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ABSTRACT

A hidden database refers to a dataset that an organization makes

accessible on the web by allowing users to issue queries through

a search interface. In other words, data acquisition from such a

source is not by following static hyper-links. Instead, data are ob-

tained by querying the interface, and reading the result page dy-

namically generated. This, with other facts such as the interface

may answer a query only partially, has prevented hidden databases

from being crawled effectively by existing search engines.

This paper remedies the problem by giving algorithms to extract

all the tuples from a hidden database. Our algorithms are provably

efficient, namely, they accomplish the task by performing only a

small number of queries, even in the worst case. We also establish

theoretical results indicating that these algorithms are asymptoti-

cally optimal – i.e., it is impossible to improve their efficiency by

more than a constant factor. The derivation of our upper and lower

bound results reveals significant insight into the characteristics of

the underlying problem. Extensive experiments confirm the pro-

posed techniques work very well on all the real datasets examined.

1. INTRODUCTION
It is known that existing search engines can reach only a

small portion of the Internet. They crawl HTML pages inter-

connected with hyper-links, which constitute the so-called surface

web. Nowadays, an increasing number of organizations (e.g., com-

panies, governments, institutions, etc.) bring their data online, by

allowing a public user to query their back-end databases through

context-dependent web interfaces. More specifically, data acqui-

sition is performed by interacting with the interface at runtime,

as opposed to following hyper-links. As a result, those back-end

databases cannot be effectively crawled by a search engine under
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Make Body style Price Mileage

BMW sedan $17,500 68,647 mi
BMW sedan $17,500 76,072 mi
BMW coupe $3,299 158,573 mi
BMW convertible $50,000 5,231 mi

· · ·
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Figure 1: Form-based querying of a hidden database

the current technology, and therefore, are usually referred to as hid-

den databases.

Consider, for example, Yahoo! Autos (autos.yahoo.com), a

popular website for online trading of automobiles. A potential

buyer specifies her/his filtering criteria through a form as illus-

trated in Figure 1. The query is submitted to the system, which

runs it against the back-end database, and returns the result to the

user. What makes it non-trivial (for a search engine) to crawl the

database is that, setting all search criteria to ANY does not accom-

plish the task. The reason is that a system typically limits the num-

ber k of tuples returned (k = 1000 for Yahoo! Autos, at the time

this paper was written), and that repeating the same query may not

retrieve new tuples, i.e., the same k tuples may always be returned.

The ability of crawling a hidden database comes with the ap-

pealing promise of enabling virtually any form of processing on

the database’s content. The challenge, however, is clear: how to

obtain all the tuples, given that the system limits the number of re-

turn tuples for each query? A naive solution is to issue a query for

every single location in the data space (e.g., in Figure 1, the data

space is the Cartesian product1 of the domains of MAKE, BODY

STYLE, PRICE, and MILEAGE), but the number of queries needed

can obviously be prohibitive. This gives rise to an interesting prob-

lem, as we define in the next subsection, where the objective is to

minimize the number of queries.

1.1 Problem definitions
We consider that the data space D has d attributes A1, ..., Ad,

each of which has a discrete domain. Specifically, denote by

dom(Ai) the domain of Ai for each i ∈ [1, d]; then, D is the Carte-

sian product of dom(A1), ..., dom(Ad). We refer to each element

1While one may leverage knowledge of attribute dependencies -
e.g., BMW does not sell trucks in the US - to prune the data space
into a subset of the Cartesian product, the subset is often still too
large to enumerate.



of the Cartesian product as a point in D, i.e., a point is a possible

combination of values of all dimensions.

Depending on whether there is a total ordering on dom(Ai) or

not, we call Ai a numeric or categorical attribute, respectively. Our

discussion distinguishes three types of D:

• Numeric: all the d attributes of D are numeric.

• Categorical: all the d attributes are categorical. In this case,

we use Ui to represent the size of dom(Ai), i.e., how many

distinct values there are in dom(Ai).

• Mixed: the first cat ∈ [1, d − 1] attributes A1, ..., Acat are

categorical, whereas the other d− cat attributes are numeric.

Similar to before, let Ui = |dom(Ai)| for each i ∈ [1, cat].

To facilitate presentation, we consider that the domain of a numeric

Ai to be the set of all integers, whereas that of a categorical Ai to

be the set of integers from 1 to Ui. Keep in mind, however, that the

ordering of these values is irrelevant to a categorical Ai.

Let D be the hidden database of a server with each element of

D being a point in D. To avoid ambiguity, we will always refer to

elements of D as tuples. D is a bag (i.e., a multi-set), that is, it may

contain identical tuples.

The server supports queries on D. As shown in Figure 1, each

query specifies a predicate on each attribute. Specifically, if Ai is

numeric, the predicate is a range condition in the form of

Ai ∈ [x, y]

where [x, y] is an interval in dom(Ai). On the other hand, for a

categorical Ai, the predicate is:

Ai = x

where x is either a value in dom(Ai) or a wildcard ⋆. In particular,

a predicate Ai = ⋆ means that Ai can be an arbitrary value in

dom(Ai), i.e., capturing BODY STYLE = ANY in Figure 1. Note

that if a hidden database server only allows single-value predicates

(i.e., no range-condition support) on a numeric attribute, then we

can simply consider the attribute as categorical.

Given a query q, denote by q(D) the bag of tuples in D qualify-

ing all the predicates of q. The server does not necessarily return

the entire q(D) – it does so only when q(D) is small. Formally, the

response of the server is:

• if |q(D)| ≤ k: the entire q(D) is returned. In this case, we

say that q is resolved.

• Otherwise: only k tuples2 in q(D) are returned, together with

a signal indicating that q(D) still has other tuples. In this

case, we say that q overflows.

The value of k is a system parameter (e.g., k = 1000 for Yahoo!

Autos, as mentioned earlier). It is important to note that, in case a

query q overflows, repeatedly issuing the same q may always get

the same response from the server, and does not help to obtain the

other tuples in q(D).
The problem addressed by this paper is:

PROBLEM 1. (HIDDEN DATABASE CRAWLING) Retrieve the

entire D while minimizing the number of queries.

2In practice, these are usually the k tuples that have the highest pri-
orities (e.g., according to a ranking function) among all the tuples
qualifying the query.

Recall that D is a bag, i.e., it may have duplicate tuples. We re-

quire that no point in the data space D have more than k tuples in

D. Otherwise, Problem 1 has no solution at all. To see this, con-

sider the existence of k+1 tuples t1, ..., tk+1 in D, all of which are

equivalent to a point p ∈ D. Then, whenever p satisfies a query, the

server can always choose to leave tk+1 out of its response, making

it impossible for any algorithm to extract the entire D. Note that, in

Yahoo! Autos, the previous requirement essentially states that there

cannot be k = 1000 vehicles in the database having exactly the

same values on all attributes – an assumption that is fairly realistic.

As mentioned in Problem 1, the cost of an algorithm is the num-

ber of queries issued. This metric is motivated by the fact that, most

systems have a control on how many queries can be submitted by

the same IP address within a period of time (e.g., a day). Therefore,

a crawler must minimize the number of queries to get the task done,

besides bringing the burden of the server to the lowest level.

We will use n to denote the number of tuples in D. It is clear that

the number of queries needed to extract the entire D is at least n/k.

Of course, this ideal cost may not always be possible. Hence, the

central (technical) questions to be answered are two-fold. First, on

the upper bound side, how to solve Problem 1 by performing only

a small number of queries even in the worst case? Second, on the

lower bound side, how many queries are compulsory for solving

the problem in the worst case?

1.2 Our results
This paper presents a systematic study of hidden database crawl-

ing as defined in Problem 1. At a high level, our first contribution is

a set of algorithms that are both provably fast in the worst case, and

efficient on practical data. Our second contribution is a set of lower-

bound results establishing the hardness of the problem. These re-

sults make explicit how the hardness is affected by the underlying

factors, and thus reveal valuable insights into the characteristics of

the problem. Furthermore, the lower bounds also prove that our

algorithms are already optimal asymptotically, i.e., they cannot be

improved by more than a constant factor.

Our first main result is:

THEOREM 1. There is an algorithm for solving Problem 1

whose cost is:

• O(d · n
k
) when D is numeric;

• at most U1 when D is categorical and cat = 1 (i.e., there is

only one categorical attribute);

• at most n
k
·
∑d

i=1
min{Ui,

n
k
} +

∑d
i=1

Ui when D is cate-

gorical and cat > 1;

• at most U1 +O(d · n
k
) when D is mixed and cat = 1;

• otherwise (i.e., D is mixed and cat > 1): at most

n

k
·

cat
∑

i=1

min
{

Ui,
n

k

}

+
cat
∑

i=1

Ui +O
(

(d− cat)
n

k

)

.

