asymptotically optimal [12]. A PR-tree is created from a
pseudo-PR-tree, which is an unbalanced tree built in a top-
down fashion. To create a pseudo-PR-tree, the data set is
partitioned into six partitions to form the child nodes of the
root. Four of the partitions contain B objects each, which
are objects with the smallest lower x-coordinates, the small-
est lower y-coordinates, the largest upper x-coordinates, and
the largest upper y-coordinates, respectively. The remaining
two partitions are two equisized partitions of the remaining
objects, which are then recursively partitioned to form sub-
trees of the root. When a pseudo-PR-tree is created, its leaf
nodes are used as the leaf nodes of a PR-tree. The MBRs
of the leaf nodes are used to create another pseudo-PR-tree,
the leaf nodes of which are used as the parent nodes of the
leaf nodes of the PR-tree. A PR-tree is then built with
O((n/B) logn) I/Os bottom-up. Arge et al. [15] further pro-
pose a bulk-loading strategy which lowers the I/O cost to
O((n/B) logM/B(n/B)). The main issues of the PR-tree are
that it lacks practical efficiency in bulk-loading and answer-
ing queries with small query windows [30].

We also note that other spatial indices such as kd-trees [18],
O-trees [35], and cross-trees [28] can offer a worst-case opti-
mal query I/O performance. Compared with R-trees created
by our packing strategy, kd-trees are more difficult to bulk-
load in parallel. In the MPC model, Agarwal et al. [13]
propose a randomized algorithm that can bulk-load a kd-
tree with O(poly logs n) rounds of computation. In contrast,
we can bulk-load an R-tree with O(logs n) rounds of com-
putation which is lower, and our bulk-loading algorithm is
deterministic. As for O-trees, they do not belong to the R-
tree family. They combine multiple auxiliary structures to
ensure their theoretical guarantees. This approach is mainly
of theoretical interest, but in practice is expensive in both
space consumption and query cost (even being asymptoti-
cally optimal in the worst case). Cross-trees share a similar
issue in its practical query performance [11]. These indices
are not discussed further.

Parallel R-tree management. Parallelism has been ex-
ploited to scale R-trees to large data sets and user groups.
An early study [33] considers storing an R-tree on a multi-
disk system. It stores a newly created tree node in the
disk that contains the most dissimilar nodes to optimize
the system throughput. A few studies [36, 38, 44] assume
a shared nothing (client-server) architecture for distributed
R-tree storing and query processing. Koudas et al. [36] store
the inner nodes on a server while the leaf nodes on clients.
Schnitzer and Leutenegger [44] further create local R-trees



Table 1: Frequently Used Symbols

Symbol Description

P A data set
p A data point
n The cardinality of P
d The dimensionality of P
q A window query q
k The answer set size of a window query
B The node capacity of an R-tree
h The height of an R-tree
g The number of machines in a cluster
s The number of data points allowed in a machine

on clients for higher query efficiency. Mondal et al. [38] study
load balancing for R-trees in shared nothing systems.

The studies above do not focus on parallel R-tree bulk-
loading. Papadopoulos and Manolopoulos [42] propose a
generic procedure for parallel spatial index bulk-loading.
They use sampling to estimate the data distribution which
helps partition the data space into regions. Data objects
in different regions are assigned to different clients for local
index building. A global index is built on the server which
serves as a coordinator for query processing. A more recent
study [10] bulk-loads an R-tree with the MapReduce frame-
work level by level, where each level takes one MapReduce
round. The study also uses an SFC for object ordering.
However, its focus is on deciding the split points among tree
nodes. The tree nodes can contain varying numbers of en-
tries, which leads to non-optimal bulk-loading costs. Similar
ideas have been used on GPUs [48] without a cost analysis.

3. R-TREE PACKING
We consider a set P of n data points in a d-dimensional

Euclidean space. For ease of presentation, we use d = 2 in
the following discussion, although our approach also applies
to any d > 2. We focus on window query processing. Given
a rectangle q, a window query reports all the points in P ∩q.

We list the frequently used symbols in Table 1.

3.1 Mapping to Rank Space

1

p3
p

y
e2

e1
y

e2
xx

e1

1
p

0 0

4

2 3 4 5 6 7

0

1

2

3

4

5

6

7

qq

p

pp

p
p

8

76

5
2

x x

yy

Rank spaceOriginal space

7

4
p

3

6

52

1

p

p

p

pp

p

8

p

Figure 2: Mapping to rank space

Before creating an index structure over P , we first map
the data points into a 2-dimensional rank space as follows.
In each dimension of the original data space, we sort the data
points by their coordinates and use the ranks as the coor-
dinates in the corresponding dimension of the rank space.

Rank ties in a dimension are broken by the coordinates in
the other dimension of the original space. We assume no
data points with the same coordinates in both dimensions.

Define by [n] the integer domain [0, n − 1]. After the
mapping, P becomes a set of n 2-dimensional points in [n]2

such that no two points share the same x- or y-coordinate.
Figure 2 illustrates the mapping with a set of 8 (n = 8)

points P = {p1, p2, ..., p8}. The coordinates of the points in
the rank space are their ranks in the original space. For ex-
ample, p1 has the smallest x-coordinate and second largest
y-coordinate in the original space. Thus, its x-coordinate
and y-coordinate in the rank space are 0 and 6, respec-
tively. Points p2 and p3 both have the second smallest x-
coordinate in the original space. In the rank space, p2 has an
x-coordinate of 1 while p3 has an x-coordinate of 2, because
p2 has a smaller y-coordinate in the original space.

A query rectangle q = [xe1, xe2] × [ye1, ye2] in the origi-
nal space is mapped to a rectangle q = [x1, x2] × [y1, y2] in
[n]2. Here, x1 (y1) is the smallest rank of the data points
whose x-coordinates (y-coordinates) in the original space
are greater than or equal to xe1 (ye1); x2 (y2) is the largest
rank of the data points whose x-coordinates (y-coordinates)
in the original space are smaller than or equal to xe2 (ye2).
In Fig. 2, the solid rectangle represents a query rectangle
q. In the original space, the query range [xe1, xe2] spans
p2, p3, p4, and p6 in the x-dimension, among which p2 (p6)
has the smallest (largest) rank 1 (4). Thus, [xe1, xe2] is
mapped to [1, 4] in the rank space. Similarly, the query
range [ye1, ye2] is mapped to [2, 5] in the rank space. Note
that the query mapping does not introduce false positives in
the query answer because the data points do not share the
same coordinate in either dimension in the rank space.

Our goal is to store P in a structure so that all window
queries can be answered efficiently in the worst case. With-
out loss of generality, we consider that n is a power of 2.

3.2 Tree Structure and Packing Strategy
Our structure is simply an R-tree where the leaf nodes

are obtained by packing points in ascending order of their
Z-order [41] values. Other space-filling curves such as Hilbert
curves can also be used (as will be discussed in Section 3.4)
but Z-order is used for illustration.

For each point p ∈ P , we compute its Z-order value Z(p)
in [n]2. Suppose that p = (x, y), where x = α1α2...αl and
y = β1β2...βl in binary form where l = log2 n. Then, Z(p) =
β1α1β2α2...βlαl. We sort all the points of P by their Z-order
values, and cut the sorted list into subsequences, each of
which has length B, except possibly the last subsequence,
where B ≥ 1 is a parameter that controls how many points
fit in a leaf node of an R-tree. Each leaf node includes the
points in a subsequence. The inner nodes of the R-tree are
created by packing every B child nodes into a parent node
(except possibly the last node in each level) recursively from
the bottom to the top of the tree. This process resembles
how a B-tree is created, except that an inner node entry
stores a pointer to a child node and its MBR instead of a
key value. This creates our target R-tree.

