
On Efficient Spatial Matching

Raymond Chi-Wing Wong Yufei Tao Ada Wai-Chee Fu Xiaokui Xiao
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Sha Tin, New Territories, Hong Kong

{cwwong, taoyf, adafu, xkxiao}@cse.cuhk.edu.hk

ABSTRACT
This paper proposes and solves a new problem called spatial match-
ing (SPM). Let P and O be two sets of objects in an arbitrary met-
ric space, where object distances are defined according to a norm
satisfying the triangle inequality. Each object in O represents a
customer, and each object in P indicates a service provider, which
has a capacity corresponding to the maximum number of customers
that can be supported by the provider. SPM assigns each customer
to her/his nearest provider, among all the providers whose capaci-
ties have not been exhausted in serving other closer customers. We
elaborate the applications where SPM is useful, and develop algo-
rithms that settle this problem with a linear number O(|P | + |O|)
of nearest neighbor queries. We verify our theoretical findings with
extensive experiments, and show that the proposed solutions out-
perform alternative methods by a factor of orders of magnitude.

1. INTRODUCTION
Bichromatic reverse nearest neighbor (BRNN) search is an im-

portant operator in spatial databases that has been extensively stud-
ied [17, 18, 22, 23, 24]. Specifically, let P and O be two sets of
objects in the same data space. Given an object p ∈ P , a BRNN
query finds all the objects o ∈ O whose nearest neighbors (NN) in
P are p, namely, there does not exist any other object p′ ∈ P such
that |o, p′| < |o, p|. Those objects o constitute the BRNN set of p.

A typical application of BRNN retrieval is “selection of the best
service”. Consider, for example, that we want to collect voters’ bal-
lots in an election. In Figure 1a, P contains three polling places p1,
p2, p3 and O includes three residential estates o1, o2, o3. Assume
that we want to decide, for each estate oi (1 ≤ i ≤ 3), the polling
place that a resident in oi should go to for casting her/his ballot.
Naturally, the best polling place is the one closest to oi. By this
reasoning, each polling place should be responsible for the estates
in its BRNN set. Namely, p1 needs to serve all the estates in O

(i.e., the BRNN set of p1 is {o1, o2, o3}), while p2 and p3 serve no
estate at all.

This assignment of polling-places and estates, unfortunately, fails
to account for the fact that each polling place has a “serving capac-
ity”. A reasonable metric for such a capacity, for instance, is the

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

o1

o2

o3

p1

p2

p3 Estate
o1

o2

o3

Population
7k
3k
4k

Poll. place
p1

p2

p3

Capacity

10k
10k
10k

(a) Data sets andP O (b) Populations and capacities

Figure 1: Inadequacy of BRNN search

population of registered voters in all the estates served by the cor-
responding polling place. Figure 1b demonstrates the population
(serving capacity) of each estate (polling place) in Figure 1a. In
this case, the assignment determined with BRNN reasoning is not
feasible, since the total population in o1, o2, and o3 equals 14k, and
exceeds the capacity 10k of p1.

Motivated by the above problem, in this paper we study spatial
matching (SPM), which can be regarded as a generic version of
BRNN search that incorporates serving capacities. Given the data
in Figures 1a and 1b, SPM aims at allocating each estate o ∈ O

to the polling-place p ∈ P that (i) is as near to o as possible,
and (ii) its servicing capacity has not been exhausted in serving
other closer estates. These requirements lead to an assignment:
{(p1, o1), (p1, o2), (p2, o3)}. Note that o3 is served by p2, instead
of its nearest polling place p1, because the capacity of p1 has been
used up in serving o1 and o2. This arrangement is fair, since it re-
flects the practical policy that a polling place gives a higher priority
to its neighborhood than to a farther area.

The rationale of SPM can be understood in two intuitive ways
which turn out to be equivalent. First, the SPM-assignment results
from repetitively taking the closest pair of polling-place and estate,
among all the polling places that can still serve additional estates,
and all the estates that have not been allocated. Specifically, at
the beginning, (p1, o1) is the closest pair in the cartesian product
P × O, and is included in the assignment. Then, o1 is removed
from O, after which (p1, o2) becomes the closest pair in the current
P × O, and thus, is added to the assignment as well. Next, o2 is
eliminated from O. Furthermore, p1 is also excluded from P , since
its serving capacity has been exhausted. Now (p2, o3) and (p3, o3)
are the only elements in P × O; therefore, (p2, o3) is taken as the
last pair in the assignment.

Second, interestingly the SPM-assignment is actually the result
of a classical problem, called stable marriage [10], between P and
O. To understand this, notice that each residential estate o is im-
plicitly associated with a preference list, which sorts the polling
places in descending order of how much o would like to be served
by them. Similarly, each polling place p also has such a list, which
enumerates the estates in descending order of how much p would

like to serve them. Specifically, the preference list of an estate
o ∈ O sorts the polling places in P in ascending order of their
distances to o. Clearly, all estates in Figure 1a have the same list
{p1, p2, p3}. Symmetrically, the preference list of a polling place
p ∈ P juxtaposes the estates in ascending order of their distances
to p. That is, the list of p1 is {o1, o2, o3}, while those of p2 and p3

are {o3, o2, o1}. Given these lists, stable marriage returns a “fair”
assignment, where no polling-place and estate prefer each other
to their current matches, respectively. (For example, assignment
{(p1, o3), (p2, o2), (p3, o1)} is not fair, since p1 and o1 prefer each
other more than their existing matches o3 and p3, respectively.)

Although closest pair and stable marriage have been well-studied,
existing solutions cannot be applied to solve SPM efficiently. As
reviewed in Section 3, the fastest adaptation of those solutions en-
tails O(|P | · |O|) cost in computing an assignment, which is pro-
hibitively expensive for voluminous P and O. In this paper we
propose a novel algorithm Chain to enable SPM on large datasets.
Chain has provably good asymptotic performance, and terminates
after a linear number O(|P |+|O|) of NN (nearest neighbor) queries.
This is an important feature, since it opens the opportunity of lever-
aging the rich literature of NN search to optimize Chain. (For in-
stance, in 2D space, each NN query can be settled in poly-logarithmic
time, so that the running time of Chain is O((|P |+|O|)·(logO(1) |P |+

logO(1) |O|)), which significantly improves the best known solu-
tion.) Furthermore, Chain is not limited to Euclidean objects and
the L2 distance norm. Instead, it is applicable to objects in any
metric space, if the adopted distance norm satisfies the triangle in-
equality. For example, Chain can be leveraged to settle the SPM
problem in Figure 1, even if the distance between a polling place
and an estate is their road-network distance.

The rest of the paper is organized as follows. Section 2 for-
mulates two versions of spatial matching, i.e., un-weighted and
weighted SPM, and proves that conventional BRNN search is a
special case of our weighted problem. Section 3 clarifies the re-
lations of SPM to existing problems, and explains why the solu-
tions to those problems are not efficient for SPM. Section 4 pro-
poses an algorithm that settles un-weighted SPM, and analyzes its
asymptotical performance, whereas Section 5 extends our solution
to the weighted version. Section 6 evaluates the proposed tech-
niques through extensive experiments with real data. Section 7
concludes the paper with directions for future work.

2. BASIC DEFINITIONS AND PROPERTIES
Let D be any metric space, where object distances satisfy the

triangle inequality, that is, |a, b| + |b, c| ≥ |a, c| for any objects a,
b, c in D. We have a set P of objects in D, each of which represents
a service-site (e.g., a polling place in Figure 1a). We also have
another set O of objects in the same space, each corresponding
to a customer-site (e.g., a residential estate). For each customer-
site o ∈ O, use o.w to denote its population, i.e., the number of
customers in o. Given a service-site p ∈ P , deploy p.w to represent
its capacity, equal to the maximum number of customers that can
be served by p. We consider that there are enough services for all
customers, namely:

P

p∈P
p.w ≥

P

o∈O
o.w (1)

All the definitions, algorithms, lemmas and theorems in this paper
apply to any D and distance metric. Nevertheless, to facilitate un-
derstanding, our examples are designed in a two-dimensional Eu-
clidean space D, assuming that object distances are measured by
the Euclidean norm L2.

In this section, we will first define an un-weighted version of
spatial matching, before extending the definitions to the more com-

plicated weighted version. Then, we will discuss a class of non-
geographic applications where spatial matching is useful. Finally,
several fundamental problem characteristics will be clarified.

Un-Weighted Spatial Matching. In the un-weighted version, each
customer-site (service-site) has a population (capacity) 1, that is,
o.w = 1 and p.w = 1 for any o ∈ O and p ∈ P .