The above can be conveniently understood as follows: our algo-

rithm pays an (additive) cost of O(n/k) for each numeric attribute

Ai, whereas it pays n
k
·min{Ui,

n
k
}+ Ui for each categorical Ai.

The only exception is when cat = 1: in this scenario, we pay

merely U1 for the (only) categorical attribute A1. Notice that the

cost on each numeric attribute is irrelevant to its domain size.

Our second main result complements the preceding one:

THEOREM 2. None of the results in Theorem 1 can be improved

by more than a constant factor in the worst case.



Besides establishing the optimality of our upper bounds in The-

orem 1, Theorem 2 has its own interesting implications. First, it in-

dicates the unfortunate fact that, for all types of D, the best achiev-

able query time (in the worst case) is much higher than the ideal

cost of n/k (nevertheless, Theorem 1 suggests that we can achieve

this cost asymptotically when d is a constant and all attributes are

numeric). Second, as the number cat of categorical attributes in-

creases from 1 to 2, the discrepancy of the time complexities in

Theorem 1 is not an artifact, but rather, it is due to an inherent

leap in the hardness of the problem (this is true regardless of the

number of numeric attributes). That is, while we pay only O(U1)
extra queries for the (sole) categorical attribute when cat = 1, as

cat grows to 2 and onwards, the cost paid (by any algorithm) for

each categorical Ai has an extra term of n
k
min{Ui,

n
k
}. Given

that the term is multiplicative, this finding implies (perhaps surpris-

ingly) that, in the worst case, it may be infeasible to crawl a hidden

database with a large size n, and at least 2 categorical attributes

such that at least one of them has a large domain.

We have performed extensive experiments to evaluate the effi-

ciency of the proposed algorithms on real datasets, and demonstrate

that they demand significantly fewer queries than alternative solu-

tions. Our experimentation also reveals that the number of queries

needed to crawl a hidden database may be far less than previously

thought; for example, for k = 1000, around 200 queries already

suffice for crawling a dataset containing 69,768 tuples from the hid-

den database at Yahoo! Autos. This phenomenon suggests that, for

a search engine, crawling a hidden database may no longer be a

goal of tomorrow, whereas for a data provider, permitting an en-

gine to crawl its database is not expected to impose a heavy toll on

its workload.

1.3 Practical remarks

Domain values. In our problem definition, the crawler should

know the domains of the categorical attributes (note that this is-

sue is irrelevant to numerical attributes, whose domains can always

be considered to be (−∞,∞)). For some websites, the domains

of all attributes are explicitly provided such that our algorithms can

be applied immediately. For example, this is the case for Yahoo!

Autos, where all the values of, say, MAKE can be seen from the

pull-down menu of its query interface. For other websites, before

using our technique, the crawler needs to first discover the domain

values of categorical attributes. Domain discovery has been stud-

ied in [15], and can be accomplished with a number of effective

algorithms.

Attribute dependency. As mentioned in the above discussions, be-

cause of attribute dependencies in a practical hidden database, not

all the points in the data space D can contain a tuple. For example,

with proper external knowledge of the dependency between MAKE

and BODY STYLE, one does not need to explore points with MAKE

= BMW and BODY STYLE = TRUCK. While knowledge of at-

tribute dependencies is not considered in this paper, please note that

our upper bound results still hold even in scenarios where attribute

dependencies exist. In other words, even if our algorithm may is-

sue some unnecessary queries, the number of queries needed can

nonetheless still be limited under the claimed bounds, as is exactly

the merit of Theorem 1. In practice, there is an obvious heuristic

for adapting our algorithm to account for attribute dependencies:

the crawler issues a query demanded by our algorithm only if the

query covers at least one valid point in D (according to the crawler’s

dependency knowledge). The query cost can only go down, i.e.,

still guaranteed to be below our upper bounds.

Acquisition of knowledge about attribute dependencies requires

dedicated efforts to analyze the hidden database at a particular web-

site – efforts that obviously cannot be afforded by the crawler for all

websites. The implication is thus that the crawler may not be aware

of the latent attribute dependencies at many of the websites being

crawled. This is where our lower bound results come into place:

they indicate the ultimate worst-case efficiency that the crawler can

possibly achieve in these environments: a piece of information vital

for the crawler’s design.

1.4 Previous work
A significant body of research has been carried out on how to ex-

tract, integrate, and analyze data from the deep web, a general term

referring to the entire collection of online information unreachable

by search engines (including, but not limited to, hidden databases).

As explained below, however, the issues that have been addressed

by the existing work are all orthogonal to this paper.

Most relevant to our work are the previous studies on crawl-

ing hidden text-based [1, 5, 18, 20] and structured [2, 7, 16, 17, 19]

databases. The focus of those studies is how to formulate queries

to retrieve meaningful results. More specifically, the primary chal-

lenge in [1,5,18,20], where the query interface is a keyword-based

(Google-like) form, is to discover legitimate query keywords. On

the other hand, the main objective in [2, 7, 16, 17, 19], where the

query interface is an HTML-form like the one in Figure 1, is to ex-

pose combinations of input values suitable for filling in the form. In

this paper, we are not concerned with mining effective queries, but

instead, attack directly how to acquire a complete hidden database

with the smallest number of queries (see Problem 1).

Also relevant is the literature of data analytics in deep web. In

this vein, a main stream is to investigate how sampling can be

deployed to perform, for example, content summary generation

[8, 14], top-k retrieval [6], aggregate estimation [9], measurement

of various metrics of search engines [3,4], and so on. The crawling

techniques proposed in this paper aim at enabling a much broader

class of applications (e.g., virtually any query on the database, as

described earlier), which otherwise would not be possible if only a

sample of the hidden database could be obtained.

It is worth mentioning that, there has been considerable research

on other problems related to the deep web, which, however, are

only remotely related to our work. While a complete survey is out

of the scope of this paper, entry points for further reading can be

found in [10, 21] on parsing and understanding web interfaces, in

[13] on attribute mapping across different interfaces, and in [11,12]

for integrating the query interfaces of multiple hidden databases.

2. NUMERICAL ATTRIBUTES
This section will explain how to solve Problem 1 when the data

space D is numeric. In Section 2.1, we first define some atomic

operators, and present an algorithm that is intuitive, but has no at-

tractive performance bounds. Then, in Sections 2.2 and 2.3, we

present another algorithm to achieve the optimal performance.

2.1 Basic operations and baseline algorithm
Recall that, in a numeric D, the predicate of a query q on each

attribute is a range condition. Thus, q can be regarded as a d-

dimensional (axis-parallel) rectangle, such that its result q(D) con-

sists of the tuples of D covered by that rectangle. If the predicate of

q on attribute Ai (i ∈ [1, d]) is Ai ∈ [x1, x2], we say that [x1, x2]
is the extent of the rectangle of q along Ai. Henceforth, we may

use symbol q to refer to its rectangle also, when no ambiguity can

be caused. Clearly, settling Problem 1 is equivalent to determining

the entire q(D) where q is the rectangle covering the whole D.

Split. A fundamental idea to extract all the tuples in q(D) is to

refine q into a set S of smaller rectangles, such that each rectangle
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q′ ∈ S can be resolved (i.e., q′(D) has at most k tuples). Note that

this always happens as long as rectangle q′ is sufficiently small –

in the extreme case, when q′ has degenerated into a point in D, the

query q′ is definitely resolved (otherwise, there would be at least

k+1 tuples of D at this point). Therefore, a basic operation in our

algorithms for Problem 1 is split, as described next.

Given a rectangle q, we may perform two types of splitting, de-

pending on how many rectangles q is divided into:

• 2-way split: Let [x1, x2] be the extent of q on Ai (for some

i ∈ [1, d]). A 2-way split at a value x ∈ [x1, x2] partitions

q into rectangles qleft and qright, by dividing the Ai-extent

of q at x. Formally, on any attribute other than Ai, qleft and

qright have the same extents as q. Along Ai, however, the

extent qleft is [x1, x − 1], whereas that of qright is [x, x2].
Figure 2a illustrates the idea by splitting on the horizontal

attribute.

• 3-way split: Let [x1, x2] be defined as above. A 3-way split

at a value x ∈ [x1, x2] partitions q into rectangles qleft,
qmid and qright as follows. On any attribute other than Ai,

they have the same extent as q. Along Ai, however, the ex-

tent of qleft is [x1, x − 1], that of qmid is [x, x], and that of

qright is [x+ 1, x2]. See Figure 2b.