Figure 3 illustrates the R-tree packing strategy. The rank
space can be seen as an 8 × 8 grid. A Z-curve (the dotted
polyline) is drawn across the rank space. The order that
a cell is reached by the curve is the Z-order value of the
data point in the cell, e.g., in Fig. 3a, p2 is in the second
cell reached by the curve; its Z-order value is 1, which is



7
TT

(c)

y

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 x

q

(a) (b)

q

x76543210

0

1

2

3

4

5

6

7

y

(15)(12)
(15)

(12)

(40)

(48) (54)

(63)

(19)
(1)

(40)

(1) (19)

(63)

(54)(48)

N

3

N2
N1

6N

5N

4N3N2N1N

4
p

6

3
p

1

p
4

p

p
3

pp

p
1

p

6
p

p

7
p

8
p

4

4

5
p

N

2
p

5

1
p

N

p
2

6

p
5

p
8

2
p

p
7

p

p
6

3
p

5 87

N

Figure 3: R-tree packing

labeled in parentheses next to p2 (same for the other points).
Based on the Z-order values, the data points are sorted as:
〈p2, p3, p4, p5, p1, p6, p7, p8〉. We use B = 2 in this example.
The eight data points are packed into four leaf nodes: N1 =
〈p2, p3〉, N2 = 〈p4, p5〉, N3 = 〈p1, p6〉, and N4 = 〈p7, p8〉.
These four leaf nodes are then packed in the order of the Z-
order values of the data points stored in them, resulting in
two inner nodes N5 = 〈N1, N2〉 and N6 = 〈N3, N4〉. A root
node is further created to point to N5 and N6. Figures 3b
and 3c show the MBRs and the R-tree T created.

Algorithm 1: Build-R-tree

Input: P = {p1, p2, ..., pn}: a d-dimensional database; B:
the capacity of a tree node.

Output: T : an R-tree over P .

1 Map P into the rank space;
2 for each pi ∈ P in the rank space do
3 Compute Z-order value of pi;

4 Sort P in ascending order of the Z-order values;
5 Let Q← ∅;
6 for every B data points in the sorted P do
7 Create a leaf node N to store the B data points;
8 Q.enqueue(〈N, 1〉);
9 while Q.size() > 1 do

10 Dequeue the first B nodes of the same level t from Q;
11 Create a node N to store MBRs (pointers) of the nodes;
12 Q.enqueue(〈N, t+ 1〉);
13 Let T point to the last node in Q;
14 return T ;

Algorithm 1 summarizes the the proposed R-tree packing
strategy with the help of an auxiliary queue Q. The queue
stores 2-tuples in the form of 〈N, t〉 where N and t are a
tree node and its level in the tree, respectively. The packing
strategy takes (i) two sorts on the data points to map them
into the rank space (Line 1), (ii) a linear scan on the data
points to compute their Z-order values (Lines 2 and 3), (iii)
another sort on the Z-order values (Line 4), and (iv) another
linear scan on the data points (Lines 6 to 8) and logB n− 1
rounds of linear scans on the MBRs of tree nodes for packing
and loading an R-tree (Lines 9 to 12). Together, this pack-
ing strategy takes O((n/B) logM/B(n/B)) I/Os to bulk-load
an R-tree (the CPU time is O(n logn), noticing that the Z-
order value of a point can be calculated in O(logn) time).

Sorting and linear scans can be easily parallelized. This sug-
gests a simple parallel R-tree bulk-loading algorithm where
everything boils down to sorting. We present such an algo-
rithm in Section 4.

3.3 Window Query Processing
When a window query is issued, we first map it to the rank

space following the procedure described in Section 3.1. To
facilitate fast mapping, we create two B-trees to store pairs
of point coordinates in the original space and corresponding
coordinate in the rank space, one for each dimension. Query
mapping using B-trees takes O(logB n) I/Os. The mapped
query is then answered by our R-tree in the same way as
for a conventional R-tree. We omit the pseudo-code of the
query algorithm for conciseness. As an example, in Fig. 3c,
we show the search paths for processing query q in gray.

3.3.1 Query Cost
We prove that our R-tree answers a window query with

O((n/B)1−1/d+k/B) I/Os in the worst case, where k is the
number of points reported. This query complexity is known
to be asymptotically optimal [12, 20]. Let h ≤ logB n be the
height of the tree. Label the levels of the tree as 1, 2, ..., h
bottom up. Consider any level t ∈ [1, h]. Let ` be any
vertical line in [n]2. We prove the following lemma, which
is sufficient for establishing our claim.

Lemma 1. The line ` intersects the MBRs of O(
√
n/Bt)

nodes at level t.

Proof. Intuitively, the MBR of a node intersects a line `
when it covers data points on both sides of ` (e.g., in Fig. 4a,
node N3 contains p1 and p6 on both sides of the dashed
line `) or data points on ` (e.g., p2 in N1). Such a node
corresponds to a Z-curve segment that crosses or ends at `.
Since different nodes correspond to non-overlapping curve
segments (because the data points are packed by ascending
Z-order values), we derive the number of nodes intersecting
` via the number of times that the Z-curve crosses `.

Let m be the smallest power of 2 larger than or equal to√
nBt. Divide [n]2 into an (n/m) × (n/m) grid denoted as

G, where each cell has m2 locations in [n]2. Note that the
Z-curve traverses all the locations in a cell before moving to
another, i.e., it never comes back to the same cell.

We use Fig. 4a to illustrate the proof for the case where
t = 1, i.e., at the leaf node level. It shows the four leaf



0

Cy

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 x

Gl G

x76543210

1

2

3

4

5

6

7

y

0

C

(a) (b)

4

5
p

2
p

3
p 4

p

7
p

6
p

1
p

p
1

p
6

p
7

p
4

p
3

p
2

p
5

p
8

1N

2N

3N

4N

2N

3N

p
N8

1N

q

Figure 4: Window query I/O cost

nodes N1, N2, N3, and N4 (the dashed rectangles) of an R-

tree constructed. We have
√
nBt =

√
8× 21 = 4 which

means m = 4. The rank space is divided into an (8/4) ×
(8/4) = 2 × 2 grid, which is represented by the black solid
line grid in the figure. The Z-curve enters and leaves each
cell once, e.g., for the top-left cell, the Z-curve enters at its
bottom-left corner and leaves from its top-right corner.

Let C = [a, b]× [n] be the column of G that contains line
`. In Fig. 4a, the vertical dashed line represents `, which is
in column C = [0, 3]× [8] highlighted in gray. Define the line
x = a as the left boundary of C, and the line x = b as the
right boundary. Let u be a node whose MBR intersects `.
Define X(u) as the x-range of the MBR of u. For example,
N3 intersects the line, and X(N3) = [0, 4]. Such u can be
one of the following types:

• Type 1: a ∈ X(u) or b ∈ X(u), i.e., u overlaps column
C (cf. node N3).

• Type 2: X(u) ⊂ [a, b], i.e., u is inside column C
(cf. node N1).