DEFINITION 1 (ASSIGNMENT). Let A be a subset of the carte-
sian product P × O. Each object-pair in A is a couple, where the
two objects are partners to each other. A is called an assignment,
if each customer-site o ∈ O appears in exactly one couple, and
each service-site p ∈ P appears in at most one couple.

We look for a fair assignment which assigns each customer o

to its nearest service p, which has not been occupied by any other
closer customer. Unfairness is captured by the existence of a “dan-
gling” object pair.

DEFINITION 2 (DANGLING PAIR). Given an assignment A,
a pair of objects (p, o) ∈ P × O is a dangling pair if all the
following conditions are satisfied:

• |p, o| < the distance between o and its partner in A;

• |p, o| < the distance between p and its partner in A (this
condition is trivially true if p has no partner in A).

A is fair, if no dangling pair exists; otherwise, A is unfair.

To illustrate this concept, consider that P (O) includes all the
cross (dot) points in Figure 1a, and that each customer-/service-site
has a population/capacity 1. Then, assignment {(p1, o1), (p2, o2),
(p3, o3)} is unfair, due to the existence of a dangling pair (p2, o3).
In particular, p2 (o3) has a partner o2 (p3) in the assignment, and
(p2, o3) is dangling because |p2, o3| < |p2, o2| and |p2, o3| <

|p3, o3|. On the other hand, {(p1, o1), (p2, o3), (p3, o2)} is fair.

PROBLEM 1. The goal of un-weighted spatial matching (un-
weighted SPM) is to find a fair assignment.

Weighted Spatial Matching. The previous definitions can be di-
rectly extended to the general case where service- and customer-
sites have respectively arbitrary capacities and populations, subject
to Inequality 1. Specifically, given weighted datasets P and O, we
can transform them into un-weighted sets P ′ and O′ as follows.
For each service-site p ∈ P (customer-site o ∈ O), we duplicate
p.w (o.w) objects at the location of p (o), and add all of them to
P ′ (O′). Then, the goal of weighted SPM is essentially to discover
a fair assignment for the resulting P ′ and O′. Clearly, this assign-
ment encloses |O′| couples.

As an example, assume that P (O) involves the cross (dot) points
in Figure 1a, whose capacities (populations) are indicated in Fig-
ure 1b. By the transformation, P ′ and O′ include 30k and 14k
points, respectively. The query result {(p1, o1), (p1, o2), (p2, o3)}
mentioned in Section 1 can be regarded as an assignment computed
from P ′ and O′ that contains 14k couples. For instance, (p1, o1)
represents 7k couples, each of which pairs a service-site in P ′ lo-
cated at p1 with a customer-site in O′ at o1.

Although the transformation correctly defines weighted SPM, it
is cumbersome, since it requires enumeration of a huge number of
identical couples. Next, we present an alternative definition based
on the same idea as the transformation, but is more concise. That is,
we will extend Definitions 1 and 2 to their weighted counterparts.

DEFINITION 3 (WEIGHTED ASSIGNMENT). Let p be a service-
site in P and o a customer-site in O. A triplet (p, o, w) is an ex-
tended couple, where w is an integer, and referred to as the weight
of the extended couple. We say that p and o are partners to each
other. A weighted assignment A is a set of extended couples, such
that

• for each customer-site o ∈ O, the sum of the weights of all
extended couples in A containing o equals precisely o.w;

• for each service-site p ∈ P , the sum of the weights of all
extended couples in A containing p does not exceed p.w.

Unlike the un-weighted case, each service-site (customer-site)
may have multiple partners, because it can appear in several ex-
tended couples. To understand this, consider again that P (O) is
the cross (dot) datasets in Figure 1a, with capacities (populations)
in Figure 1b. A weighted assignment can be {(p1, o1, 3k), (p2, o1,
4k), (p1, o2, 3k), (p1, o3, 4k)}. Here, o1 has two partners p1 and
p2, which serve 3k and 4k customers in o1, respectively. Similarly,
p1 has three partners o1, o2, and o3.

DEFINITION 4 (DANGLING PAIR). Given a weighted assign-
ment A, a pair of objects (p, o) ∈ P × O is a dangling pair if all
the following conditions are satisfied:

• |p, o| < the distance between o and some of its partners in
A;

• |p, o| < the distance between p and some of its partners in
A (this condition is trivially true, if the capacity of p has not
been exhausted according to A).

A is fair, if no dangling pair exists; otherwise, A is unfair.

For instance, in Figure 1, weighted assignment {(p1, o1, 3k),
(p2, o1, 4k), (p1, o2, 3k), (p1, o3, 4k)} is unfair. Specifically, pair
(p1, o1) is dangling because (i) |p1, o1| < |p2, o1| (note that p2 is
a partner of o1), and (ii) |p1, o1| < |p1, o2| (also note that o2 is
a partner of p1). Weighted assignment {(p1, o1, 7k), (p1, o2, 3k),
(p2, o3, 4k)}, on the other hand, is fair.

PROBLEM 2. The goal of weighted spatial matching (weighted
SPM) is to find a fair weighted assignment.

Applications. SPM can be applied in most (if not all) applications
where BRNN search makes sense, and the objective is to guarantee
the best service each customer can possibly get, subject to service
providers’ capacities, and the priorities of other customers. The
notions of “service” and “customer” are general, and can have al-
ternative semantics in different, even non-geographic applications.
For example, consider that a computer science department wants to
assign a set O of students to a set P of intern jobs. Each job is de-
scribed by several attributes such as the number of working hours
per week, the amount of research work in a scale from 0 (light)
to 1 (heavy), the distance from the work location to the university,
etc. Each student gives her/his preferences for these attributes. As
a result, every job and student can be represented as a multidimen-
sional point (one coordinate per attribute). If we aim at matching,
as much as possible, a student’s preferences with a job’s descrip-
tion, allocation of students to jobs is an SPM problem. Here, a
“service-site” is a job, and its capacity is the number of vacancies
of the job, whereas a “customer-site” is a student, and its popula-
tion equals 1. The result of SPM ensures that a student gets the best
job (minimizing the matching difference), among all jobs that have
not been fully occupied by better-matched students.

The above example implies a template for a class of profile-
matching applications where SPM is particularly useful. Specifi-
cally, such an application contains (i) a set P of “items”, whose
profiles are represented as points in a multidimensional space, and
(ii) a set O of “contenders”, whose preferences are also modeled as
points in the same data space. SPM makes sure that each contender
obtains the best possible item under a fair competition, adhering to
the rule that a pair of contender and item is a better match, if their
point representations are closer.

Basic Properties. We consider a general situation where each
pair of objects in the cartesian product P × O has a distinct dis-
tance, namely, for any (p, o) and (p′, o′) in P × O, it holds that
|p, o| 6= |p′, o′| unless p = p′ and o = o′. This assumption al-
lows us to avoid several complicated, yet uninteresting, “boundary
cases”. Obviously, when the assumption is not fulfilled, we can al-
ways apply an infinitesimal perturbation to the positions of some
service- or customer-sites, to break the tie of the distances of two
object pairs. Due to the tininess of perturbation, query results from
the perturbed datasets should be as useful as those from the original
datasets.

The next two lemmas explain two fundamental facts about SPM.
Specifically, Lemma 1 shows that the result of SPM is unique, and
Lemma 2 indicates that the conventional BRNN problem is merely
a special instance of SPM.

LEMMA 1. In un-weighted (weighted) SPM, there is a unique
fair (weighted) assignment for any P and O.

PROOF. The proofs of all lemmas and theorems can be found in
the appendix.

LEMMA 2. Let P and O be two sets of objects in the same met-
ric space. The problem of computing the BRNN set of each object
p ∈ P is an instance of weighted SPM, where p.w = |O| for every
p ∈ P and o.w = 1 for every o ∈ O.

3. RELEVANCE TO EXISTING PROBLEMS
Although SPM has not been studied in the literature, it can be

reduced to two known problems: stable marriage and closest-pair
retrieval. In Sections 3.1 and 3.2, we will clarify the reduction, and
explain the limitation of previous solutions when they are adapted
to SPM. Finally, Section 3.3 reviews other work related to SPM.
For simplicity, the discussion in this section focuses on un-weighted
SPM. However, all the results can be easily extended to the weighted
version, which can be transformed to the un-weighted problem, as
explained in the previous section.