In the sequel, a 2-way split will be abbreviated simply as a split.

No confusion can arise as long as we always mention 3-way in re-

ferring to a 3-way split. The extent of a query q on an attribute Ai

can become so short that it covers only a single value, in which case

we say that Ai is exhausted on q. For instance, the horizontal at-

tribute is exhausted on qmid in Figure 2b. It is easy to see that there

is always a non-exhausted attribute on q unless q has degenerated

into a point.

Binary shrink. Next, we describe a straightforward algorithm for

solving Problem 1, which will serve as the baseline approach for

comparison. This algorithm, named binary-shrink, repeatedly per-

forms (2-way) splits until a query is resolved. Specifically, given a

rectangle q, binary-shrink runs the rectangle (by submitting its cor-

responding query to the server) and finishes if q is resolved. Oth-

erwise, the algorithm splits q on an attribute Ai that has not been

exhausted, by cutting the extent [x1, x2] of q along Ai into equally

long intervals (i.e., the split is performed at x = ⌈(x1 + x2)/2⌉).

Let qleft, qright be the queries produced by the split. The algorithm

then recurses on qleft and qright, respectively.

Remark. It is obvious that the cost of binary-shrink (i.e., the num-

ber of queries issued) depends on the domain sizes of the (numeric)

attributes of D, which can be unbounded. In the following subsec-

tions, we will improve this algorithm to optimality.

2.2 One­dimensional case
Before giving our ultimate algorithm for settling Problem 1 of

any dimensionality d, in this subsection we first explain how it

works for d = 1. This will clarify the rationale behind the al-

gorithm’s efficiency, and facilitate our analysis for a general d. It is
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Figure 3: Illustration of 1d rank-shrink

worth mentioning that the presence of only one attribute removes

the need to specify the split dimension in describing a split.

Rank-shrink. Our algorithm, named rank-shrink, differs from

binary-shrink in two ways. First, when performing a (2-way) split,

instead of cutting the extent of a query q in half, we aim at ensuring

that at least k/4 tuples fall in each of the rectangles generated by

the split. Such a split, however, may not always be possible, which

as we will see can happen if many tuples are identical to each other.

Hence, the second difference that rank-shrink makes is to perform a

3-way split in such a scenario, which gives birth to a query (among

the 3 created) that can be immediately resolved.

Formally, given a query q, the algorithm eventually returns q(D).
It starts by issuing q to the server, which returns a bag R of tuples.

If q is resolved, the algorithm terminates by reporting R. Other-

wise (i.e., q overflows), we sort the tuples of R in ascending order,

breaking ties arbitrarily. Let o be the (k/2)-th tuple in the sorted

order, with its A1-value being x. Now, we count the number c of

tuples in R identical to o (i.e., R has c tuples with A1-value x), and

proceed as follows:

• Case 1: c ≤ k/4. Split q at x into qleft and qright, each of

which must contain at least k/4 tuples in R. To see this for

qleft (symmetric reasoning applies to qright), note there are

at least k/2− c ≥ k/4 tuples of R strictly smaller than x, all

of which fall in qleft. The case for qright follows in analogy.

• Case 2: c > k/4. Perform a 3-way split on q at x. Let

qleft, qmid and qright be the resulting rectangles (note that,

the ordering among them matters; see Section 2.2). Observe

that qmid has degenerated into point x, and therefore, can

immediately be resolved.

As a technical remark, in Case 2, x might be the lower

(resp. upper) bound3 on the extent of q. If this happens, we

simply discard qleft (resp. qright) as it would have a mean-

ingless extent.

In either case, we are left with at most two queries (i.e., qleft and

qright) to further process. The algorithm handles each of them re-

cursively in the same manner.

Example. We use the dataset D in Figure 3a to demonstrate the

algorithm. Let k = 4. The first query is q1 = (−∞,∞). Suppose

that the server responds by returning R1 = {t4, t6, t7, t8} and a

signal that q1 overflows. The (k/2) = 2-nd smallest tuple in R1 is

t6 (after random tie breaking), whose value is x = 55. As R1 has

c = 3 tuples with value 55 and c > k/4 = 1, we perform a 3-way

split on q1 at 55, generating q2 = (−∞, 54], q3 = [55, 55] and

q4 = [56,∞). As q3 has degenerated into a point, it is resolved

immediately, fetching t6, t7 and t8. These tuples have already been

extracted before, but this time they come with an extra fact that no

more tuple can exist at point 55.

Let us look at q2. Suppose that the server’s response is R2 =
{t1, t2, t4, t5}, plus an overflow signal. Hence, x = 20 and c = 1.

3x cannot be both because otherwise q would be a point and there-
fore could not have overflown.



Thus, a two-way split on q2 at 20 creates q5 = (−∞, 19] and q6 =
[20, 54]. Queries q4, q5 and q6 are all resolved.

Analysis. The lemma below bounds the cost of rank-shrink.

LEMMA 1. When d = 1, rank-shrink requires O(n/k) queries.

PROOF. The main tool used by our proof is a recursion tree T
that captures the spawning relationships of the queries performed

by rank-shrink. Specifically, each node of T represents a query.

Node u is the parent of node u′ if query u′ is created by a (2-way

or 3-way) split of query u. Each internal node thus has 2 or 3 child

nodes. Figure 3b shows the recursion tree for the queries performed

in our earlier example on Figure 3a.

We focus on bounding the number of leaves in T because it dom-

inates the number of internal nodes. Observe that each leaf v corre-

sponds to a disjoint interval in dom(A1), due to the way splits are

carried out. There are three types of v:

• Type-1: the query represented by v is immediately resolved

in a 3-way split (i.e., qmid in Case 2). The interval of v
contains at least k/4 (identical) tuples in D.

• Type-2: query v is not type-1, but also covers at least k/4
tuples in D.

• Type-3: query v covers less than k/4 tuples in D.

For example, among the leaf nodes in Figure 3, q3 is of type 1, q5
and q6 are of type 2, and q4 is of type 3.

As the intervals of various leaves cover disjoint bags of tuples,

the number of type-1 and -2 leaves is at most n
k/4

= 4n/k. Each

leaf of type-3 must have a sibling in T that is a type-2 leaf (i.e., in

Figure 3, such a sibling of q4 is q3). On the other hand, a type-2

leaf has at most 2 siblings. It thus follows that there are at most

twice as many type-3 leaves as type-2, i.e., the number of type-3

leaves is no more than 8n/k. This completes the proof.

We remark that the above analysis implies that (quite loosely)

T has no more than 4n/k + 8n/k = 12n/k leaves. Thus, there

cannot be more than this number of internal nodes in T .

2.3 Rank­shrink for higher dimensionality
We are now ready to extend rank-shrink to handle any d > 1. In

addition to the ideas exhibited in the preceding subsection, we also

apply an inductive approach: converting the d-dimensional prob-

lem to several (d − 1)-dimensional ones. Our discussion below

assumes that the (d − 1)-dimensional problem has already been

settled by rank-shrink.

Given a query q, the algorithm (as in 1d) sets out to solicit the

server’s response R, and finishes if q is resolved. Otherwise, it

examines whether A1 is exhausted in q, i.e., whether the extent

of q on A1 has only 1 value, say x, in dom(A1). If so, we can

then focus on attributes A2, ..., Ad. This is a (d − 1)-dimensional

version of Problem 1, in the (d−1)-dimensional subspace covered

by the extents of q on A2, ..., Ad, eliminating A1 by fixing it to x.

Hence, we invoke rank-shrink to solve it.

Consider that A1 is not exhausted on q. Similar to the 1d al-

gorithm, we will split q such that, either every resulting rectangle

covers at least k/4 tuples in R, or one of them can be immediately

solved as a (d − 1)-dimensional problem. The splitting proceeds

exactly as described in Cases 1 and 2 of Section 2. The only differ-

ence is that the rectangle qmid in Case 2 is not a point, but instead,

a rectangle on which A1 has been exhausted. Hence, qmid is pro-

cessed as a (d− 1)-dimensional problem with rank-shrink.