We prove that there are at most 2n/m ≤ 2
√
n/Bt nodes of

Type 1 and O(1 + m/Bt) = O(
√
n/Bt) nodes of Type 2,

which completes the proof of the lemma:

• Type 1: Note that the Z-curve crosses the left bound-
ary (i.e., enters column C) n/m times. This is because
there are n/m cells of G in each column, and the curve
enumerates all the locations of a cell of G before mov-
ing to another. In Fig. 4a, there are n/m = 8/4 = 2
cells in column C. The curve enters these two cells
once each. Since the data points are sorted and packed
into nodes by their curve values, there are at most n/m
nodes that contain data points on both sides of the left
boundary. Otherwise, some of these nodes must have
overlapping curve values, which is against our pack-
ing strategy. The same applies to the right boundary.
Thus, there are at most 2n/m nodes of Type 1. In the
figure, N3 overlaps the right boundary of the top cell
of column C. It contains two data points p1 and p6 on
the two sides of the right boundary of this cell. The
curve segment between them crosses the right bound-
ary of the cell. Since the curve only leaves the cell
once, there cannot be another node N that also over-
laps the right boundary of the cell. Otherwise, the
two curve segments corresponding to N and N3 must
overlap, which violates our packing strategy.

• Type 2: When u is in column C, the x-coordinate of
any data point in the subtree of the node is in the
range of [a, b]. There are b − a + 1 = m distinct
x-coordinates in the range, implying m data points
in the range (recall that all points have distinct x-
coordinates). Each node at level t can index Bt data
points. Thus, there are O(1 +m/Bt) nodes of Type 2.
In Fig. 4a, b−a+1 = 3−0+1 = 4. The four data points
in the gray column can form at most m/Bt = 4/21 = 2
nodes fully contained in the column, although there is
just one such node in this example which is N1. If p5
does not exist then p4 and p1 will form another node
fully contained in the column.

Discussion. For an R-tree with a height h ≤ logB n,

line ` interests the MBRs of O(
√
n/B) +O(

√
n/B2) + ...+

O(
√
n/Bh) = O(

√
n/B) nodes. The above proof assumed

n being a power of 2 and d = 2. When n is not a power of
2, let ρ = dlog2 ne. We enlarge the rank space to [2ρ]2. Line

` intersects O(
√

2ρ/B) nodes in the enlarged rank space.

We have O(
√

2ρ/B) = O(
√
n/B) because 2ρ ≤ 2n. The

above argument can also be generalized to an arbitrary fixed
dimensionality d ≥ 2 to prove that our query cost is bounded
by O((n/B)1−1/d + k/B) in the worst case. This will be
proven in Section 3.3.2, which proves an even stronger result
that subsumes the aforementioned bound as a special case.

3.3.2 Query Sensitive Bound in Arbitrary Dimen-
sionality

Consider a query rectangle q = [x1, y1] × [x2, y2] × ... ×
[xd, yd] in [n]d, where d ≥ 2 is an arbitrary fixed dimension-
ality. For each i ∈ [1, d], set λi = yi − xi + 1, and define
Zi = {1, 2, ..., d} \ {i}, namely, Zi includes all the integers
from 1 to d except i. We will prove a stronger version of our
previous lemma: our structure answers the query in

O(logB n+ Λ1/d/B1−1/d + k/B) (1)

I/Os where Λ =
∑d
i=1

∏
j∈Zi

λj . In this bound, logB n,

Λ1/d/B1−1/d, and k/B denote the costs to map the query
to rank space (query q here is already mapped), to find the
nodes intersecting the query boundary, and to output the
points inside the query, respectively.

The bound looks a bit unusual such that it would help
to look at some special cases: for d = 2, the query cost
is O(logB n +

√
(λ1 + λ2)/B + k/B), while for d = 3, the

cost becomes O(logB n + (λ1λ2 + λ1λ3 + λ2λ3)1/3/B2/3 +
k/B). Since λi ≤ n for all i ∈ [1, n], it always holds that∏
j∈Zi

λj ≤ nd−1 and Λ ≤ d · nd. Thus, Equation (1) is

bounded byO((d·nd−1)1/d/B1−1/d+k/B) = O((n/B)1−1/d+
k/B). In other words, Equation (1) is never worse than the
(query insensitive) bound established in Section 3.3.1, but
could be substantially better when q is small.

We say that the MBR of a node partially intersects q if
it has a non-empty intersection with q, but is not contained
by q. We will prove the following lemma, which is sufficient
for establishing our claim.

Lemma 2. The query rectangle q partially intersects the
MBRs of O(1 + Λ1/d/(Bt)1−1/d) nodes at level t.



Proof. Let m be the smallest power of 2 at least (Λ ·
Bt)1/d. Divide [n]d into an (n/m)× (n/m)× ...× (n/m)︸ ︷︷ ︸

d

grid G, where each cell has md locations in [n]d (the cell’s
projection on each dimension covers m values). For each
i ∈ [1, d], define a dimension-i column of G as the maximal
set of cells in G that have the same projection on dimension
i. Grid G has n/m dimension-i columns, each of which is a
d-dimensional rectangle in [n]d that covers the entire range
[n] on every dimension j 6= i.

We use Fig. 4b to illustrate the proof, where d = 2 and
t = 1, i.e., at the leaf node level. We have q = [1, 4]× [2, 5]
(the solid line rectangle) and hence λ1 = 4− 1 + 1 = 4 and

λ2 = 5−2+1 = 4. Thus, m = (Λ·Bt)1/d =
√

(λ1 + λ2)Bt =√
(4 + 4)× 21 = 4. The rank space is divided into an

(8/4) × (8/4) = 2 × 2 grid, which is represented by the
black solid line grid. Grid G has 8/4 = 2 dimension-1 (x-
dimension) columns, i.e., the two vertical columns.

A node whose MBR partially intersects q must intersect
one of the 2d boundary faces of q (e.g., edges of q in Fig. 4b).
We will prove that there can be at most O(1 + m/Bt +∏
j∈Zi

λj/m
d−1) nodes intersecting each of the two faces of

q perpendicular to dimension i. Summing this up on all d
dimensions gives an upper bound on the total number of
nodes that partially intersect q:∑d

i=1O(1 +m/Bt +
∏
j∈Zi

λj/m
d−1)

= O(d+ dm/Bt + Λ/md−1)

= O(1 + Λ1/d/(Bt)1−1/d)

as desired in the lemma.
Due to symmetry, it suffices to consider the face of q that

corresponds to x1 (i.e., perpendicular to dimension 1) – we
refer to it as the dimension-1 left face of q. Let C be the
dimension-1 column of G that covers this face; C is a rect-
angle that can be written as [a, b] × [n]× [n]× ...× [n]︸ ︷︷ ︸

d−1

for

some a, b satisfying b−a+1 = m and b is a multiple of 2. In
Fig. 4b, dimension 1 is the x-dimension, and C is the gray
column [0, 3]× [8]. Define the left boundary (or right bound-
ary) of C to be the set of points in [n]d with coordinate a
(or b, respectively) on dimension 1.

Let u be a level-t node with an MBR intersecting the
dimension-1 left face of q, and X(u) be the projection of the
MBR of u on dimension 1, e.g., N3 intersects the left edge of
q, and X(N3) = [0, 4]. Such u can be of the following types:

• Type 1: a ∈ X(u) or b ∈ X(u).

• Type 2: X(u) ⊂ [a, b].

Next, we analyze the number of nodes for each type.