3.1 Reduction to Stable Marriage
Stable marriage is a classical problem in computer science. Let

P be a set of men, and O a set of women, such that |P | ≥ |O|.
Each man p ∈ P (woman o ∈ O) decides a preference list, which
sorts the women (men) in descending order of how much p (o) loves
them. Apparently, each man’s (woman’s) preference list has a size
|O| (|P |); therefore, all the lists occupy O(|P | · |O|) space. The
objective is to find a feasible marriage scheme, where each woman
marries a man. The scheme should guarantee the absence of a man
p and a woman o, such that p loves o more than his current partner
(this is trivially true if p has no partner), and o loves p more than
her current partner.

As a simple example, consider P = {p1, p2} and O = {o1, o2}.
Assume that p1 and p2 have the same preference list {o1, o2},
while the list of o1 is {p1, p2}, and that of o2 is {p2, p1}. In this
case, the marriage scheme {(p1, o2), (p2, o1)} is not feasible, since

we can find a man p1 and a woman o1 such that p1 prefers o1 to his
current partner o2, and o1 prefers p1 to her current partner p2.

Given an instance of (un-weighted) SPM, we can construct a
stable marriage problem as follows. First, each service-site in P

is regarded as a man, and each customer-site in O as a woman.
Then, each service-site p decides its preference list, by sorting the
customer-sites in O in ascending order of their distances to p. Sim-
ilarly, the preference list of a customer-site o ∈ O juxtaposes all the
service-sites in ascending order of their distances to o. We have:

LEMMA 3. A feasible marriage scheme of the constructed stable-
marriage problem is a fair assignment for the original un-weighted
SPM.

The reduction allows us to employ a stable-marriage solution for
SPM. The fastest solution is due to Gale and Shapley [10]: it pro-
duces a feasible marriage scheme in O(|P | · |O|) time, consuming
O(|P | · |O|) space. Furthermore, it is also known that, given arbi-
trary preference lists, O(|P | · |O|) is indeed the (time and space)
lower bound of solving the stable-marriage problem.

Fortunately, the lower bound does not apply to SPM. The rea-
son is that SPM is actually a special case of stable marriage, since
a preference list in SPM cannot be arbitrary, but instead, must be
decided according to the distances between spatial objects. For
example, in Figure 1a, in SPM the preference list of p1 must be
{o1, o2, o3}. However, if it was a stable marriage problem, p1

could have specified another preference list that permutates the
three residential sites in any way. The un-equivalence between sta-
ble marriage and SPM is also reflected in the fact that the reverse
of the above reduction does not work. In particular, it is not always
possible to design two sets P and O of points, whose preference
lists (computed as described earlier in the reduction from SPM to
stable-marriage) are identical to those of a given stable marriage
instance. In Section 4, we will develop an efficient SPM algorithm
that entails far less than O(|P | · |O|) cost.

3.2 Reduction to Closest Pair Retrieval
Given two sets P and O of objects, a closest pair query finds

the pair of objects (p, o) whose distance is the smallest among all
object-pairs in the cartesian product P × O. Given an instance of
un-weighted SPM with a set P (O) of service- (customer-) sites, we
can compute an assignment by repetitively retrieving closest pairs
as follows. Initially, the assignment is empty. We first retrieve the
closest pair (p, o) from P and O, which is added as a couple to the
assignment. Then, we remove p and o from P and O respectively,
and repeat the above process, until O becomes empty. At this time,
the current assignment becomes final. We have the following result.

LEMMA 4. The assignment obtained by repetitive closest-pair
retrieval as described earlier is a fair assignment for the original
un-weighted SPM.

Although the above strategy correctly solves SPM, it incurs ex-
pensive cost. Specifically, it requires totally |O| closest pair queries,
whereas closest pair retrieval is known to be a costly process in
general. In particular, to the best of our knowledge, all the existing
closest-pair methods [4, 7, 13, 24] rely on heuristics that do not
have good worst-case performance. No asymptotical bound better
than the trivial O(|P | · |O|) has been established on the running
time (the closest-pair problem is easier when P and O are the same
dataset; in that case, the closest-pair can be found in O(|O| log |O|)
time [3], if O includes two-dimensional objects). Obviously, lever-
aging a O(|P | · |O|) closest-pair algorithm to solve SPM results in
the terrible running time of O(|P | · |O|2).

It is worth mentioning that an “incremental” closest-pair algo-
rithm is developed in [7]. If we define the distance of a pair of
objects as their Euclidean distance, the algorithm reports object-
pairs in P ×O in ascending order of their distances (no worst-case
bound, however, is proved for the computation cost). This algo-
rithm cannot be applied for SPM, because it assumes that P and
O remain the same during the algorithm’s execution. In our con-
text, an object is removed from both P and O every time a pair of
objects is found.

3.3 BRNN and NN Search
Bichromatic reverse nearest neighbor (BRNN) search is proposed

by Korn and Muthukrishnan [18]. The fastest BRNN algorithm is
due to Stanoi et al. [22]. Their solution does not support incremen-
tal maintenance of the query result, when the underlying datasets
have been updated. To remedy this problem, recently Kang et al.
[17] develop an alternative method which continuously captures the
result changes, when data updates arrive rapidly in the form of a
stream. Xia et al. [23] utilize BRNN search to discover the most
“influential” service-site, which has the largest BRNN set. None of
the above works, however, can be applied to solve SPM, because,
as explained in Lemma 2, BRNN retrieval is only a special case of
SPM. It is worth noting that there exists another form of reverse
nearest neighbor (RNN) search called monochromatic RNN [18],
which has also been extensively studied previously (see [1] and the
references therein). Monochromatic RNN involves only a single
dataset, and is fundamentally different from SPM.

Nearest neighbor (NN) search is among the oldest problems in
computational geometry. Given a set S of n two-dimensional data
points, any NN query can be solved in O(log n) time, using an in-
dex that consumes O(n) space. There exist several indexes that
can fulfill this purpose; for example, one obvious solution [8] is to
build a trapezoidal map over the Voronoi diagram of S. The prob-
lem is harder when updates are allowed on S. Using a random-
ized technique in [20], each update can be supported in O(log n)
cost, and each query is answered in O(log2 n) time, where n is
the size of S at the time of the update/query. Recently, a different
tradeoff is presented in [6], where Chan shows that it is possible to
achieve O(log n) query cost, but the update time must be increased
to O(log6 n).

There has been considerable research that aims at solving NN
queries using heuristic-oriented algorithms. Although these algo-
rithms do not have good worst-case asymptotical performance, they
have been shown to be fairly efficient in reality. Another important
advantage of those algorithms is that, they can be easily extended
to support NN retrieval on data of any dimensionality, and can be
executed on access methods (e.g., B- and R-trees [2]) available in a
commercial database. Among the existing solutions, the branch-
and-bound [21] and best-first [14] algorithms are the fastest for
low-dimensional data, and iDistance [15] is a popular solution in
high dimensional spaces.

Gowda and Krishna [12] introduce the notion of mutual nearest
neighbor. Specifically, two objects p and p′ in the same dataset
S are mutual NNs, if p is the NN of p′ in S − {p′} and p′ is the
NN of p in S − {p}. Finding mutual NNs is useful in data min-
ing, and several solutions [5, 9, 11, 12, 16] have been developed.
Those solutions all stick to the original definition by Gowda and
Krishna, i.e., both mutual NNs come from the same dataset. As
clarified shortly, the proposed SPM technique requires a closely
relevant concept, but with respect to two datasets.

4. UN-WEIGHTED SPATIAL MATCHING
In this section, we settle the un-weighted SPM problem. As will

o
1

p
1

o
2

p
2

o
3

p
3

o
4 p

4

Figure 2: A running example

p
1

p
2

o
1

o
2 o

3

Figure 3: Illustration of a
chain

be elaborated in Section 5, the un-weighted solution can be ex-
tended to solve the weighted version. Section 4.1 illustrates several
problem characteristics crucial to the proposed algorithm, which is
presented in Section 4.2. Section 4.3 analyzes the theoretical per-
formance of our solution.

4.1 Reduction to Bichromatic Mutual NN Search
The concept of “mutual nearest neighbor” mentioned in Sec-

tion 3.3 is “monochromatic”, since it concerns only a single dataset.
Next, we define its “bichromatic” counterpart.

DEFINITION 5 (BICHROMATIC MUTUAL NN). An object p ∈
P and an object o ∈ O are bichromatic mutual nearest neigh-
bors, if p is the NN of o in P , and o is the NN of p in O.