As with the 1d case, the algorithm recurses on qleft and qright
(provided that they have not been discarded for having a meaning-

less extent on A1).
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Figure 4: Illustration of 2d rank-shrink

Example. We demonstrate the algorithm using the 2d dataset in

Figure 4, where D has 10 tuples t1, ..., t10. Let k = 4. The

first query q1 issued covers the entire data space. Suppose that

the server responds with R1 = {t4, t7, t8, t9} and an overflow sig-

nal. We 3-way split q1 at A1 = 80 into q2, q3 and q4, whose

rectangles can be found in Figure 4. Specifically, the A1-extents of

q2, q3, q4 are (−∞, 79], [80, 80], [81,∞) respectively, while their

A2-extents are all (−∞,∞). Note that A1 is exhausted on q2; al-

ternatively, we can see that q2 is equivalent to a 1d query on the

vertical line A1 = 80. Hence, q2 is recursively settled by our 1d

algorithm (which, as can be verified easily, requires 3 queries).

Suppose that the server’s response to q2 is R2 = {t2, t3, t4, t5}
and an overflow signal. Accordingly, q2 is split into q5 and q6 at

A1 = 40, whose rectangles are also shown in Figure 4. Finally,

q4, q5 and q6 are all resolved.

Analysis. We have the lemma below for general d:

LEMMA 2. Rank-shrink performs O(dn/k) queries.

PROOF. The case d = 1 has been proved in Lemma 1. Next,

assuming that rank-shrink issues at most α(d − 1)n/k queries for

solving a (d− 1)-dimensional problem with n tuples (where α is a

positive constant), we will show that the cost is at most αdn/k for

dimensionality d.

Again, our argument leverages a recursion tree T . As before,

each node of T is a query, such that node u parents node u′, if

query u′ was created from splitting u. We make a query v a leaf of

T as soon as one of the following occurs:

• v is resolved. We associate v with a weight set to 1.

• A1 is exhausted on rectangle v. Recall that such a query

is solved as a (d − 1)-dimensional problem. We associate

v with a weight, equal to the cost for rank-shrink for that

problem.

For our earlier example with Figure 4, the recursion tree T happens

to be the same as the one in Figure 3b. The difference is that each

leaf has a weight. Specifically, the weight of q3 is 3 (i.e., the cost

of solving the 1d query at the vertical line A1 = 80 in Figure 4),

and the weights of the other leaves are 1.

The total cost of rank-shrink on the d-dimensional problem,

therefore, equals the total number of internal nodes in T , plus the

total weight of all the leaves.

As the A1-extents of the leaves’ rectangles have no overlap, their

rectangles cover disjoint tuples. Let us classify the leaves into

types-1, -2 and -3 as in the proof of Lemma 1, by adapting the

definition of type-1 in a straightforward fashion: v is of this type if

it is the middle node qmid from a 3-way split. Each type-3 leaf has

weight 1 (as its corresponding query must be resolved). As proved

in Lemma 1, the number of them is no more than 8n/k.



Let v1, ..., vβ be all the type-1 and -2 nodes (i.e., suppose the

number of them is β). Assume that node vi contains ni tuples of

D. It holds that
∑β

i=1
ni ≤ |D| = n. The weight of vi, by our

inductive assumption, is at most α(d − 1)ni/k. Hence, the total

weight of all the type-1 and -2 nodes does not exceed α(d−1)n/k.

The same argument in the proof of Lemma 1 shows that T has

less than 12n/k internal nodes. Thus, summarizing the above

analysis, the cost of d-dimensional rank-shrink is no more than:
12n
k

+ 8n
k

+ α(d − 1)n
k

= (20 + α(d − 1))n
k

. To complete our

inductive proof, we want (20 + α(d − 1))n
k

to be bounded from

above by αdn/k. This is true for any α ≥ 20.

Remark. This concludes the proof of the first bullet of Theorem 1.

We point out that when d is fixed value (as is true in practice), the

time complexity in Lemma 2 becomes O(n/k), that is, asymptot-

ically matching the trivial lower bound n/k. A natural question

at this point is, if d is not constant, is there an algorithm that can

still guarantee cost O(n/k)? In Section 4, we will show that this is

impossible.

3. CATEGORICAL ATTRIBUTES
We proceed to solve Problem 1 when the data space D is cat-

egorical. Recall that, as mentioned in Section 1.1, the domain

dom(Ai) of the i-th attribute Ai is the set of integers in [1, Ui]
(where Ui = |dom(Ai)|), although it should be understood that

the ordering of those integers is irrelevant. We will again first (in

Section 3.1) clarify some preliminary concepts and give a baseline

algorithm, before presenting the proposed solution (in Section 3.2).

3.1 Data space tree and depth first search
Unlike range predicates on numeric attributes, the predicate sup-

ported by the server on a categorical attribute Ai (1 ≤ i ≤ d) is an

equality constraint of the form Ai = x, where x is either a value in

dom(Ai) or a wildcard ⋆. This difference prompts us to adopt an

alternative approach to attack Problem 1. Instead of performing 2-

or 3-way splits (as in the numeric case), we instead enumerate the

points in D. This idea looks drastic at first glance – D has a total of
∏d

i=1
Ui points, where Ui is the domain size of Ai. A naive way to

enumerate the entire D is clearly intractable. It turns out, interest-

ingly, that we can significantly reduce the cost from the formidable
∏d

i=1
Ui to only roughly a linear term

∑d
i=1

Ui.

Data space tree. Let us start by arranging all the points of D into

a tree T, which we refer to as the data space tree. Each node u of

T represents a subspace enclosing all the points of D satisfying a

condition like:

A1 = c1, ..., Aℓ = cℓ, Aℓ+1 = ⋆, ..., Ad = ⋆

where ℓ is an integer in [0, d] and c1, ..., cℓ are not wildcards. We

say that u is at level ℓ. We will refer to the condition of u as

query(u) because the condition obviously corresponds to a query

that can be submitted to the server.

If we look at a point (c1, ..., cd) in D as a string concatenating all

its coordinates from the first to the d-th attribute, T can be regarded

as a trie on all the
∏d

i=1
Ui strings. Formally, the root of D is at

level 0, and thus represents the entire D (equivalently, the condition

of the root specifies a wildcard on all dimensions). In general, if

u is a level-ℓ node (0 ≤ ℓ ≤ d − 1), it has Uℓ+1 child nodes of

level ℓ + 1. The i-th (1 ≤ i ≤ Uℓ+1) child v of u is such that,

query(v) agrees with query(u) on all dimensions, except Aℓ+1

on which query(v) specifies Aℓ+1 = i. That is, v refines u on

Aℓ+1 by setting this attribute to i. Each leaf of T is at level d and

represents a distinct point in D.
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Figure 5: Illustration of categorical algorithms

To illustrate, Figure 5a shows a dataset D with 10 tuples

t1, ..., t10 in a 2d space D where each dimension has domain size

4. Figure 5b demonstrates the data space tree T (the subtrees of

nodes u3 and u4 are omitted for simplicity). Node u1, for instance,

is associated with a query(u1) that has predicates A1 = ⋆ and

A2 = ⋆, whereas query(u2) has predicates A1 = 1 and A2 = ⋆,

and query(u7) has A1 = 1 and A2 = 2.

The following lemma presents a fact that will be useful later.

LEMMA 3. Let u, v be two nodes at the same level of T. No

tuple of D can satisfy query(u) and query(v) at the same time.

PROOF. Let the level be ℓ. The conditions in query(u) and

query(v) differ in their predicates on at least one attribute Ai for

some i ∈ [1, ℓ]. No tuple can satisfy those predicates simultane-

ously.

Depth first search (DFS). We now describe an algorithm, named

DFS, that serves as the baseline approach. The algorithm simply

traverses T in a depth-first manner. For each node u in T, it sends

query(u) to the server, and acquires the bag R of tuples returned.

As a pruning rule, if query(u) is resolved, the subtree of u no

longer needs to be explored, as all the tuples in the subtree are

already in R. If, on the other hand, query(u) overflows, the algo-

rithm processes each child of u in the same manner.

Suppose k = 3. On the input of Figure 5a, DFS examines the

nodes in the order u1, u2, u6, u7, ... To see an example of pruning,

consider the moment when DFS is at u3. Since query(u3) is re-

solved (the query has predicates A1 = 2 and A2 = ⋆, and returns

only t5), the subtree of u3 can thus be eliminated. It can be verified

that DFS eventually visits all of u1, ..., u13.

Remark. Not surprisingly, DFS incurs expensive query cost in the

worst case. We omit its analysis because it is tedious, and yet this

algorithm is not the one advocated in this paper. In the next sub-

section, we give a better algorithm with the optimal performance.