• Type 1: The Z-curve crosses the left boundary of C at
most O(

∏d
j=2dλi/me) = O(1+λ2λ3...λd /m

d−1) times
within the dimension-1 left face of q. This is because
there are O(

∏d
j=2dλi/me) cells of C within the range

of q in dimensions 2 to d (e.g., in Fig. 4b, there are
1+λ2/m = 1+4/4 = 2 cells of C within the dimension
2 range [2, 5] of q), and the curve enumerates all the
locations of a cell before moving to another cell. By the
reasoning explained in the proof of Lemma 1, there are
at most O(

∏d
j=2dλi/me) nodes containing data points

on both sides of the left boundary. The same applies to

the right boundary. Therefore, the number of Type-1
nodes is O(1 + λ2λ3...λd/m

d−1).

• Type 2: All the Bt points in the subtree of node u
must have x-coordinates between a and b. There can
be only b−a+1 = m such points (recall that all points
have distinct coordinates in each dimension), implying
at most O(1 +m/Bt) such nodes.

It thus follows that the dimension-1 left face of q intersects
the MBRs of O(1 +m/Bt +

∏
j∈Zi

λj/m
d−1) nodes at level

t. This completes the proof.

3.4 Extending to Other Space Filling Curves
Although we have used the Z-curve as the representative

SFC, the only property that we require from the Z-curve is
the following quad-tree recursive pattern. Divide the data
space [n]d (where n is a power of 2) into 2d rectangles of the
same size, i.e., each rectangle is a “d-dimensional square”
with a projection length of n/2 on each dimension (recall
how the root of a d-dimensional quad-tree would partition
the space). For example, in Fig. 4a, grid G is divided into
22 = 4 squares (cells) each with an edge length of 4. The
quad-tree recursive pattern says that the SFC must first
enumerate all the points within a rectangle before starting
to enumerate the points of another. In Fig. 4a, the Z-curve
enumerates the points of the bottom-left cell before moving
to the bottom-right cell. The pattern must be followed re-
cursively within each rectangle, by treating it as a smaller
data space [n/2]d. All our proofs hold verbatim on any SFCs
(e.g., the Hilbert curve) that obey this pattern.

4. PARALLEL R-TREE BULK LOADING
Next, we present a parallel R-tree bulk-loading algorithm

based on our packing strategy. A straightforward parallel
algorithm that bulk-loads an R-tree level by level requires
O(logB n) rounds of parallel computation. We show how to
reduce the number of rounds to O(logs n) without sacrificing
the computation time. Here, s denotes the number of data
points that a machine participating in the parallel algorithm
can handle. Modern machines can easily handle millions of
data points, where logs n is typically bounded by a constant.

The key idea of the proposed algorithm is to distribute
the data points (or MBRs of tree nodes) in a way that the
machines can bulk-load O(logB s) levels of the final R-tree
in each round. Then, O(logs n) such rounds suffice to build
the entire R-tree of logB s · logs n = logB n levels. To bulk-
load logB s levels in each round, a machine is assigned a
subset of the data points (MBRs) that forms a few R-tree
branches of logB s levels independently from the data as-
signed to the other machines. This is feasible because we
can assign data points to the machines in their sorted order
for packing independently.

4.1 Parallel Computation Model
Without relying on a particular parallel platform such as

Apache Hadoop, we design the parallel bulk-loading algo-
rithm based on a generalized parallel model named the mas-
sively parallel communication (MPC) model [13, 14, 16].
Popular parallel frameworks such as MapReduce [22] and
Spark [49] are typical examples of this model.

The MPC model makes the following assumptions. Let n
be the input size, g be the number of machines, and s = n/g.



In each round of parallel computation, every machine re-
ceives some data from other machines, performs computa-
tion, and sends some data to other machines. We consider
only algorithms that require a machine to receive/send O(s)
words of information in each round (with the terminology
of [16], these algorithms must have load O(s)).

MPC algorithms are measured by: (i) the number of com-
putation rounds R, (ii) the (parallel) running time T , and
(iii) the total amount of computation W. The running time
sums up the maximum computation cost of a single machine
in each round; the total amount of computation sums up the
computation costs of all machines in all rounds. Let tMi,r

be the time complexity of machine Mi in round r. Then,

T =

R∑
r=1

max
i∈1..g

tMi,r W =

R∑
r=1

g∑
i=1

tMi,r

For the purpose of building an R-tree, W should not exceed
the time complexity O(n logn) for a single-machine imple-
mentation of the proposed packing strategy; T should be
O((n logn)/g) to achieve a speedup of g with g machines.

A primitive operation we need is sorting. In the MPC
model, sorting n elements (initially evenly distributed on the
g machines) can be done in O(logs n) rounds, O((n logn)/g)
running time, and O(n logn) total amount of computation
[27] (see Tao et al. [46] for a simple algorithm when s ≥
g ln(g · n) holds).

Mapping n data points to the rank space and sorting by
Z-order values thus can be done in O(logs n) rounds. This
process takes O((n logn)/g) running time and O(n logn) to-
tal amount of computation. We focus on packing the sorted
data points to form an R-tree next.

T

p p p
6 7 84321

ppp p

pp p p
1 2 3 4

N
4

N
3 7

N
8

N

p
16

p
15

p
13 14

p

5
N

6
N

12
p

11
p

10
p

1M

N
13

N
14

N
10

N
11

N
12

2R

R 1

9
N

N
2

N
1

876
ppp p

5

2M

16151413
pp p p

4M

1211109
ppp p

M3

9
p

5
p

Figure 5: Parallel R-tree bulk-loading

4.2 Distributed Packing
Every round bulk-loads Θ(logB s) levels of the target R-

tree. In the first round, O(s) consecutive data points are as-
signed to a machine by the ascending order of their Z-order
values, where an R-tree of Θ(logB s) levels is bulk-loaded
locally. This creates O(n/s) R-trees. A second round bulk-
loads the next Θ(logB s) levels of the target R-tree over the
root MBRs of those O(n/s) R-trees. For this purpose, O(1+
g/s) machines are used, each assigned O(s) root MBRs; this
results in O(n/s2) tree roots. The above process repeats un-
til the MBRs can all be bulk-loaded in a single machine (the

number of participating machines decreases by a factor of
Θ(s) each time, while each such machine is always assigned
O(s) MBRs). A total of O(logB n/ logB s) = O(logs n)
rounds are incurred, where O(s logs n) = O((n logs n)/g)
running time and O(n) total amount of computation are
taken to compute the MBRs.

Figure 5 illustrates the rounds, where n = 16, B = 2,
g = 4, and s = 4. A total of logs n = 2 rounds are needed.
Each round bulk-loads logB s = 2 levels. In the first round
R1, every machine is assigned s = 4 data points. The 4
machines bulk-load 4 R-trees of 2 levels locally. The 4 MBRs
of the roots of these local R-trees are bulk-loaded by a single
machine M1 in the second round R2.

We omit the pseudo-code of the parallel bulk-loading al-
gorithm as it is similar to Algorithm 1, except that now a
machine handles O(s) data points instead of n, and the loop
to bulk-load an R-tree (Lines 9 to 12) is broken into rounds.