Since in the sequel all occurrences of “mutual NNs” are bichro-
matic, we omit the term “bichromatic” for simplicity. Figure 2
shows an example where P = {p1, p2, p3, p4} and O = {o1, o2, o3,
o4}. Here, (p2, o2), (p3, o3) and (p4, o4) are three pairs of mutual
NNs. In general, we have:

LEMMA 5. As long as P and O are not empty, there always
exists at least a pair of mutual NNs.

We observe an important reduction from SPM to bichromatic
mutual NN search.

LEMMA 6. Let (p, o) ∈ P × O be any pair of mutual NNs.
Suppose that we remove p from P , and denote P ′ = P − {p};
similarly, we remove o from O, and denote O′ = O − {o}. Let
A′ be a fair assignment for the SPM with P ′ and O′. Then, A′ ∪
{(p, o)} is a fair assignment for the SPM with P and O.

In Figure 2, as discussed before, (p3, o3) is a pair of mutual
NNs. Eliminating p3 and o3 from P and O respectively, we ob-
tain P ′ = {p1, p2, p4} and O′ = {o1, o2, o4}. Notice that A′ =
{(p1, o1), (p2, o2), (p4, o4)} is a fair assignment for the SPM in-
volving P ′ and O′. Then, by Lemma 6, we know that A = A′ ∪
{(p3, o3)}must be a fair assignment for the original SPM including
P and O.

Lemma 6 suggests that, after finding a pair (p, o) of mutual NNs
in P × O, we can remove p and o from P and O respectively, and
then, focus on another SPM problem with smaller datasets P ′ =
P − {p} and O′ = O − {o}. Once a fair assignment A′ has been
obtained with respect to P ′ and O′, we can simply augment A′ with
an additional couple (p, o) to obtain a new assignment A, which is
guaranteed to be the solution to the original SPM for P and O.
Notice that, the same trick can be recursively applied in solving
the SPM with P ′ and O′ — discover another pair of mutual NNs,
remove them from P ′ and O′, and then concentrate on the SPM
for the remaining data. This idea motivates a neat framework for
performing SPM, as is presented in Algorithm 1.

EXAMPLE 1. We illustrate Algorithm 1 with the example in
Figure 2. At the beginning, we initialize an empty assignment A.

Algorithm 1 General Framework of Spatial Matching (P , O)
1: A← ∅
2: while |O| 6= ∅ do
3: find a pair (p, o) of mutual NNs in P and O
4: remove p and o from P and O, respectively
5: A← A ∪ {(p, o)}
6: return A

Suppose that we find mutual NNs p3 and o3 in the first iteration.
Then, (p3, o3) is inserted into A, after which p3 (o3) is evicted
from P (O), leading to P = {p1, p2, p4} and O = {o1, o2, o4}.
Assume that the second iteration retrieves mutual NNs p2 and o2 in
the current P and O, respectively. Accordingly, we insert (p2, o2)
into A, and eliminate p2 (o2) from P (O), leaving P = {p1, p4}
and O = {o1, o4}. The third iteration discovers mutual-NN pair
(p4, o4), which is thus added to A. After removing p4 and o4, P

and O become singleton sets {p1} and {o1}, respectively. The fi-
nal iteration thus inserts (p1, o1) into A, which becomes the final
assignment for the original SPM problem.

Efficient implementation of Algorithm 1 demands a fast solution
for fetching a pair of mutual NNs from P and O. As reviewed
in Section 3.3, the previous mutual-NN algorithms focus on the
monochromatic case, and hence, are inapplicable in our (bichro-
matic) scenario.

An obvious approach to find mutual NNs is to retrieve the clos-
est pair in P × O (using an existing algorithm reviewed in Sec-
tion 3.2), since the closest pair is definitely a pair of mutual NNs.
Unfortunately, this approach degrades Algorithm 1 to precisely the
strategy explained in Section 3.2, which entails prohibitive cost. In
fact, mutual-NN search is much easier than identifying the closest
pair because, intuitively, there exist multiple pairs of mutual NNs
(e.g., as mentioned earlier, Figure 2 contains three pairs of mutual
NNs), and it suffices to find any of them. In the next subsection, we
provide an efficient mutual-NN algorithm.

4.2 The Chain Algorithm
Next, we develop an SPM algorithm Chain following the frame-

work in Algorithm 1. Given datasets P and O, Chain retrieves a
pair of mutual NNs (from the current P × O), removes them from
P and O respectively, and repeats this process. Chain has an im-
portant feature: to compute the next mutual-NN pair, it does not
start from scratch, but utilizes the information already gathered in
finding the previous pair. This feature allows Chain to avoid fetch-
ing the same information twice, and guarantees its good asymptotic
performance, as studied in the next subsection.

The First Mutual-NN Pair. We first explain a method of finding
one pair of mutual NNs. The method leverages a chain list C, which
contains objects from P and O, and has two invariant properties.
First, the elements of C have interleaved origin datasets. That is, if
an element is from P , then its successive element must come from
O, and vice versa. Second, for any consecutive objects x and y (in
this order) in C, y must be the NN of x in the origin dataset of y.

C is initially empty. To acquire mutual NNs, we start with an
arbitrary object in O, and insert it to C. Then, we carry out a chain
process, which repetitively performs the following procedure, until
a pair of mutual NNs is discovered. The procedure takes the last
element x of the current C. Assuming that x belongs to O (P),
we find the NN y of x in P (O). If y is different from the preced-
ing element of x in C, y is placed at the end of C, and the chain
process continues with another execution of the above procedure.
Otherwise, we have identified the first pair of mutual NNs x and y.

The above strategy guarantees the retrieval of a mutual-NN pair,
due to the following observation:

LEMMA 7. Each object in P or O appears in C at most once.

In other words, C cannot keep expanding forever, since both P

and O have a limited cardinality. In fact, usually mutual NNs can be
found after only a small number of NN queries. This can be well il-
lustrated using Figure 3, where P = {p1, p2} and O = {o1, o2, o3}.
Here, o1 is a random point from O, and the first element of C. Then,
we fetch the NN p1 of o1 in P , and append it to C (= {o1, p1} cur-
rently). Likewise, the NN of p1 in O is point o2. Since o2 is differ-
ent from o1 (the preceding element of p1 in C), o2 is also appended
to C. Similarly, next p2 is included in C, followed by o3, at which
point the content of C is {o1, p1, o2, p2, o3}. Now we retrieve the
NN of o3 in P , which turns out to its preceding element p2. Hence,
a mutual-NN pair (p2, o3) is found. Let us draw a circle centering
at each element in C that crosses its NN in the opposite dataset.
For example, the circle at o1 crosses p1, whose circle passes o2,
etc. The sizes of the circles decrease monotonically, as we traverse
their centers according to their ordering in C. (This observation is
easy to prove. For instance, the circle at p1 cannot cover o1, be-
cause |p1, o2| < |p1, o1| due to the fact that o2 is the NN of p1

in O; therefore, the circle at p1 is smaller than that at o1.) The
implication is that, assuming the last element x of C belongs to O

(P), C expands, only if there is an unseen point in P (O) whose
distance to x is smaller than the radius of the circle centering at the
preceding element of x. Such a point x cannot be found, after the
radius becomes sufficiently small — this is when a mutual-NN pair
is identified.

The Next Pair. Consider the moment of encountering a pair of
mutual NNs. Without loss of generality, assume that at this time the
last element of C originates from P (the opposite case is similar).
Let us represent the content of C as {o1, p1, ..., om, pm}, where
m is some positive integer, and for any i ∈ [1, m], oi ∈ O and
pi ∈ P . Here, om and pm are mutual NNs.

We now update P (O) by deleting pm (om), and then proceed to
look for the next mutual-NN pair. Although this can be achieved
trivially by applying the procedure of obtaining the first pair, a
much better approach would be to utilize the current content of C,
if C is not empty. Specifically, after pm and om are removed from
C, the remaining elements still satisfy the two invariant properties
stated earlier, with respect to the updated P and O. That is, for any
consecutive elements x and y of C (in this order), (i) they are from
different datasets, and (ii) y is the NN of x in the origin dataset
of y. Therefore, it is not necessary to grow C from the beginning;
instead, we can continue the chain process from the current last
element of C.

Formal Algorithm and Illustration. The previous discussion has
elaborated the details of Chain, as presented in Algorithm 2. In the
sequel, we illustrate the algorithm using a concrete example.