3.2 Algorithm slice­cover
Slice query. We say that a query q is a slice query if its predicates

have the form:

..., Ai−1 = ⋆, Ai = c,Ai+1 = ⋆, ...

where c is a value in dom(Ai). Namely, the query has a wildcard

predicate on all but one attribute Ai for some i ∈ [1, d]. We use the

notation Ai = c to uniquely refer to a slice query. Clearly, varying

c in dom(Ai) defines Ui slice queries, such that the total number



constant c 1 2 3 4

A1 = ovflow {t5} ovflow {t10}
A2 = {t1, t6} {t2, t7, t10} {t3, t8, t9} {t4, t5}

Figure 6: Lookup table of slice queries (k = 3)

of slice queries of all dimensions is
∑d

i=1
Ui. In the example of

Figure 5a, there are totally 8 slice queries.

Slice-cover. Now we describe an algorithm, named slice-cover,

for solving Problem 1. The algorithm runs in two phases. In the

preprocessing phase, we simply submit every slice query to the

server, and record its response locally in a lookup table as follows.

If a slice query q is resolved, its result q(D) (which has at most k
tuples) is entered in the table, whereas if q overflows, we remember

nothing but a bit indicating that |q(D)| > k. Figure 6 presents the

contents of the lookup table for the example in Figure 5, assuming

k = 3.

The second phase of slice-cover executes an algorithm, named

extended-DFS, by supplying the root of the data space tree T as the

parameter. In general, given a node u in T, extended-DFS returns

all the tuples in D satisfying query(u) (hence, setting u to the

root of T settles Problem 1). Extended-DFS also performs a depth-

first traversal of T (similar to the DFS algorithm of Section 3.1),

but leverages the contents of the lookup table to boost the pruning

effectiveness.

Without loss of generality, suppose that u is at level ℓ (for some

ℓ ∈ [0, d]). Extended-DFS starts by sending query(u) to the

server. If query(u) is resolved, the algorithm ends by reporting

the result received from the server, because the subtree of u can be

eliminated (as explained in Section 3.1 for DFS). Next, we focus

on the more interesting case where query(u) overflows, implying

that u is an internal node of T.

As with DFS, extended-DFS may access each child node v of

u. However, before doing so, it attempts to answer query(v)
locally using the lookup table (i.e., without bothering the server

with another query). To explain, recall that v, which is at level

ℓ + 1, is associated with a query(v) that refines query(u). That

is, query(v) inherits the predicates of query(u) on all attributes,

except Aℓ+1 on which query(v) has a predicate, say, Aℓ+1 = c
for some c ∈ dom(Aℓ+1).

Let us observe that the result of query(v) is completely con-

tained in the result of the slice query Aℓ+1 = c. Remember that

the server’s response, say R, to the slice query is already avail-

able in our lookup table. Therefore, we fetch R from the table

(at no cost), and see whether the slice query was resolved. If yes,

query(v) can be accurately answered by returning the tuples in R
satisfying query(v), in which case the subtree of v does not need

to be explored further. If, on the other hand, R shows that the slice

query overflew, extended-DFS recursively processes v in the same

manner.

Example. We illustrate extended-DFS using the example of Fig-

ure 5. Let k = 3. The lookup table output by the preprocessing

stage is in Figure 6.

The algorithm starts with query(u1), where u1 is the root of T

(Figure 5b). Even without sending query(u1) to the server, we

know that it overflows for sure, because at least one slice query

overflew in preprocessing, as is clear from the (lookup) table. Fo-

cusing on the first child u2 of u1, extended-DFS inspects the table

to decide whether query(u2) can be answered locally. The inspec-

tion examines slice query A1 = 1, i.e., the predicate by which

query(u2) refines query(u1). The table indicates that the slice

query overflew. Hence, we recursively apply extended-DFS on u2.

At u2, the algorithm checks the table as to whether query(u6)

can be answered locally. This time, we focus on slice query A2 = 1
(i.e., the extra predicate in query(u6) compared to query(u2)),
which turns out to be resolved. Hence, query(u6) is directly an-

swered from the result {t1, t6} of the slice query (i.e., returning

only t1, as t6 does not qualify query(u6)). Thus, extended-DFS

does not recurse into u6. Similarly, query(u7), query(u8) and

query(u9) can all be answered locally.

We now backtrack to the root of u1, and turn attention to the

second child u3 of u1. A lookup is carried out to see whether

query(u3) can be acquired from the table. The answer is yes (us-

ing the result of slice query A1 = 2). Hence, the subtree of u3 is

not explored further. The rest of the execution proceeds in the same

manner. Overall, besides u1, extended-DFS is also (recursively) in-

voked on u2 and u4. No query is ever issued to the server in the

entire process.

Heuristic. Next, we give a heuristic that does not affect the worst-

case cost of slice-cover, but can improve its performance on real

data. The motivating rationale is that, some slice queries executed

in the pre-processing phase may not eventually be needed. In any

case, even if a slice query does need to be consulted by the algo-

rithm, there is no harm to run the query at the first time such a need

arises, and register the server’s response in the lookup table. If the

slice query is consulted for a second time, (as before) the query

does not need to be re-issued, for its result is already available in

the table. This allows us to get rid of the entire preprocessing phase.

We refer to the algorithm equipped with this heuristic as lazy-slice-

cover.

Analysis. We bound the performance of slice-cover with the fol-

lowing result, which also applies to lazy-slice-cover as it does not

require any more query than slice-cover.

LEMMA 4. If d > 1, slice-cover performs at most
∑d

i=1
Ui +

n
k
·
∑d

i=1
min{Ui,

n
k
} queries. If d = 1, the number of queries is

U1.

PROOF. For d = 1, slice-cover terminates right after the pre-

processing phase, and hence, issues U1 queries. For d ≥ 2, the pre-

processing phase obviously issues
∑d

i=1
Ui queries. Next, we will

show that extended-DFS incurs cost at most n
k
·
∑d

i=1
min{Ui,

n
k
}.

Let T be the nodes of T on which extended-DFS is invoked (i.e.,

T includes the root of T, and the nodes extended-DFS recurses

into). For instance, on the example of Figure 5, our earlier discus-

sion showed that T includes nodes u1, u2 and u4. The number of

nodes in T is an upper bound of the number of queries extended-

DFS performs.

For each i ∈ [1, d], let Si be the set of level-i nodes in T . The

following analysis will prove that |Si| ≤
n
k
· min{Ui,

n
k
}, which

is enough to complete the proof. To bound |Si|, we consider Si−1

(i.e., one level closer to the root). We will show:

• Fact 1: at most n/k nodes in Si−1 are internal in T .

• Fact 2: each internal node in Si−1 can have at most

min{Ui,
n
k
} child nodes in T .

Combining both facts gives the desired upper bound n
k

·
min{Ui,

n
k
} on |Si|.

Proof of Fact 1. For a node u ∈ Si−1, denote by nu the number

of tuples in D satisfying query(u). It follows from Lemma 3 that
∑

u∈Si−1
nu ≤ |D| = n.

On the other hand, as u is an internal node in T , nu > k. Other-

wise, query(u) would have been resolved, in which case the sub-

tree of u should have been pruned in extended-DFS, contradicting

u being an internal node. This, together with
∑

u∈Si−1
nu ≤ n,

proves that Si−1 has no more than n/k internal nodes.



Proof of Fact 2. For each node u ∈ Si−1, let children(u)
be the set of child nodes of u in T. By the way T is defined,

|children(u)| = Ui. As u cannot have more child nodes in T
than in T, Fact 2 holds if Ui ≤ n/k. The rest of the proof assumes

Ui > n/k.

For each node v ∈ children(u), query(v) refines query(u) by

replacing the predicate on Ai (which is Ai = ⋆ in query(u)) with

Ai = c for some c ∈ dom(Ui). Furthermore, each v specifies a

different c. Extended-DFS guarantees that v should not be accessed

(and hence, should not belong to T ) if the slice query Ai = c is

resolved. In other words, if we denote by Q the set of slice queries

of the form Ai = c (i.e., |Q| = Ui), the number of child nodes of

u in T is at most the number of queries in Q that overflow.

Clearly, no tuple of D can satisfy both slice queries Ai = c1 and

Ai = c2 as long as c1 6= c2. In other words, the sum of |q(D)|
(i.e., the number of tuples satisfying q) of all q ∈ Q is at most n.

On the other hand, |q(D)| ≥ k if q overflows. Thus, the number of

overflowing queries in Q is at most n/k.

Remark. Lemma 4 establishes the second and third bullets of The-

orem 1. As we will see in the next section, the upper bounds in the

lemma cannot be improved by more than a constant factor in the

worst case.

4. LOWER BOUND RESULTS
This section turns away from upper bounds, and focuses on the

hardness of Problem 1. In Section 4.1 (4.2), we will give asymp-

totic lower bounds on how many queries are needed for settling the

problem, when the data space D is numeric (categorical).