5. UPDATE HANDLING
Our R-tree structure can also allow dynamic data up-

dates. An object to be removed can be simply deleted from
our R-tree in the same way as for a conventional R-tree.
An object to be inserted need to be first mapped to the
rank space in a similar way to that of query window map-
ping. Let p be an object to be inserted and (xe, ye) be its
coordinates in the original space. If xe (ye) equals to the
x-coordinates (y-coordinates) of some existing data points,
xe (ye) is simply mapped to the largest x-rank (y-rank) of
those data points. Otherwise, xe (ye) is mapped to two co-
ordinates x1 and x2 (y1 and y2) in the rank space. Here,
x1 (y1) is the smallest rank of the data points whose x-
coordinates (y-coordinates) in the original space are greater
than xe (ye); x2 (y2) is the largest rank of the data points
whose x-coordinates (y-coordinates) in the original space
are smaller than xe (ye). The four coordinates x1, x2, y1, y2
may form four points (x1, y1), (x1, y2), (x2, y1), and (x2, y2)
in the rank space. To ensure no false negatives in query
processing, object p needs to be mapped to all these points.
Then, it can be inserted into our R-tree in the same way as
for a conventional R-tree. Allowing dynamic data updates
compromises the optimal worst-case I/O cost. A periodic
rebuild of the R-tree is needed for optimal performance.

We target applications where the data set is relatively
static, e.g., buildings in a map tend not to change in every
second. The parallel bulk-loading algorithm proposed in
Section 4 can be used to periodically rebuild the R-tree to
cope with data updates. As our experiments show, it only
takes 25.7 minutes to build an R-tree with 100 million data
objects. This should satisfy the targeted applications.

6. EXPERIMENTS
This section reports experimental results on comparing

the bulk-loading and window query performance of the R-
tree constructed by the proposed strategy with those of the
STR-tree [37], Hilbert R-tree [30], TGS R-tree [26], and PR-
tree [15], which have been described in Section 2. We de-
note the baseline algorithms by “STR”, “HR”, “TGS”,
and “PR”, respectively. We denote the proposed algorithm
by “ZR” for that it builds an R-tree based on Z-order values.

As discussed in Section 3.4, the proposed packing strategy
is also applicable to other space-filling curves such as the
Hilbert curve. To demonstrate this applicability, we further



Table 2: Parameters and Their Settings

Parameter Setting

Distribution Uniform, Skew, Cluster
n 0.5M, 1M, 5M, 10M, 20M
α 1, 3, 5, 7, 9
Query window area (%) 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2

implement an R-tree based on the proposed packing strategy
where the data points are sorted and packed by their Hilbert
order values in the rank space. We denote this R-tree by
“HRR”. This R-tree shares a similar structure with the
Hilbert R-tree, except that the data points are mapped to
the rank space before they are packed. Note that the query
cost bounds derived in Section 3.3 hold for this tree.

Following previous studies [15, 26, 30, 37], we focus on the
I/O cost of the algorithms.

6.1 Experimental Setup
The window query experiments are run on a 64-bit ma-

chine running Ubuntu 14.04 with a 2.60 GHz Intel i5 CPU,
4 GB memory, and a 100 GB hard disk. We use Ke Yi’s
single-machine implementation [6] of the Hilbert R-tree, TGS
R-tree, and PR-tree, which uses the TPIE library [7] – a
C++ library that provides APIs for implementation of ex-
ternal memory algorithms and data structures. For ease of
comparison, we also implement a single-machine version of
the STR-tree and the proposed HRR and ZR R-trees using
TPIE. In all the R-tree structures, we use 40 bytes for each
entry in a node. For an inner node entry, these 40 bytes
include 32 bytes for the 4 coordinates (8 bytes each) of an
MBR and 8 bytes for a pointer pointing to the disk block
storing the corresponding child node. For a leaf node entry,
these 40 bytes include 8 bytes for an ID of a data point and
32 bytes for the coordinates also in the form of an MBR for
ease of implementation. We use a block size of 4 KB, and
the maximum fanout of a node is 102.

The bulk-loading experiments are run on the single ma-
chine described above and on a cluster. The parallel bulk-
loading algorithms are implemented with Scala and run on
Apache Spark 1.6.0-SNAPSHOT which also supports the
MapReduce model but is more efficient than Hadoop MapRe-
duce. We use a 16 virtual-node cluster created from an aca-
demic computing cloud (Nectar [8]) running on OpenStack.
Each virtual-node has 12 GB memory and 4 cores running at
2.6 GHz. One of the nodes acts as the master and the other
15 nodes act as slaves. Each core simulates a worker ma-
chine, and hence there are 60 worker machines in total, i.e.,
g = 60. The network bandwidth is up to 200 Mbps. We use
Apache Hadoop 2.6.0 with Yarn as the resource manager.

We use both real and synthetic data sets. The real data
set contains 17,468,292 rectangles (950 MB in size) repre-
senting geographical features in 18 eastern states of the USA
extracted from the TIGER/Line 2006SE data [9]. We use
the center of the rectangles as our data points. We denote
this data set as “Tiger”. Figure 6a illustrates the data set.

Synthetic data sets are generated with a space domain of
1 × 1 where the data set cardinality ranges from 0.5 to 20
million. We generate three groups of synthetic data sets,
denoted as “Uniform”, “Skew”, and “Cluster”, respec-
tively. The Uniform data sets contain data points with
uniform distribution. The Skew and Cluster data sets are

(a) Tiger data (b) Skew data

(c) Cluster data

Figure 6: Experimental data

generated following the PR-tree paper [15]. A Skew data
set is generated from a Uniform data set by raising the y-
coordinates to their powers, i.e., the coordinates of a ran-
domly generated data point are converted from (x, y) to
(x, yα) where α ≥ 1. Figure 6b illustrates a Skew data set
where α = 9. The Cluster data set contains 10,000 clusters
with centers evenly distributed on a horizontal line. Each
cluster has 1,000 points following a uniform distribution in
a 0.00001× 0.00001 square around the center. Figure 6c il-
lustrates a portion of the Cluster data set with four clusters.

We vary query window size, data set size, and data skew-
ness in the experiments. The experimental parameters are
summarized in Table 2, where default values are in bold.

6.2 Results
We present the experimental results in this subsection.

6.2.1 Window Query Processing
We start with the window query performance of the R-

trees. We generate 100 queries at random locations in each
experiment. For ease of comparison, we follow previous
studies [15, 26, 30, 37] and report the average I/O cost per
query relative to the output size. Let the number of blocks
read for a query be I and the output size be k/B. We report
I/(k/B). Note that I/(k/B) ≥ 1, i.e., we need to at least
read all the blocks containing the data points in the query
answer. A smaller value of I/(k/B) is more preferable.

 1

 2

 4

 8

 16

 32

0.005 0.01 0.05 0.1 0.5 1 2

I/
O

 c
o
s
t

Query window size (%)

HR
HRR

PR
STR
TGS

ZR

Figure 7: Query I/O cost on Uniform data (varying
query window size)

Varying query window size. We first vary the area
of the query window from 0.005% to 2% of the data space.
Figure 7 shows the query I/O cost relative to the output size



k/B over 10 million uniform data points. A general obser-
vation is that the relative query costs of the R-trees created
by the various packing strategies decrease as the query win-
dow area increases. This is because a larger query window
overlapping a tree node has a better chance of overlapping
the data points in this node, i.e., there are lower percentages
of extra query I/Os that do not contribute to the output.