EXAMPLE 2. Consider that we want to find the fair assignment
for the SPM problem involving the data in Figure 2, where P = {p1,
p2, p3, p4} and O = {o1, o2, o3, o4}. Chain starts by initiating
an empty A and C, choosing a random element o1 from O, and
inserting it to C. Then, it finds the NN p1 of o1 in P , after which
C = {o1, p1}. Next, the NN o2 of p1 in O is retrieved. Since o2

is different from o1 (the preceding element of p1), C is expanded
to {o1, p1, o2}. Chain proceeds by fetching the NN p2 of o2 in P ,
and appending p2 to C. The algorithm then searches for the NN of
p2 in O, which coincides with the preceding element o2 of p2 in
C. Hence, a pair (p2, o2) of mutual NNs is discovered. Figure 4a
illustrates the current chain.

Algorithm 2 Chain (P , O)
1: A← ∅
2: while O 6= ∅ do
3: pick a random object o ∈ O
4: C ← {o}
5: while C 6= ∅ do
6: x← the last element of C
7: if x ∈ O then
8: y ← the NN of x in P
9: if y = the previous element of x in C then

10: remove y and x from C
11: insert (y, x) into A
12: remove y and x from P and O, respectively
13: else
14: insert y into C
15: else
16: y ← the NN of x in O
17: if y = the previous element of x in C then
18: remove y and x from C
19: insert (x, y) into A
20: remove x and y from P and O, respectively
21: else
22: insert y into C
23: return A

According to the analysis in Section 4.1, (p2, o2) must be a cou-
ple in our objective assignment, and hence, is inserted in A. Af-
ter this, p2 and o2 are evicted from C (which becomes {o1, p1}),
and then further eliminated from P and O, respectively (now P =
{p1, p3, p4} and O = {o1, o3, o4}). Since p1 is the last element
of C, Chain continues by searching for the NN of p1 in O, and
retrieves o4, which is appended to C. Next, the algorithm fetches
the NN p4 of o4 in P , updates C to = {o1, p1, o4, p4}, and then
(through an NN query triggered by p4) discovers that p4 and o4 are
mutual NNs. Figure 4b demonstrates the chain at this moment.

After adding (p4, o4) to A, we remove p4 (o4) from P (O) and
C. p1 becomes the last element of C, and its NN in O is o1, which
precedes p1 in C. So, Chain acquires the third mutual-NN pair
(p1, o1), which is included in A. Figure 4c presents the current
chain.

Continuing the example, we delete p4 and o4 from C, and from
P and O, respectively. Now C becomes empty. Hence, Chain picks
another random point from O, and settles on o3, since it is the only
point left in O. Finally, (p3, o3) is produced as the last pair of
mutual NNs, and enters A. The algorithm terminates with the fair
assignment A = {(p1, o1), (p2, o2), (p3, o3), (p4, o4)}.

We index P and O with a multidimensional access method effi-
cient for NN search. If such an index does not exist in advance, it is
constructed (through a bulkloading algorithm [19], whenever pos-
sible) before the execution of Chain. Obviously, the index needs to
be dynamic, namely, it must allow incremental object deletions.

4.3 Analysis
The cost of Chain is dominated by the overhead of two opera-

tions: NN search, and deletion of an object (from P or O). We first
bound the numbers of these operations, respectively:

THEOREM 1. Chain performs at most 3|O| NN queries, and
exactly 2|O| object deletions.

In other words, the number of operations of each type is linear
to the cardinality of dataset O. The efficiency of each operation
depends on the data structure used to index O and P . Without be-
ing limited to any specific structure, let us use α(n) (β(n)) as the

o
1

p
1

o
2

p
2

o
3

p
3

o
4 p

4

o
1

p
1

o
3

p
3

o
4 p

4

o
1

p
1

o
3

p
3

(a) When (p2, o2) is found (b) When (p4, o4) is found (c) When (p1, o1) is found

Figure 4: Illustration of chains in solving the SPM problem in Figure 2

worst-case asymptotical complexity of an NN query (object dele-
tion) performed on the structure, when the underlying dataset has a
cardinality n. Then, a general result holds:

THEOREM 2. The running time of Chain is O(|O| · (α(|P |) +
β(|P |))).

For example, as mentioned in Section 3.3, if the technique of
[20] is deployed to manage two-dimensional O and P , α(|P |) =
log2(|P |) and β(|P |) = log(|P |), whereas if the solution of [6]
is utilized, α(|P |) = log(|P |) and β(|P |) = log6(|P |). In either
case, the overall time complexity of Chain is O(|O| · logO(1) |P |).

5. WEIGHTED SPATIAL MATCHING
In Section 5.1, we extend Chain (Algorithm 2) to solve the weighted

SPM problem, where o.w ≥ 1 and p.w ≥ 1 for all o ∈ O and
p ∈ P . Then, Section 5.2 analyzes the performance of the ex-
tended algorithm.

5.1 The Weighted Chain Algorithm
Algorithm 3 presents the proposed solution Weighted-Chain for

settling weighted SPM. As with Chain, Weighted-Chain works by
continuously retrieving mutual NNs. The difference between the
two algorithms lies in how a mutual-NN pair is handled. In partic-
ular, Weighted-Chain generates extended couples (see Definition 3)
from a pair of mutual-NNs, after which usually only one object in
the pair is removed from its origin dataset (as opposed to always
eliminating both objects in Chain).

Let us elaborate the details of Weighted-Chain. It maintains a
variable A which stores the extended couples already discovered,
and becomes the final weighted assignment at the end of the algo-
rithm. Initially, A is ∅. We start by randomly selecting an object
o ∈ O, and initialize the chain list C to {o}. Then, as long as C
is not empty, Weighted-Chain carries out the following procedure
repetitively. Take the last element x of C, and without loss of gen-
erality, assume that x comes from O (the scenario where x ∈ P is
symmetric). We fetch the NN y of x in P , and then distinguish two
cases.

1. If y is not the preceding element of x in C, we simply insert
y into C.

2. Otherwise, a pair of mutual NNs y, x has been identified.
Thus, we generate an extended couple as follows, depending
on the comparison of x.w and y.w.

(a) If x.w > y.w, we insert (y, x, y.w) into A. Further-
more, both x.w and y.w are reduced by y.w (i.e., y.w

equals 0 afterwards), We remove y from P and C, and
x from C.

(b) If x.w ≤ y.w, we add (y, x, x.w) to A. Both x.w and
y.w are decreased by x.w. After this, x is removed
from O and C. If y.w equals 0 (which happens only if
x.w = y.w), we also discard y from P and C.

Next we illustrate the algorithm with a concrete example.

Algorithm 3 Weighted Chain (P , O)
1: A← ∅
2: while O 6= ∅ do
3: pick a random object o ∈ O
4: C ← {o}
5: while C 6= ∅ do
6: x← the last element of C
7: if x ∈ O then
8: y ← the NN of x in P
9: if y is equal to the previous element of x in C then

10: if x.w > y.w then
11: insert (y, x, y.w) into A
12: decrease x.w by y.w
13: remove y from P
14: remove x and y from C
15: else
16: insert (y, x, x.w) into A
17: decrease y.w by x.w
18: remove x from O and C
19: if y.w = 0 then
20: remove y from P and C
21: else
22: insert y into C
23: else
24: /* Case: x ∈ P . Details omitted, as they are symmetric to the

case of x ∈ O.*/
25: return A

EXAMPLE 3. Consider the weighted SPM problem involving
the data in Figure 5a where P = {p1, p2, p3} and O = {o1, o2, o3},
and their populations/capacities are as indicated in the figure.

Initially, A is ∅. Suppose that Weighted-Chain randomly selects
o1. Then, it performs a sequence of NN queries (in the same way
as Chain) until the first pair of mutual NNs p1 and o2 is found. At
this point, C = {o1, p1, o2}, and the chain is demonstrated in Fig-
ure 5b. As p1.w = 20 > o2.w = 10, we create an extended couple
(p1, o2, 10), and insert it in A. Both p1.w and o2.w are reduced by
10, after which p1.w = 10 and o2.w = 0. Semantically, the reduc-
tion implies that all the customers at o2 have been served, whereas
the service-site p1 can still serve 10 more customers. We remove
o2 from O and C, which changes to {o1, p1}. On the other hand,
p1 remains in P and C because, as mentioned earlier, its serving
capacity has not been exhausted yet.