4.1 Numeric attributes
The objective of this subsection is to establish:

THEOREM 3. Let k, d,m be arbitrary positive integers such

that d ≤ k. There is a dataset D (in a numeric data space) with

n = m(k + d) tuples such that, any algorithm must use at least

dm queries to solve Problem 1 on D.

It is, therefore, impossible to improve our algorithm rank-shrink

(see Lemma 2) by more than a constant factor in the worst case, as

shown below:

COROLLARY 1. In a numeric data space, no algorithm can

guarantee solving Problem 1 with o(dn/k) queries.

PROOF. If there existed such an algorithm, let us use it on the

inputs in Theorem 3. The cost is o(dn/k) = o(dm(k + d)/k)
which, due to d ≤ k, is o(dm), causing a contradiction.

We now proceed to prove Theorem 3, using a hard dataset D as

illustrated in Figure 7. The domain of each attribute is the set of

integers from 1 to m + 1, namely, D = [1,m + 1]d. D has m
groups of d + k tuples. Specifically, the i-th (1 ≤ i ≤ m) group

has k tuples at the point (i, ..., i), taking value i on all attributes.

We call them diagonal tuples. Furthermore, for each j ∈ [1, d],
Group i also has a tuple that takes value i+1 on attribute Aj , and i
on all other attributes. Such a tuple is referred to as a non-diagonal

tuple. Overall, D has km diagonal and dm non-diagonal tuples.

Let S be the set of dm points in D that are equivalent to the

dm non-diagonal tuples in D, respectively (i.e., each point in S
corresponds to a distinct non-diagonal tuple). As explained in Sec-

tion 2.1, each query can be regarded as an axis-parallel rectangle in

D. With this correspondence in mind, we observe the following for

any algorithm that correctly solves Problem 1 on D:

A1 A2 · · · Ad .

1 1 · · · 1

· · ·

1 1 · · · 1

2 1 · · · 1

1 2 · · · 1

· · ·

1 1 · · · 2

2 2 · · · 2

· · ·

2 2 · · · 2

3 2 · · · 2

2 3 · · · 2

· · ·

2 2 · · · 3

.

.

. · · ·

m m · · · m

· · ·

m m · · · m

m+ 1 m · · · m

m m+ 1 · · · m

· · ·

m m · · · m+ 1

Group 1

Group 2

Group m

k tuples

d tuples

k tuples

d tuples

k tuples

d tuples

Figure 7: A hard numeric dataset

LEMMA 5. When the algorithm terminates, each point in S
must be covered by a distinct resolved query already performed.

PROOF. Every point p ∈ S must be covered by a resolved query.

Otherwise, p is either never covered by any query, or covered by

only overflowing queries. In the former case, the tuple of D at p
could not have been retrieved, whereas in the latter, the algorithm

could not rule out the possibility that D had more than one tuple at

p. In neither case could the algorithm have terminated.

Next we show that no resolved query q covers more than one

point in S. Otherwise, assume that q contains p1 and p2 in S,

in which case q fully encloses the minimum bounding rectangle,

denoted as r, of p1 and p2. Without loss of generality, suppose that

p1 (pj) is from Group i (j) such that i ≤ j. If i = j, then r contains

the point (i, ..., i), in which case at least k+2 tuples satisfy q (i.e.,

p1, p2 and the k diagonal tuples from Group i). Consider, on the

other hand, i < j. In this scenario, the coordinate of p1 is at most

i + 1 ≤ j on all attributes, while the coordinate of p2 is at least

j on all attributes. Thus, r contains the point (j, ..., j), causing

at least k + 2 tuples to satisfy q (i.e., p1, p2 and the k diagonal

tuples from Group j). Therefore, q must overflow in any case, i.e.,

a contradiction.

The lemma indicates that at least |S| = dm queries must be

performed, which validates the correctness of Theorem 3.

4.2 Categorical attributes
First, if d = 1, U1 is a trivial lower bound on the cost of solving

Problem 1. The reason is that, as long as D has more than k tuples,

we must issue a query A1 = c for every c ∈ dom(A1) to verify

whether a tuple exists at point c. For d > 1, this subsection will

establish:

THEOREM 4. Let k, d, U be positive integers satisfying dU2 ≤
2d/4, U ≥ 3, k ≥ 3, and d = 2k. There is a dataset D with

n = dU tuples in a d-dimensional categorical space, where each

attribute has a domain size U , such that, any algorithm must use

Ω(dU2) queries to solve Problem 1 on D.

We thus know that our algorithm slice-cover (see Lemma 4) can-

not be improved by more than a constant factor in the worst case,

as shown below:
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Figure 8: A hard categorical dataset

COROLLARY 2. In a categorical data space, no algo-

rithm can guarantee solving Problem 1 with o(
∑d

i=1
Ui +

n
k

∑d
i=1

min{Ui,
n
k
}) queries.

PROOF. In the setting of Theorem 4, n
k
= dU

k
= 2U . Further-

more, U1 = ... = Ud = U . Hence, n
k

∑d
i=1

min{Ui,
n
k
} =

dU
k

· dU = 2dU2. Thus, the complexity in the corollary is

o(dU + dU2) = o(dU2). Hence, if the corollary was wrong,

there would be an algorithm solving Problem 1 on the inputs in

Theorem 4 with o(dU2) queries, which is a contradiction.

The rest of the subsection serves as the proof of Theorem 3. Our

discussion is based on a hard dataset D illustrated in Figure 8. For-

mally, D consists of U groups, each of which has d tuples. In the

i-th (0 ≤ i ≤ U − 1) group, for each attribute Aj (1 ≤ j ≤ d),

there is a tuple that takes value (i+1) mod U on Aj , and value i
on all the other d− 1 attributes. In other words, the data space D is

[0, U − 1]d, although readers should be reminded that using inte-

gers to represent the values of a (categorical) attribute is purely for

convenience, and that the ordering of those integers is irrelevant.

As before, we say that a query covers a point p ∈ D if p satisfies

the query. The next lemma gives an important fact:

LEMMA 6. If an algorithm has solved Problem 1 on our con-

structed D, then every point in D must be covered by at least one

resolved query already performed.

PROOF. We say that a point in D is empty if D has no tuple at

that point. Assume the existence of a point p ∈ D that is not cov-

ered in any resolved query. Hence, p is either outside all the queries

the algorithm issued, or is covered only by the overflowing queries.

Hence, if p was empty, the algorithm got no hint as to whether a

tuple exists at p, and therefore, could not have terminated. On the

other hand, if p was not empty, the algorithm saw a tuple at p but

could not decide whether D had any other tuple at p (i.e., dupli-

cates). In this case, the algorithm could not have terminated either.

Thus we have a contradiction.

We will show that any correct algorithm must perform Ω(dU2)
resolved queries. Recall that, on each attribute Ai (1 ≤ i ≤ d),

a query q has either a wildcard predicate Ai = ⋆, or a constant

predicate Ai = c for some c ∈ [0, U − 1]. We say that q is

diverse, if it has at least two non-wildcard predicates with different

constants specified. For example, the query with predicates A1 =
1, A2 = 2, A3 = ⋆, ..., Ad = ⋆ is diverse, and so is the query

with A1 = 1, A2 = 1, A3 = 2, A4 = ⋆, ..., Ad = ⋆ (due to the

predicates on A2 and A3), whereas the query with A1 = 1, A2 =

1, A3 = ⋆, ..., Ad = ⋆ is not (as the same constant appears in the

non-wildcard predicates).

LEMMA 7. A diverse query q has at most two qualifying tuples,

and hence, is always resolved (since k > 2).

PROOF. Let c1 6= c2 be constants, each of which appears in a

non-wildcard predicate of q. Suppose c1 < c2. Two tuples from

different groups cannot satisfy q simultaneously. Otherwise, as-

sume that tuple t1 from group i and tuple t2 from group j qualify

q, and that i < j without loss of generality. As t1 contains only

i and i + 1 in its attributes, we know c1 = i and c2 = i + 1. If

j < U − 1, t2 contains only j and j + 1 in its attributes. We thus

require c1 = j = i, which violates i < j. If j = U−1, t2 contains

only 0 and U − 1 in its attributes. In this case, c1 = 0 = i and

c2 = U − 1 = i+ 1, which is also impossible because U > 2.

On the other hand, it is easy to see that, no three tuples from the

same group can together take value c1 on one attribute, and also,

value c2 on another attribute. The lemma then follows.