Meanwhile, the R-trees HRR and ZR created by the pro-
posed packing strategy have the smallest query I/O costs.
The advantage is more significant with smaller query win-
dows, e.g., when the query window area is 0.005% of the
data space, the query I/O costs of HRR and ZR are 60%
and 44% lower than that of PR, respectively (note the loga-
rithmic scale). HRR and ZR also outperform HR, STR, and
TGS. This demonstrates that HRR and ZR not only have an
asymptotically optimal cost in the worst case but also per-
form well in other cases. HRR in particular outperforms HR
by up to 42% when the query window area is 0.005%. This
advantage attributes to the rank space mapping before pack-
ing the data points. The proposed packing strategy effec-
tively incorporates the designs of both HR and STR, which
have reported good performance on non-extreme data.

We also notice that HRR outperforms ZR. This suggests
that when packing data points in the same rank space, the
Hilbert curve yields a better packed R-tree than the Z-curve
does. This result is consistent with an earlier study [34] that
compares the query performance of R-trees packed with the
Hilbert curve and the Z-curve in the same Euclidean space.

To help further understand the benefit of the proposed
packing strategy, we list the average output size (k/B) per
query as follows. For the seven different query window ar-
eas tested (i.e., from 0.005% to 2% of the data space size),
the output sizes are 4.96, 9.81, 48.44, 96.49, 466.82, 925.08,
and 1815.40, respectively. Based on these output sizes and
the relative query I/O costs shown in Fig. 7, we can de-
rive the absolute query I/O costs of the different R-trees.
For example, at query window area being 2%, the relative
query I/O costs of HRR, PR, and ZR are 1.09, 1.13, and
1.11, which correspond to 1978.79 (1815.40× 1.09), 2051.40
(1815.40× 1.13), and 2015.09 (1815.40× 1.11) I/Os, respec-
tively. This means that HRR and ZR have 72.61 and 36.31
fewer I/Os than PR, respectively. While these numbers
might seem small, they are improvements per query. For
target applications such as digital mapping, there can be
millions of user queries to be processed at the same time.
The accumulated benefit of HRR and ZR over such a large
number of queries is non-trivial.

 1

 2

 4

 8

 16

 32

0.5 1 5 10 20

I/
O

 c
o
s
t

Data set size (million)

HR
HRR

PR
STR
TGS

ZR

Figure 8: Query I/O cost on Uniform data (varying
data set cardinality)

Varying data set cardinality. Next, we vary the data
set cardinality from 0.5 to 20 million while keeping the query
window size at 0.01% of the data space (output size ranging
from 0.49 to 19.54). We see from Fig. 8 that HRR and ZR
outperform PR consistently by reducing about 50% and 30%
of the relative query I/O costs, respectively. For fairness, the
PR-tree is designed for rectangles. It may not be optimal
on point data for which HRR and ZR are designed. HR
and STR have closer query performance to that of HRR
and ZR, for that they share similar design with HRR and
ZR. However, ZR still has a lower cost when the data set
cardinality exceeds one million, while HRR has the lowest
cost constantly. This again demonstrates the advantage of
using the rank space for indexing. The performance of TGS
fluctuates the most. It relies on a heuristic optimization
function when packing the data points, i.e., minimizing the
area of the MBRs, which may not be optimal for all cases.

 2

 4

 6

 8

 10

 12

 14

 16

1 3 5 7 9

I/
O

 c
o
s
t

Skewness

HR

HRR

PR

STR

TGS

ZR

Figure 9: Query I/O cost on Skew data

Varying skewness. Figure 9 shows the query I/O per-
formance on Skew data where the skewness parameter α is
varied from 1 to 9 (output size ranging from 9.81 to 4.75).
As the skewness increases, the relative I/O costs of all the
R-trees increase except for the TGS R-tree. This is natural
as more skewed data makes it more difficult to reduce over-
laps between the MBRs of different tree nodes, leading to
more blocks being accessed for query processing. TGS is an
exception. Its MBR minimizing optimization function leads
to better packing for more skewed data. Regardless of this,
HRR and ZR still outperform TGS and the other packing
strategies. Their relative query I/O costs are up to 57% and
40% lower than those of PR, respectively. STR is again the
closest for that it shares a similar packing strategy with ZR.

 1

 2

 4

 8

0.005 0.01 0.05 0.1 0.5 1 2

I/
O

 c
o
s
t

Query window size (%)

HR
HRR

PR
STR
TGS

ZR

Figure 10: Query I/O cost on Tiger data



Tiger data. Figure 10 shows the relative query I/O cost
on Tiger data where the query window size is varied (output
size ranging from 7.77 to 3950.92). The query performance
comparison of the different R-tree packing strategies is very
similar to that on Uniform data (Fig. 7). HRR and ZR
again have the smallest relative query I/O costs. HRR out-
performs PR consistently, while ZR outperforms PR when
the query window area is within 1% of the data space, and
the advantage is up to 41% when the query window area
is 0.005% of the data space. HRR and ZR also outperform
HR, STR, and TGS. This confirms the superiority of HRR
and ZR in that they not only have an optimal cost in the
worst case but also perform well in practice.

Cluster data. The Cluster data set is designed to test
the worst-case performance of the R-trees. Following the
PR-tree paper [15], we generate long and thin window queries
each with an area of 10−7 to query this data set. The
bottom-left (bottom-right) corner of each query is randomly
placed to the left (right) of the leftmost (rightmost) cluster,
such that the query spans all 10,000 clusters. The height of
the query is generated as the area 10−7 divided by the query
width. Such queries have an average output size of 980.23.

Table 3: Query I/O Cost on Cluster Data

Tree HR HRR PR STR TGS ZR

I/O cost 102.57 1.46 2.00 2.21 2.32 1.76

Table 3 shows the query I/O cost relative to the output
size k/B. Since the Cluster data set was designed to reflect
the worst-case scenario, the query performance of all pack-
ing strategies is worse than that on the previous data sets
tested. The query performance of HR degrades the most, as
HR does not have a bound on worst-case performance. In
contrast, HRR still has the lowest query I/O cost, which at-
tributes to the rank space mapping. HRR, PR, and ZR are
all asymptotically optimal in the worst case. They show the
best performance on this data set, with HRR and ZR out-
performing PR by 27% and 12%, respectively. STR is not
worst-case optimal, but its packing strategy resembles that
of ZR, and hence its performance is only 20% worse than
that of ZR. TGS benefits from its top-down optimization
strategy, but still has a 32% higher cost than ZR.

6.2.2 Bulk-loading
This subsection reports the R-tree bulk-loading perfor-

mance. We implemented both the standalone bulk-loading
algorithm described in Section 3.2 and the parallel bulk-
loading algorithm described in Section 4.2. For the stan-
dalone algorithm, we measure both the I/O and the response
time (denoted as “ZR”). For the parallel algorithm, we mea-
sure (i) the response time (denoted as “ZR-R”), which is
the duration for which the algorithm runs, and (ii) the run-
ning time T (denoted as “ZR-M”), which is the sum of
the maximum single machine response time over all MapRe-
duce rounds, and (iii) the communication time (denoted as
“ZR-C”), which is the part of the response time spent on
communication. For comparison, we also implemented a
level-by-level parallel bulk-loading algorithm based on the
proposed packing strategy and measured its response time
(denoted as “L-R”), running time (denoted as “L-M”), and
communication time (denoted as “L-C”). We do not mea-
sure the I/O cost of the parallel algorithms because they are

based on Spark which has a different I/O mechanism from
those of the standalone algorithms based on TPIE.