Next, Weighted-Chain proceeds with additional NN queries to
find the second pair of mutual NNs p1 and o3, at which moment
C = {o1, p1, o3} and the chain is shown in Figure 5c (notice that,
compared to Figure 5b, o2 has disappeared and p1.w has changed).
Since o3.w = 15 > p1.w = 10, an extended couple (p1, o3, 10)
is added to A. Now we decrease o3.w and p1.w by 10, leaving
o3.w = 5 and p1.w = 0. This time, service-site p1 can serve no
more customer; hence, it is eliminated from P and C. Customer-
site o3 is kept in O, as some customers in o3 are not served yet.
However, o3 must be evicted from C (which equals {o1} after the
eviction), because otherwise, o1 and o3 would come together in C,
which is not allowed since each pair of consecutive elements in C
are required to originate from different datasets.

Similarly, the next mutual NNs retrieved are p2 and o1, with

o
1

p
2

o
2

p
1

p
3

O

o
1

o
2

o
3

w

10

10

15

P

p
1

p
2

p
3

w

20

10

10

o
3

o
1

p
2

o
2

p
1

p
3

O

o
1

o
2

o
3

w

10

10

15

P

p
1

p
2

p
3

w

20

10

10

o
3

(a) Datasets P and O (b) Chain at the moment of finding (mutual NNs) p1, o2

o
1

p
2

p
1

p
3

O

o
1

o
2

o
3

w

10

0

15

P

p
1

p
2

p
3

w

10

10

10

o
3

o
1

p
2

p
3

O

o
1

o
2

o
3

w

10

0

5

P

p
1

p
2

p
3

w

0

10

10

o
3

p
3

O

o
1

o
2

o
3

w

0

0

5

P

p
1

p
2

p
3

w

0

0

10

o
3

(c) At finding p1, o3 (d) At finding p2, o1 (e) At finding p3, o3

Figure 5: Illustration of Algorithm Weighted-Chain

C = {o1, p2} and the chain illustrated in Figure 5d. Here, p2.w =
o1.w = 10. Accordingly, we augment A with an extended cou-
ple (p2, o1, 10), and reduce p2.w and o1.w by 10, which become
0. Hence, both o1 and p2 are discarded from C, and their origin
datasets O and P , respectively.

As C is empty now, Weighted-Chain starts a new chain by ran-
domly choosing another point o3 in O (in fact, o3 is the only ob-
ject left in O). Finally, an extended couple (p3, o3, 5) is inserted
into A (see Figure 5e for the current chain), and o3 is deleted from
O. As O becomes ∅, Algorithm 3 terminates, returning the final
weighted assignment A = {(p1, o2, 10), (p1, o3, 10), (p2, o1, 10),
(p3, o3, 5)}.

5.2 Analysis
Since the correctness of Weighted-Chain is less trivial (than that

of Chain), we prove it in the next lemma.

LEMMA 8. Algorithm 3 returns a fair weighted assignment.

As with Chain, the efficiency of Weighted-Chain is decided by
the numbers of NN queries and object deletions, both of which are
bounded by O(|P | + |O|), as formalized in:

THEOREM 3. Weighted-Chain performs at most 3(|P | + |O|)
NN queries, and at most |P | + |O| object deletions.

Again, let us introduce α(n) and β(n) as the worst-case com-
plexities of an NN query and an object deletion respectively, per-
formed on an index used to organize P and O, when the underlying
dataset has a size n. We have the following.

THEOREM 4. The running time of Weighted-Chain is O((|P |+
|O|) · (α(|P |) + β(|P |) + α(|O|) + β(|O|))).

With the same choices for the index as stated in Section 4.3, the
time of Weighted-Chain is bounded by O((|P |+|O|)·(logO(1) |P |+

logO(1) |O|)).

Dataset Dim. Cardinality
CA 2 62,556
LB 2 53,145
GR 2 23,268
GM 2 36,334

Table 1: Summary of the
real datasets

Default
value 1

Default
value 2

Dim. 3 3
Cardinality (|O|) 5k 50k
Cardinality (|P |) 2|O| 2|O|

Table 2: Default values of
synthetic datasets

6. EMPIRICAL STUDY
We have conducted extensive experiments on a Pentium IV 2.2GHz

PC with 1GB memory, on a Linux platform. The algorithms were
implemented in C/C++. We deployed four real datasets which
are available at http://www.rtreeportal.org/spatial.html. The sum-
mary of the real datasets is shown in Table 1. Specifically, CA,
LB, GR and GM contain 2D points representing geometric lo-
cations in California, Long Beach Country, Greece and Germany,
respectively. For datasets containing rectangles, we transformed
them into points by taking the centroid of each rectangle. For
all datasets, each dimension of the data space is normalized to
range [0, 10000]. Since SPM involves two datasets, namely P

and O, we generated four sets of experiments for real datasets,
namely CA-GR, LB-GR, CA-GM and LB-GM , representing
(P, O) = (CA, GR), (LB, GR), (CA, GM) and (LB, GM), re-
spectively. We also created synthetic datasets each of which con-
tains P following Gaussian distribution and O following Zipfian
distribution. The coordinates of each point were generated in the
range [0, 10000]. In P , each coordinate follows Gaussian distribu-
tion where the mean and the standard derivation are set to 5000 and
2500. In O, each coordinate follows Zipfian distribution skewed
towards 0 where the skew coefficient is set to 0.8. In both cases, all
coordinates of each point were generated independently.

Each data point in both real datasets and synthetic datasets has
population/capacity equal to 1 implicitly. These datasets are re-
garded as the datasets for un-weighted SPM. For weighted SPM,
we generated the population/capacity of each data point in these
datasets according to the distribution of its neighborhood. We as-
signed a higher population/capacity if the density of its neighbor-
hood is greater. For each data point p, we performed a range query
with radius r from p and obtained the number of data points in this
range query, say k. p.w was generated according to a Gaussian
distribution where mean is set to k and the standard deviation is

set to 10. In all experiments, we set r to 5% of the range of the
dimension.

We denote our proposed algorithm as Unweighted Chain and
Weighted Chain for unweighted SPM and weighted SPM. We sim-
ply denote it as Chain if the context is clear. We compare our pro-
posed algorithm with two adapted solutions to our problem, namely
Gale-Shapley and Closest Pair. Gale-Shapley algorithm [10] is the
best-known algorithm for the stable marriage problem. We adopt
[7] as the closest pair algorithm which finds the solution by repet-
itive closest-pair retrieval. The implementations of Gale-Shapley
and Closest Pair are straightforward in un-weighted SPM problem.
Note that, in weighted SPM problem, for the sake of fairness of
comparison, we implemented Gale-Shapley and Closest Pair in a
way similar to Weighted Chain, instead of transforming the data
points as described in Section 2. In Chain and Closest Pair algo-
rithms, we adopted an R*-tree [2] as an indexing structure for the
nearest neighbor search where the node size is fixed to 1k bytes 1.
The maximum number of entries in a node is equal to 50, 36, 28
and 23 for dimensionality equal to 2, 3, 4 and 5, respectively. We
set the minimum number of entries in a node to be equal to half of
the maximum number of entries.

We evaluated the algorithms in terms of three measurements:
preprocessing time, execution time and memory usage. Since both
Chain and Closest Pair require to build indexings for P and O, the
preprocessing time of these two algorithms is equal to the time of
building the indexings. The preprocessing time of Gale-Shapley
is equal to the time of constructing the preference lists of P and
O from the data. The execution time corresponds to the time of
executing the algorithms. The memory usage of Chain and Clos-
est Pair is equal to the memory occupied by the indexings. The
memory usage of Gale-Shapley is equal to the size of the prefer-
ence lists. Besides, we also evaluated Chain with the ratio of the
total number of NN queries in order to verify our theoretical claims
in Theorem 1 and Theorem 3. In un-weighted SPM, we report the
total number of NN queries divided by |O|. In weighted SPM, we
report the total number of NN queries divided by (|P | + |O|).

In the experiments, we will study the effect of cardinality, dimen-
sionality and the real datasets for both un-weighted SPM problem
and weighted SPM problem. Besides, all experiments were con-
ducted 100 times and we took the average for the results.

We present our results into two parts. The first part, Section 6.1,
focuses on the performance comparison among all algorithms. Since
Gale-Shapley and Closest Pair are not scalable to large datasets, we
compare them in Section 6.1. The second part, Section 6.2, focuses
on the scalability of our proposed algorithm on datasets with larger
cardinality.

6.1 Comparisons
We compare the algorithms with real datasets and synthetic datasets.

The default values of the synthetic datasets are shown in Table 2.
The default value 1 and the default value 2 are the sets of default
values used in this section and Section 6.2, respectively. The de-
fault values of the real datasets are also same as the default value
1 in Table 2 except the dimensionality where the dimensionality of
the real datasets equals 2. Since these values are smaller than the
cardinality of the real datasets, we sample the data points accord-
ingly.