We say that a query q is monotonic, if (i) q has at least two non-

wildcard predicates, and (ii) the same constant is specified in all the

non-wildcard predicates. For example, the query with predicates

A1 = 1, A2 = 1, A3 = ⋆, ..., Ad = ⋆ is monotonic, whereas

the query with A1 = 1, A2 = 2, A3 = ⋆, ..., Ad = ⋆ is not (as

different constants are used in the non-wildcard predicates), and

neither is the query with A1 = 1, A2 = ⋆, ..., Ad = ⋆ (as it has

only one non-wildcard predicate).

LEMMA 8. A resolved monotonic query q has at least d/2 non-

wildcard predicates, and hence, covers at most 2d/2 points in D.

PROOF. Let c be the constant in all the non-wildcard predicates

of q. If q has λ ≥ 2 non-wildcard predicates, it retrieves exactly

d − λ tuples from group c, and no tuple from any other group.

Hence, for q to be resolved, d − λ cannot exceed k, that is, λ ≥
d− k = d/2.

It turns out that if a query is resolved, it must be either diverse or

monotonic. In fact, if a query q is neither diverse nor monotonic,

it has at most one non-wildcard predicate. Such q must retrieve at

least d tuples and hence, overflow (recall that d = 2k > k).

Given two different integers x, y in [0, U−1], we define a bichro-

matic set S(x, y) of points in D:

for each i ∈ [1, d], S(x, y) includes all the points

that take x or y as their values on attribute Ai, except

points (x, x, ..., x) and (y, y, ..., y).

For example, for d = 3 and U = 3, S(1, 2) = {(1, 1, 2), (1, 2, 1),
(1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)}. That is, S(1, 2) has all the

points having only 1 or 2 as their coordinates, but does not contain

(1, 1, 1) and (2, 2, 2). Clearly, there are
(

U
2

)

bichromatic sets, each

of which has 2d − 2 points.

We are ready to explain why Ω(dU2) queries are necessary to

settle Problem 1 on D. Our discussion considers only the situation

where less than d
8

(

U
2

)

diverse queries are performed by the algo-

rithm (otherwise, trivially there are d
8

(

U
2

)

= Ω(dU2) queries). By

Lemma 6, every point of each bichromatic set must be covered by

some resolved query. If a query q covers at least one point in a

bichromatic set S(x, y), we say that q touches S(x, y).
A diverse query can touch at most one bichromatic set. As there

are less than d
8

(

U
2

)

diverse queries but
(

U
2

)

bichromatic sets, we

can find a bichromatic set that is touched by less than d/8 di-

verse queries. Let S(α, β) be that bichromatic set (for some α, β



in [0, U − 1]), and Q the set of diverse queries touching it (thus,

|Q| < d/8).

Consider any query q ∈ Q. Since q touches S(α, β), q has two

non-wildcard predicates Ai = α and Aj = β for some i, j ∈ [1, d]
with i 6= j (in case multiple pairs of (i, j) satisfy this requirement,

choose one arbitrarily). Refer to Ai and Aj as the salient attributes

of q. It is clear that q cannot cover those points p ∈ S(α, β) such

that p has value α on both salient attributes of q. Let salient(Q)
be the union of the salient attributes of all the queries in Q. Hence,

|salient(Q)| < d/4. By the previous reasoning, if a point p ∈
S(α, β) takes value α on all the attributes in salient(Q), p is not

covered by any of the queries in Q. How many such p are there?

As |salient(Q)| < d/4, p can still choose α or β as its value on

each of the at least 3

4
d+1 attributes outside salient(Q). Excluding

points (α, ..., α) and (β, ..., β), we know that the number of such p

is at least 21+3d/4 −2 ≥ 23d/4. As a remark, although we required

p to take α on the attributes in salient(Q), the argument works as

well by taking β.

We have shown that at least 23d/4 points in S(α, β) have not

been covered by diverse queries. Those points must be covered by

resolved monotonic queries, each of which, by Lemma 8, contains

at most 2d/2 points in D. Therefore, the number of such queries

must be at least 23d/4/2d/2 = 2d/4 which, as stated in Theorem 4,

is at least dU2, thus completing the proof.

5. EXTENSIONS: MIXED ATTRIBUTES
This section will extend our techniques to handle a mixed data

space D that has both numeric and categorical attributes. As defined

in Section 1.1, we consider without loss of generality that the first

cat attributes A1, ..., Acat are categorical, and the other d − cat
attributes Acat+1, ..., Ad are numeric.

Define DCAT as the categorical data (sub) space dom(A1) ×
... × dom(Acat), namely, involving all and only the categorical

attributes. Put differently, for any point p ∈ D, trimming off its

coordinates on Acat+1, ..., Ad gives a cat-dimensional point pCAT

in DCAT . In a natural manner, pCAT determines a set of points, which

we denote by DNUM(pCAT), defined as:

DNUM(pCAT) is the set points p′ ∈ D, such that p′

shares the same value as pCAT on every categorical at-

tribute.

In fact, DNUM(pCAT) decides a (d− cat)-dimensional numeric sub-

space of D: it includes all the numeric dimensions of D, while

fixing the categorical attributes to those of pCAT .

As an example, the scenario of Figure 1 has four attributes,

among which cat = 2 are categorical: A1 = MAKE and A2 =
BODY STYLE. Let pCAT = (BMW, sedan). Then, DNUM(pCAT) in-

cludes all the points p′ ∈ D whose MAKE and BODY STYLE are

BMW and sedan, respectively (but no constraint is imposed on

the values of p′ along the numeric attributes A3 = PRICE and

A4 = MILEAGE).

Hybrid. Next, we present an algorithm, named hybrid, to solve

Problem 1 in a mixed D. The algorithm combines lazy-slice-cover

(see Section 3.2) and rank-shrink (Section 2.3). Roughly speaking,

it first enumerates all the points in DCAT using lazy-slice-cover and,

when a point pCAT ∈ DCAT has been reached, invokes rank-shrink in

the numeric subspace determined by DNUM(pCAT).
Now we provide the missing details. Recall that, lazy-slice-cover

runs on a categorical server (i.e., one that supports only categorical

attributes). To apply it on a server of our context here, we set a

query’s predicate on numeric attribute Ai (for each i ∈ [cat +
1, d]) to Ai ∈ (−∞,∞). The effect is to disregard all the numeric

attributes, and hence, essentially emulates a categorical server.

Also recall that lazy-slice-cover performs an (improved) depth-

first traversal on the data space tree TCAT built from DCAT . Consider

that it has come to a leaf node of TCAT , or equivalently, a point

pCAT ∈ DCAT . In Section 3.2, the processing of p finished with

one extra query, but hybrid invokes rank-shrink upon DNUM(pCAT).
Remember, however, that rank-shrink operates on a numeric server

(i.e., one that supports only numeric attributes). To apply it on

DNUM(pCAT), we fix a query’s predicate on categorical attribute Ai

(for each i ∈ [1, cat]) to Ai = ci, where ci is the Ai value of

pCAT. This effectively emulates a numeric server over the (d−cat)-
dimensional numeric subspace implied by DNUM(pCAT).
Upper bounds. Denote by Ui (1 ≤ i ≤ cat) the domain size

of the i-th categorical attribute Ai. The following lemma gives

the performance guarantees of hybrid, and establishes the last two

bullets of Theorem 1.

LEMMA 9. When cat > 1, hybrid performs n
k

∑cat
i=1

min{Ui,
n
k
} +

∑cat
i=1

Ui + O((d − cat)n/k) queries. When cat = 1, the

number of queries is U1 +O(dn/k).

PROOF. We focus on only cat > 1 because the same argument

also applies to cat = 1. For cat > 1, the term n
k

∑cat
i=1

min{Ui,
n
k
} +

∑cat
i=1

Ui is the cost of running lazy-slice-cover, and follows

directly from Lemma 4.

Let S be all the leaf nodes of TCAT accessed by hybrid, namely, an

instance of rank-shrink was executed on each node u ∈ S. Let nu

be the number of tuples in D having the same value as u on every

categorical attribute – these are the tuples in DNUM(pCAT) where pCAT

is the point in DCAT corresponding to u. As disjoint bags of tuples

are counted by the nu of different u, we have
∑

u∈S nu ≤ n. By

Lemma 2, the instance of rank-shrink at u issues O((d−cat)nu/k)
queries. Hence, the total number of queries issued by rank-shrink

is O((d− cat)
∑

u∈S(nu/k)) = O((d − cat)n/k).