We also implemented the bulk-loading algorithm for the
proposed packing strategy using the Hilbert curve. We de-
note the standalone implementation as “HRR”. As Figs. 11
and Fig. 12a show, HRR and ZR have very similar bulk-
loading I/O and time costs. This is expected as they only
differ in the curve used. Similar observation is made on
the parallel implementation of the algorithms. To keep the
figures concise, we omit the parallel HRR algorithm.

10
4

10
5

10
6

10
7

10
8

0.5 1 5 10 20

I/
O

 c
o

s
t

Data set size (million)

HR
HRR

PR
STR
TGS

ZR

Figure 11: Bulk-loading I/O cost on Uniform data

Varying data set cardinality. We first vary the data
set cardinality. Figure 11 shows the bulk-loading I/O costs,
which increase with the data set cardinality as expected.
The advantage of HRR and ZR in bulk-loading I/O cost is
less obvious compared with that in query I/O cost. Both
HR and STR outperform HRR and ZR in I/O cost, because
they require fewer rounds of sorting. HR only sorts on the
Hilbert-order values, while STR only sorts on the coordi-
nates. Even though HR and STR have lower bulk-loading
costs, their query performance can be much worse than that
of HRR and ZR, as shown above. PR has a slightly smaller
I/O cost than those of HRR and ZR at start but its I/O
cost increases faster. The I/O costs of HRR and ZR be-
come smaller when the data set cardinality exceeds 10 mil-
lion. This can be explained by that PR needs to construct
a pseudo-PR-tree for bulk-loading each level of the target
R-tree. As there are more data points, the pseudo-PR-tree
becomes taller and takes more I/Os to construct. TGS has
the highest bulk-loading I/O cost. This is due to its repeti-
tive data access for optimization function computation.

Figure 12a shows the bulk-loading time of the standalone
algorithms. The comparative performance of the algorithms
is similar to that on I/O costs (Fig. 11). The running time
of HRR and ZR grows slower than that of PR; HRR and ZR
outperform PR for data set cardinality over 10 million.

Figure 12b shows the communication time (ZR-C), run-
ning time (ZR-M), and response time (ZR-R) of the pro-
posed parallel bulk-loading algorithm. We scale the parallel
algorithm to 100 million points. ZR-C, ZR-M, and ZR-R are
consistently smaller than their level-by-level counterparts L-
C, L-M, and L-R. ZR-C is up to 42% smaller than L-C due
to the smaller number of communication rounds of the pro-
posed algorithm, while ZR-M is only up to 5% smaller than
L-M since both algorithms perform similar computations.
Together, the overall response time ZR-R is up to 9% smaller
than L-R. Note that the response time includes the time to
write the bulk-loaded R-tree back to a single machine for
query processing. This writing requires a large number of



Table 4: Bulk-loading Time Cost on Tiger and Cluster Data (Second)

HR HRR PR STR TGS ZR ZR-C ZR-M ZR-R L-C L-M L-R

Tiger 202.84 588.99 530.06 192.47 1934.73 516.31 28.41 133.69 487.17 31.23 145.34 501.76
Cluster 76.21 256.78 196.04 86.58 895.90 222.35 15.19 80.12 276.54 23.32 84.67 290.27

10
0

10
1

10
2

10
3

10
4

0.5 1 5 10 20

R
e
s
p
o

n
s
e

 t
im

e
 (

s
)

Data set size (million)

HR
HRR

PR
STR
TGS

ZR

(a) Standalone algorithms

10
1

10
2

10
3

10
4

10 20 40 60 80 100

T
im

e
 (

s
)

Data set size (million)

L-C
L-M
L-R

ZR-C
ZR-M
ZR-R

(b) Distributed algorithms

Figure 12: Bulk-loading time cost on Uniform data

I/Os on a single machine, which makes up for about two
thirds of the response time and is the same for both algo-
rithms. The benefit of the proposed algorithm would be
more significant if this writing time is left out. Also, the
improvements are obtained over R-trees with relatively low
heights (e.g., 4 for 100 million data points), where the exe-
cution of the proposed parallel algorithm and the level-by-
level parallel algorithm differs by no more than two rounds.
When the tree height gets larger and there are more rounds,
the performance improvement is expected to be higher.

Meanwhile, by comparing Figs. 12a and 12b, we see that,
on 10 million data points, both the response time (ZR-R,
192.56 seconds) and the running time (ZR-M, 58.44 seconds)
of the proposed parallel algorithm are smaller than the run-
ning time of the standalone implementation ZR (229.18 sec-
onds) and the baseline algorithm PR (196.81 seconds). The
advantage of the running time ZR-M over PR is 70%, and
this advantage grows with the data set size (e.g., 86% on
20 million data points), demonstrating the scalability of the
proposed parallel algorithm.

Tiger and Cluster data. Table 4 shows the algorithm
running times on Tiger and Cluster data. The comparative
performance of the algorithms is again similar to that on
Uniform data. The advantage of the proposed bulk-loading
strategy becomes more significant as there are more data

points. On Tiger data (17 million points), ZR-M is the
smallest, while ZR and ZR-R are smaller than PR. On Clus-
ter data (10 million points), ZR-M is close to both HR and
STR, while ZR is close to PR. This demonstrates the ro-
bustness of the proposed bulk-loading strategy. The level-
by-level parallel bulk-loading algorithm has both higher re-
sponse time (L-R) and running time (L-M) than those of the
proposed parallel bulk-loading algorithm. This again justi-
fies the advantage of the proposed algorithm over the simple
level-by-level parallel bulk-loading algorithm.

Experiments on Skew data show similar patterns, and the
results are omitted for conciseness.

7. CONCLUSIONS
We revisited a classic spatial index, the R-tree, and pro-

posed an R-tree packing strategy to construct R-trees that
are worst-case optimal and practically efficient for query pro-
cessing. This packing strategy maps data points into a rank
space where the points are packed by their Z-order values.
Mapping into a rank space avoids data points with the same
coordinates. This overcomes the difficulty of space-filling
curve based indices in offering optimal query performance in
worst-case scenarios [15, 52]. It results in an R-tree structure

that can answer a window query with O((n/B)1−1/d+k/B)
I/Os in the worst case, which is asymptotically optimal. Ex-
periments on both real and synthetic data confirmed the
query efficiency of such an R-tree: on real data, the query
I/O cost of the R-tree is up to 44% lower than that of PR-
trees and similar to that of STR-trees; on highly skewed syn-
thetic data, the query I/O cost of the R-tree is 12% lower
than that of PR-trees and 20% lower than that of STR-trees.
Another advantage of this packing strategy is that it only
relies on sorting, which well suits parallel bulk-loading of
R-trees over large data sets. We proposed a parallel R-tree
bulk-loading algorithm based on this packing strategy using
the MapReduce model. The algorithm takes only O(logs n)
rounds of computation to bulk-load an R-tree. It outper-
forms the PR-tree bulk-loading algorithm in running time
by 86% on large data sets with 20 million data points.

For future work, we plan to investigate algorithms to han-
dle data updates without compromising the worst-case opti-
mal query performance. Also, applying the rank space map-
ping technique over other spatial indices such as quad-trees
and GiMP [50] to obtain worst-case optimal query perfor-
mance would be an interesting direction to explore.

8. ACKNOWLEDGMENTS
This work is supported by Australian Research Council

(ARC) Future Fellowships Project FT120100832 and Dis-
covery Project DP130104587, The University of Melbourne
Early Career Researcher Grant (Project Number: 603049), a
direct grant (Project Number: 4055079) from The Chinese
University of Hong Kong, and a Faculty Research Award
from Google.