Effect of Cardinality: In Figure 6, we varied the cardinality |O| of
the datasets from 1k to 5k where |P | = 2|O| for un-weighted SPM
problem. In Figure 6a, the preprocessing time of Gale-Shapley is

1We choose a smaller page size to simulate practical scenarios
where the dataset cardinality is much larger.

largest since it has to compute all pairwise distances in order to
construct the preference lists. The preprocessing times of Chain
and Closest Pair are similar because both involves the same pre-
processing step of constructing the indexings. It is trivial that the
preprocessing time of all algorithms increases with cardinality. The
execution times of Chain and Closest Pair is the shortest and the
longest, respectively, as shown in Figure 6b. As we analyzed in
Section 3, Closest Pair performs the worst and Gale-Shapley is the
second worst. In particular, the execution times of Chain, Gale-
Shapley and Closest Pair are 3.39s, 24.81s and 514.06s, respec-
tively, on average when the cardinality (|O|) is equal to 5k. Chain
performs 7.32 times faster than Gale-Shapley and 151.64 times
faster than Closest Pair. The execution time of all algorithms in-
creases with cardinality. Since Gale-Shapley requires the prefer-
ence lists which takes O(|P | · |O|), the memory usage is extremely
larger than those of Chain and Closest Pair requiring indexings
which are typically smaller than O(|P | · |O|). The memory us-
age is shown in Figure 6c. We also measure the total number of
NN queries issued by Chain. This number divided by |O| is shown
in Figure 6d. This figure verifies the theoretical claim as shown
in Theorem 1 where the ratio is at most 3. Since the cardinality
does not have significant effect on this number, the number remains
nearly unchanged when cardinality increases.

We have also conducted a similar set of experiments for weighted
SPM problem with the datasets with populations/weights associ-
ated to each data point. We used the same sets of data but gener-
ated the populations/weights to each data point as described previ-
ously in this section. The results are also similar to un-weighted
SPM problem, as shown in Figure 7. The preprocessing time and
the memory usage of all algorithms are nearly the same as the un-
weighted SPM problem, as shown in Figures 7a and c. However, in
Figure 7b, the execution time of all algorithms is larger compared
with un-weighted SPM problem. For example, when the cardinal-
ity equals 5k, the execution times of Chain, Gale-Shapley and Clos-
est Pair for weighted SPM problem are equal to 6.66s, 56.61s and
1,118.98s, respectively. Chain performs 8.5 times and 168.02 times
faster than Gale-Shapley and Closest Pair, respectively. Compared
with un-weighted SPM problem, the execution time of all algo-
rithms are about two times slower. Figure 7d shows the number
of NN queries divided by (|P | + |O|). We also find that the ra-
tio is at most 3, which is consistent with our theoretical result in
Theorem 3.

In the rest of this section, we only show the results of weighted
SPM problem for the sake of space since the results from un-weighted
SPM problem and weighted SPM problem are similar.

Effect of Dimensionality: Figure 8a shows that the dimensionality
does not have significant effect to any algorithm. Gale-Shapley in-
creases slightly with the dimensionality because the preprocessing
step requires computations of pairwise distances and the computa-
tion time depends on the dimensionality. Both Chain and Closest
Pair remain nearly the same when dimensionality increases since
the dimensionality does not affect the construction time of index-
ings too much. However, in Figure 8b, both Chain and Closest
Pair increase with dimensionality because both algorithms require
real-time computations of distances which depends on dimension-
ality. However, Gale-Shapley remains nearly unchanged because it
depends on the preference lists during execution where the prefer-
ence lists are already built and do not depend on the dimensionality.
Figure 8c shows that the dimensionality does not affect the mem-
ory usage of any algorithms significantly. Similarly, we verify our
theoretical results as shown in Figure 8d.

Effect of Real Datasets: We conducted experiments on the four
sets of real datasets, namely CA-GR, LB-GR, CA-GM and LB-

GM . The results are also similar to synthetic datasets. Besides, for
the sake of space, we omit the figures. Consider CA-GR. The ex-
ecution times of Chain, Gale-Shapley and Closest Pair are 5.32s,
160.00s and 415.20s, respectively, on average. Our proposed algo-
rithm have 30.08 times and 78.05 times faster execution time than
Gale-Shapley and Closest Pair, respectively. Besides, the memory
usage of Chain and Closest Pair is about 3.48MB but the memory
usage required by Gale-Shapley is 400MB.

6.2 Scalability
We study the scalability of Chain for both un-weighted SPM

problem and weighted SPM problem in this section. The default
values of the synthetic datasets are the default value 2 shown in
Table 2. In these experiments, we do not sample the real datasets.
Instead, the cardinality and the dimensionality of the real datasets
used in the experiments are shown in Table 1. Figure 9, Figure 10
and Figure 11 show the results when we vary cardinality, dimen-
sionality and different sets of real datasets, respectively. We show
Unweighted Chain and Weighted Chain in the figures for un-weighted
SPM problem and weighted SPM problem, respectively. Similarly,
Unweighted Chain and Weighted Chain have similar preprocess-
ing time and similar memory usage. Besides, the difference in the
execution times between Unweighted Chain and Weighted Chain
is larger when cardinality and dimensionality is larger. The total
number of NN queries obtained here also matches our theoretical
results.

Conclusion: In conclusion, we find that our proposed algorithm
performs the fastest among the tested algorithms in terms of the
preprocessing time and the execution time. Besides, it utilizes the
lowest memory cost during execution. Our proposed algorithm is
scalable to large dataset but Gale-Shapley and Closest Pair are not.

7. CONCLUSIONS AND FUTURE WORK
This paper proposes a new operator called spatial matching (SPM),

which is useful to a large number of profile-matching applications.
SPM guarantees the best service for every customer, taking into ac-
count the preferences of all customers and service providers. We
carry out a systematic study of SPM. First, we carefully formal-
ize two versions, un-weighted and weighted, of the problem. Sec-
ond, we analyze the connections between SPM and several existing
problems (particularly, stable marriage and closest-pair retrieval),
and show that the adapted solutions of those problems incur expen-
sive overhead in SPM. Finally, we develop efficient algorithms with
good theoretical performance guarantees, and verify their practical
efficiency with extensive experiments.

This work also opens several directions to future research. First,
in this paper we consider that both participating datasets P and O

are static. When they are dynamic, i.e., new (existing) customer-
/service-sites may be inserted (deleted), the result of SPM may also
change. How to incrementally maintain the SPM result (without in-
voking the algorithms developed in this paper) is a promising prob-
lem. Second, our solutions assume that each customer can be as-
signed to any service, while in general a customer o may specify
several services that o would like to avoid. For example, in the
intern job allocation application mentioned in Section 2, each stu-
dent (i.e., a customer) may name a few jobs (services) that s/he is
not willing to take. It is interesting to investigate how to incorporate
such “avoidance-lists” in SPM.

ACKNOWLEDGEMENTS: This research was supported by the RGC Earmarked

Research Grant of HKSAR CUHK 4120/05E and 1202/06.

REFERENCES
[1] E. Achtert, C. Bohm, P. Kroger, P. Kunath, A. Pryakhin, and M. Renz. Efficient

reverse k-nearest neighbor search in arbitrary metric spaces. In SIGMOD, 2006.
[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An

efficient and robust access method for points and rectangles. In SIGMOD, 1990.
[3] J. L. Bentley and M. I. Shamos. Divide-and-conquer in multidimensional

spaces. In STOC, 1976.
[4] C. Bohm and F. Krebs. High performance data mining using the nearest

neighbor join. In ICDM, 2002.
[5] M. Brito, E. Chaves, A. Quiroz, and J. Yukich. Connectivity of the mutual

k-nearest-neighbor graph in clustering and outlier detection. In Statistics and
Probability Letters, 1997.

[6] T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest
neighbor queries. In SODA, 2006.

[7] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos. Closest
pair queries in spatial databases. In SIGMOD, 2000.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer, 2000.

[9] C. Ding and X. He. K-nearest-neighbor consistency in data clustering:
Incorporating local information into global optimization. In SAC, 2004.

[10] D. Gale and L. Shapley. College admissions and the stability of marriage. In
Amer. Math. Monthly, 69(1962) 9-15, 1962.

[11] K. Gowda and G. Krishna. Agglomerative clustering using the concept of
mutual nearest neighbor. In Pattern Recognition, 1978.