Lower bounds. We conclude this section by explaining why it is

not possible to improve the upper bounds in Lemma 9 by more

than a constant factor in the worst case. In fact, since a mixed data

space is more general than both categorical and numeric spaces,

the lower bounds in Section 4.1 and 4.2 are still applicable here.

For example, if cat = 0, a mixed D becomes numeric. Hence,

if there was an algorithm guaranteed faster than hybrid by non-

constant times, that algorithm would terminate with o(dm) queries

on the inputs stated in Theorem 3, giving a contradiction. On the

other hand, if cat = d, a mixed D becomes categorical. Similarly,

if there was an algorithm faster than hybrid by non-constant times,

that algorithm would terminate with o(dU2) queries on the inputs

in Theorem 4, again giving a contradiction. The above discussion

has taken care of cat > 1 or cat = 0, but an analogous argument

apparently applies to the remaining case cat = 1 as well. This,

together wish Theorems 3 and 4, establish Theorem 2.

6. EXPERIMENTS
In this section, we empirically evaluate the proposed techniques,

and establish their superiority over alternative solutions.

Data. Our experiments were based on three real datasets, whose

attributes, as well as the domain size of each attribute, are given in

Figure 9 (where num indicates a numeric attribute). Specifically:

• Yahoo contains 69,768 tuples in a hidden database at au-

tos.yahoo.com. Each tuple depicts 6 attributes of a vehicle.

This is a mixed dataset (due to the presence of both numeric

and categorical attributes).



Sex Race Rel Edu Marital Wrk-class Occ Country Edu-num Age Wrk-hr Cap-loss Cap-gain Fnalwgt

2 5 6 6 7 8 14 41 num num num num num num

Adult

Owner Body-style Make Mileage Year Price

2 7 85 num num num

Yahoo

Amnt Instru Field PI-state NSF-org Prog-mgr City PI-org PI-name

5 8 49 58 58 654 1093 3110 29042

NSF

Figure 9: Attributes and their domain sizes of the datasets deployed
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Figure 10: Query cost of numeric algorithms (dataset Adult-numeric)
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Figure 11: Query cost of categorical algorithms (dataset NSF)

• NSF contains 47,816 tuples in a hidden database at

nsf.gov/awardsearch. Each tuple has 9 attributes of an NSF

award. This is a categorical dataset.

• Adult contains 45,222 tuples in a census dataset that can

be downloaded from archive.ics.uci.edu/ml/datasets/adult.

Each tuple describes 14 attributes of a person working in the

US. As with Yahoo, this is also a mixed dataset.

We also extracted a numeric dataset from Adult, by including only

its numeric attributes. The resulting dataset, named Adult-numeric,

therefore has the same cardinality and dimensionality as Adult.

Recall that every algorithm in Sections 2, 3 and 5 works with

an ordering of the attributes in the underlying dataset (i.e., which

attribute is A1, which one is A2, and so on). The ordering is ex-

actly as shown in Figure 9 (from left to right in each table), and

is the same for all algorithms. Since our experiments require ad-

justing the value of k, we implemented a local server to run our

algorithms. Our implementation conforms strictly to the problem

setup in Section 1.1, so that the cost reported would be equivalent if

the algorithms were executed on a remote web server. In a dataset,

each tuple is assigned a random priority, so that if a query over-

flows, always the k tuples with the highest priorities are returned.

Numeric algorithms. We start by studying the performance of nu-

meric algorithms binary-shrink and rank-shrink in Section 2, using

dataset Adult-numeric. For each algorithm, Figure 10a shows the

number of queries it issued to extract Adult-numeric as a function

of k. Setting k to the median value 256, Figure 10b plots their

efficiency as the dimensionality d varies from 3 to 6. In this ex-

periment, for each d ∈ [3, 6], we created a d-dimensional dataset

by taking the d attributes of Adult-numeric that have the highest

numbers of distinct values. Specifically, the attribute with the most

distinct values is FNALWGT, the second is CAP-GAIN, followed by

CAP-LOSS, WRK-HR, AGE and EDU-NUM. Using k = 256 and

fixing d to its original value 6, Figure 10c compares the two algo-

rithms with respect to the dataset size n. Here, a 20% dataset corre-

sponds to a random sample set of Adult-numeric, by independently

sampling each of its tuples with a 20% probability. The datasets of

the other percentages were generated in the same fashion.

Rank-shrink consistently outperformed binary-shrink in all

cases. Furthermore, as predicted by our analysis in Section 2.3

(particularly, Lemma 2), the cost of rank-shrink was linear to n and

inversely linear to k (to observe the inverse linearity, notice from

Figure 10a that rank-shrink entailed half as many queries each time

k doubled). As a pleasant surprise, Figure 10b demonstrates that

the cost of rank-shrink stayed nearly the same as d increased, even

though Lemma 2 indicates that the cost should grow linearly in the

worst case. In fact, by looking at the proof of Lemma 2, one would

realize that the presence of d in the final time complexity is due

to 3-way splits (see Figure 2). Such a split happens only if many

tuples share the same value on a certain attribute. As this is not

true in Adult-numeric, 3-way splits were seldom performed, which

explains the phenomenon in Figure 10b.

Categorical algorithms. We deployed a similar methodology to

compare the efficiency of algorithms DFS, slice-cover and lazy-

slice-cover in Section 3. Note that DFS is in fact the baseline ap-
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Figure 12: Cost of the mixed algorithm hybrid

proach for crawling which was outlined in [15]. The underlying

dataset was NSF. Figure 11 presents the results for the same set of

experiments as in Figure 10. It is worth pointing out that, in Fig-

ure 11b, a d-dimensional dataset (d ∈ [5, 9]) was generated from

NSF in the way as mentioned earlier for Figure 10b (the number of

distinct values on each attribute equals the attribute’s domain size,

which can be found in Figure 9).

Interestingly, slice-cover, even being asymptotically optimal,

turned out to exhibit the worst performance. Of course, this does

not contradict our theoretical analysis, because the optimality of

slice-cover is reflected on the hardest dataset (see, for example,

Figure 8). NSF is not such a dataset; hence, slice-cover does not

guarantee better efficiency than a suboptimal solution like DFS. It

is important to note that lazy-slice-cover was the clear winner in all

the experiments (notice that the y-axes of all diagrams in Figure 11

are in log scale). The huge improvement of lazy-slice-cover over

slice-cover confirms the necessity and effectiveness of the heuristic

discussed in Section 3.2.

Hybrid algorithms. Having demonstrated the superiority of rank-

shrink and lazy-slice-cover over their competitors, next we evaluate

the behavior of their combination: the hybrid algorithm in Sec-

tion 5. For this purpose, we employed both mixed datasets Yahoo

and Adult. Figure 12 illustrates the number of queries performed by

hybrid to crawl each dataset entirely, as k changes from 64 to 1024.

Note that there is no reported value for Yahoo at k = 64 because it

has more than 64 identical tuples (i.e., they agree with each other

on every dimension) – for the reason explained in Section 1.1, no

algorithm can successfully extract the dataset in full when k = 64.

In practice, it would be a nice property for a crawling algorithm

to be able to return the tuples of a hidden database in a progres-

sive manner. Namely, it should gradually churn out new tuples

as it runs, instead of outputting most tuples only at the end. This

property allows the crawler to terminate the algorithm at any mo-

ment, while still able to obtain a number of tuples proportional to

the amount of time that has been spent. Motivated by this, the last

set of experiments examines the progressiveness of hybrid. In Fig-

ure 13 (where k was set to 256), for each dataset, we present the

percentage of the tuples extracted (the y-axis) against the percent-

age of the queries issued (the x-axis). For example, a point (20%,

30%) in this figure means that, hybrid is able to discover 30% of

the tuples in the dataset, at the moment when it has issued 20%

of all the queries that eventually need to be performed. We were

delighted to observe linear progressiveness for both datasets, as is

clear from Figure 13.

7. CONCLUSIONS
Currently, search engines cannot effectively index hidden

databases, and are thus unable to direct queries to the relevant data

in those repositories. With the rapid growth in the amount of such

hidden data, this problem has severely limited the scope of informa-

tion accessible to ordinary Internet users. In this paper, we attacked
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Figure 13: Output progressiveness of hybrid (k = 256)

an issue that lies at the heart of the problem, namely, how to crawl

a hidden database in its entirety with the smallest cost. We have

developed algorithms for solving the problem when the underlying

dataset has only numeric attributes, only categorical attributes, or

both. All our algorithms are asymptotically optimal, i.e., none of

them can be improved by more than constant times in the worst

case. Our theoretical analysis has also revealed the factors that de-

termine the hardness of the problem, as well as how much influence

each of those factors has on the hardness.
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