9. REFERENCES
[1] http://www.pokemongo.com.

[2] http://en.wikipedia.org/wiki/Google_Search.

[3] https://www.wired.com/2016/09/

pokemon-go-just-fine-without/.

[4] http://www.microsoft.com/sqlserver/2008/en/us/

spatial-data.aspx.

[5] http://download.oracle.com/otndocs/products/

spatial/pdf/spatial_features_jsirev.pdf.

[6] https://www.cse.ust.hk/~yike/prtree/.

[7] http://madalgo.au.dk/tpie/.

[8] https://nectar.org.au/.

[9] https://www.census.gov/geo/maps-data/data/

tiger-line.html.

[10] D. Achakeev, M. Seidemann, M. Schmidt, and
B. Seeger. Sort-based parallel loading of r-trees. In 1st
ACM SIGSPATIAL International Workshop on
Analytics for Big Geospatial Data, pages 62–70, 2012.

[11] P. K. Agarwal, L. Arge, O. Procopiuc, and J. S.
Vitter. A framework for index bulk loading and
dynamization. In 28th International Colloquium on
Automata, Languages and Programming, pages
115–127, 2001.

[12] P. K. Agarwal, M. de Berg, J. Gudmundsson,
M. Hammar, and H. J. Haverkort. Box-trees and
r-trees with near-optimal query time. In 17th Annual
Symposium on Computational Geometry (SCG), pages
124–133, 2001.

[13] P. K. Agarwal, K. Fox, K. Munagala, and A. Nath.
Parallel algorithms for constructing range and
nearest-neighbor searching data structures. In PODS,
pages 429–440, 2016.

[14] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev.
Parallel algorithms for geometric graph problems. In
STOC, pages 574–583, 2014.

[15] L. Arge, M. D. Berg, H. Haverkort, and K. Yi. The
priority r-tree: A practically efficient and worst-case
optimal r-tree. ACM Transactions on Algorithms,
4(1):9:1–9:30, 2008.

[16] P. Beame, P. Koutris, and D. Suciu. Communication
steps for parallel query processing. In PODS, pages
273–284, 2013.

[17] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The r*-tree: An efficient and robust access
method for points and rectangles. In SIGMOD, pages
322–331, 1990.

[18] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[19] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The
x-tree : An index structure for high-dimensional data.
In VLDB, pages 28–39, 1996.

[20] M. Berg, M. Kreveld, M. Overmars, and O. C.
Schwarzkopf. Computational Geometry. Springer
Berlin Heidelberg, 2000.

[21] B. Chazelle. Functional approach to data structures
and its use in multidimensional searching. SIAM
Journal on Computing, 17(3):427–462, 1988.

[22] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[23] D. J. DeWitt, N. Kabra, J. Luo, J. M. Patel, and
J.-B. Yu. Client-server paradise. In VLDB, pages
558–569, 1994.

[24] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling
and related techniques for geometry problems. In
STOC, pages 135–143, 1984.

[25] V. Gaede and O. Günther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231,
1998.

[26] Y. J. Garćıa R, M. A. López, and S. T. Leutenegger.
A greedy algorithm for bulk loading r-trees. In 6th
ACM International Symposium on Advances in
Geographic Information Systems, pages 163–164, 1998.

[27] M. T. Goodrich. Communication-efficient parallel
sorting. SIAM Journal on Computing, 29(2):416–432,
1999.

[28] R. Grossi and G. F. Italiano. Efficient cross-trees for
external memory. In J. M. Abello and J. S. Vitter,
editors, External Memory Algorithms and
Visualization, pages 87–106, 1999.

[29] A. Guttman. R-trees: A dynamic index structure for
spatial searching. In SIGMOD, pages 47–57, 1984.

[30] H. Haverkort and F. V. Walderveen. Four-dimensional
hilbert curves for r-trees. Journal of Experimental
Algorithmics, 16:1–19, 2008.

[31] H. V. Jagadish. Spatial search with polyhedra. In
ICDE, pages 311–319, 1990.

[32] H. V. Jagadish. Analysis of the hilbert curve for
representing two-dimensional space. Information
Processing Letters, 62(1):17–22, 1997.

[33] I. Kamel and C. Faloutsos. Parallel r-trees. In
SIGMOD, pages 195–204, 1992.

[34] I. Kamel and C. Faloutsos. Hilbert r-tree: An
improved r-tree using fractals. In VLDB, pages
500–509, 1994.

[35] K. V. R. Kanth and A. K. Singh. Optimal dynamic
range searching in non-replicating index structures. In
ICDT, pages 257–276, 1999.

[36] N. Koudas, C. Faloutsos, and I. Kamel. Declustering
spatial databases on a multi-computer architecture. In
EDBT, pages 592–614, 1996.

[37] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez.
STR: A simple and efficient algorithm for r-tree
packing. Technical report, 1997.

[38] A. Mondal, M. Kitsuregawa, B. C. Ooi, and K. L.
Tan. R-tree-based data migration and self-tuning
strategies in shared-nothing spatial databases. In 9th
ACM International Symposium on Advances in
Geographic Information Systems, pages 28–33, 2001.

[39] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H.
Saltz. Analysis of the clustering properties of the
hilbert space-filling curve. IEEE Transactions on
Knowledge and Data Engineering, 13(1):124–141,
2001.

[40] Y. Ohsawa and M. Sakauchi. A new tree type data
structure with homogeneous nodes suitable for a very
large spatial database. In ICDE, pages 296–303, 1990.

[41] J. A. Orenstein and T. H. Merrett. A class of data
structures for associative searching. In PODS, pages
181–190, 1984.

[42] A. Papadopoulos and Y. Manolopoulos. Parallel
bulk-loading of spatial data. Parallel Computing,



29(10):1419–1444, 2003.

[43] N. Roussopoulos and D. Leifker. Direct spatial search
on pictorial databases using packed r-trees. In
SIGMOD, pages 17–31, 1985.

[44] B. Schnitzer and S. T. Leutenegger. Master-client
r-trees: a new parallel r-tree architecture. In SSDBM,
pages 68–77, 1999.

[45] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
r+-tree: A dynamic index for multi-dimensional
objects. In VLDB, pages 507–518, 1987.

[46] Y. Tao, W. Lin, and X. Xiao. Minimal mapreduce
algorithms. In SIGMOD, pages 529–540, 2013.

[47] P. Xu and S. Tirthapura. Optimality of clustering
properties of space-filling curves. ACM Transactions
on Database Systems, 39(2):10:1–10:27, 2014.

[48] S. You, J. Zhang, and L. Gruenwald. Parallel spatial
query processing on gpus using r-trees. In 2nd ACM

SIGSPATIAL International Workshop on Analytics
for Big Geospatial Data, pages 23–31, 2013.

[49] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In 2nd USENIX Conference on Hot
Topics in Cloud Computing, pages 10–10, 2010.

[50] R. Zhang, P. Kalnis, B. C. Ooi, and K. Tan.
Generalized multidimensional data mapping and
query processing. ACM Transactions on Database
Systems, 30(3):661–697, 2005.

[51] R. Zhang, B. C. Ooi, and K.-L. Tan. Making the
pyramid technique robust to query types and
workloads. In ICDE, pages 313–324, 2004.

[52] R. Zhang, J. Qi, M. Stradling, and J. Huang. Towards
a painless index for spatial objects. ACM Transactions
on Database Systems, 39(3):19:1–19:42, 2014.