[12] K. Gowda and G. Krishna. The condensed nearest neighbor rule using the
concept of mutual nearest neighborhood. In IEEE Trans. on Info. Theory, 1979.

[13] G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial
databases. In SIGMOD, 1998.

[14] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. TODS,
24(2):265–318, 1999.

[15] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Z. 0003. iDistance: An
adaptive B+-tree based indexing method for nearest neighbor search. TODS,
30(2):364–397, 2005.

[16] W. Jin, A. K. H. Tung, J. Han, and W. Wang. Ranking outliers using symmetric
neighborhood relationship. In PAKDD, 2006.

[17] J. M. Kang, M. F. Mokbel, S. Shekhar, T. Xia, and D. Zhang. Continuous
evaluation of monochromatic and bichromatic reverse nearest neighbors. In
ICDE, 2007.

[18] F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor
queries. In SIGMOD, 2000.

[19] S. T. Leutenegger, J. M. Edgington, and M. A. Lopez. Str: A simple and
efficient algorithm for r-tree packing. In ICDE, 1997.

[20] K. Mulmuley. Computational Geometry: An Introduction Through Randomized
Algorithms. Prentice Hall, 1993.

[21] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In
SIGMOD, 1995.

[22] I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi. Discovery of influence
sets in frequently updated databases. In VLDB, 2001.

[23] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On computing top-t most influential
spatial sites. In VLDB, 2005.

[24] C. Yang and K.-I. Lin. An index structure for improving nearest closest pairs
and related join queries in spatial databases. In IDEAS, 2002.

APPENDIX
PROOF OF LEMMA 1: We prove by contradiction. Suppose there
exist two different fair assignments, namely A1 and A2. We want to
consider the differences between A1 and A2. Let Ac = A1 ∩ A2.
Let A′

1 = A1 − Ac and A′

2 = A2 − Ac. Since A′

1 and A′

2 are
of same cardinalities (= |O|), we know that both A′

1 and A′

2 are
non-empty. Otherwise, A1 and A2 are equal. Let B = A′

1 ∪A′

2. If
(p, o) ∈ A (where A is an assignment), we say that (p, o) is an edge
in the following. Consider the edge (p, o) in B with the smallest
distance |p, o|. Without loss of generality, we assume that (p, o) ∈
A′

1. Since each o ∈ O has exactly one partner and each p ∈ P

has at most one partner in both A1 and A2, there exists at least one
and at most two adjacent edges to (p, o) in B. We consider two
cases: Case 1: There exist two adjacent edges to (p, o) in B, say
(p′, o) (connecting at o) and (p, o′) (connecting at p). We know that
(p′, o) ∈ A′

2 and (p, o′) ∈ A′

2. Note that, for any p, p′′ ∈ P and
o, o′′ ∈ O, we have |p, o| 6= |p′′, o′′| unless p = p′′ and o = o′′.
Besides, since |p, o| is the smallest in B, we have |p′, o| > |p, o|.
Similarly, we also obtain |p, o′| > |p, o|. We conclude that (p, o) is

 0

 10

 20

 30

 40

 50

 1 2 3 4 5

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

Cardinality (in thousands)

Chain
Gale-Shapley

Closest Pair

 1

 10

 100

 1 2 3 4 5

E
xe

cu
tio

n
 t

im
e

 (
s)

Cardinality (in thousands)

Chain
Gale-Shapley

Closest Pair

 1

 10

 100

 1 2 3 4 5

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

Cardinality (in thousands)

Chain
Gale-Shapley

Closest Pair

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

54321

T
o

ta
l n

o
.

o
f

N
N

 q
u

e
ri
e

s/
|O

|

Cardinality (in thousands)

Chain

(a) (b) (c) (d)
Figure 6: Effect of cardinality for un-weighted SPM problem (synthetic dataset where dimensionality = 3)

 0

 10

 20

 30

 40

 50

 1 2 3 4 5

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

Cardinality (in thousands)

Chain
Gale-Shapley

Closest Pair

 1

 10

 100

 1000

 1 2 3 4 5

E
xe

cu
tio

n
 t

im
e

 (
s)

Cardinality (in thousands)

Chain
Gale-Shapley

Closest Pair

 1

 10

 100

 1 2 3 4 5

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

Cardinality (in thousands)

Chain
Gale-Shapley

Closest Pair

 0

 0.5

 1

 1.5

 2

 2.5

54321T
o

ta
l n

o
.

o
f

N
N

 q
u

e
ri
e

s/
(|

P
|+

|O
|)

Cardinality (in thousands)

Chain

(a) (b) (c) (d)
Figure 7: Effect of cardinality for weighted SPM problem (synthetic dataset where dimensionality = 3)

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

Dimensionality

Chain
Gale-Shapley

Closest Pair

 10

 100

 1000

 2 3 4 5

E
xe

cu
tio

n
 t

im
e

 (
s)

Dimensionality

Chain
Gale-Shapley

Closest Pair

 10

 100

 2 3 4 5

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

Dimensionality

Chain
Gale-Shapley

Closest Pair

 0

 0.5

 1

 1.5

 2

 2.5

5432T
o

ta
l n

o
.

o
f

N
N

 q
u

e
ri
e

s/
(|

P
|+

|O
|)

Dimensionality

Chain

(a) (b) (c) (d)
Figure 8: Effect of dimensionality for weighted SPM problem (synthetic dataset where cardinality (|O|) = 5k)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 20 40 60 80 100

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

Cardinality (in thousands)

Unweighted Chain
Weighted Chain

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

E
xe

cu
tio

n
 t

im
e

 (
s)

Cardinality (in thousands)

Unweighted Chain
Weighted Chain

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

Cardinality (in thousands)

Unweighted Chain
Weighted Chain

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

9070503010
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
o

ta
l n

o
.
o

f
N

N
 q

u
e

ri
e

s/
|O

|
(U

n
w

e
ig

h
te

d
 C

h
a

in
)

T
o

ta
l n

o
.
o

f
N

N
 q

u
e

ri
e

s/
(|

P
|+

|O
|)

(W
e

ig
h

te
d

 C
h

a
in

)

Cardinality (in thousands)

Unweighted Chain
Weighted Chain

(a) (b) (c) (d)
Figure 9: Effect of cardinality for un-weighted/weighted SPM problem (synthetic dataset where dimensionality = 3)

 0

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

Dimensionality

Unweighted Chain
Weighted Chain

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5

E
xe

cu
tio

n
 t

im
e

 (
s)

Dimensionality

Unweighted Chain
Weighted Chain

 0
 5

 10
 15
 20
 25
 30
 35
 40

 2 3 4 5

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

Dimensionality

Unweighted Chain
Weighted Chain

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5432
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
o

ta
l n

o
.

o
f

N
N

 q
u

e
ri
e

s/
|O

|
(U

n
w

e
ig

h
te

d
 C

h
a

in
)

T
o

ta
l n

o
.

o
f

N
N

 q
u

e
ri
e

s/
(|

P
|+

|O
|)

(W
e

ig
h

te
d

 C
h

a
in

)

Dimensionality

Unweighted Chain
Weighted Chain

(a) (b) (c) (d)
Figure 10: Effect of dimensionality for un-weighted/weighted SPM problem (synthetic dataset where cardinality (|O|) = 50k)

 0

 20

 40

 60

 80

 100

LB-GM
CA-GM
LB-GR
CA-GR

P
re

p
ro

ce
ss

in
g

 t
im

e
 (

s)

Real data set

Unweighted Chain
Weighted Chain

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

LB-GM
CA-GM
LB-GR
CA-GR

E
xe

cu
tio

n
 t

im
e

 (
s)

Real data set

Unweighted Chain
Weighted Chain

 0

 5

 10

 15

 20

 25

 30

LB-GM
CA-GM
LB-GR
CA-GR

M
e

m
o

ry
 u

sa
g

e
 (

M
B

)

Real data set

Unweighted Chain
Weighted Chain

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

LB-GM
CA-GM
LB-GR
CA-GR

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

T
o
ta

l n
o
.

o
f

N
N

 q
u

e
ri
e

s/
|O

|
(U

n
w

e
ig

h
te

d
 C

h
a

in
)

T
o
ta

l n
o
.

o
f

N
N

 q
u

e
ri
e

s/
(|

P
|+

|O
|)

(W
e

ig
h

te
d

 C
h

a
in

)

Real data set

Unweighted Chain
Weighted Chain

(a) (b) (c) (d)
Figure 11: Effect of different real datasets for un-weighted/weighted SPM problem (real datasets where cardinalities of O and P =
no. of points in the correspondence datasets and dim = 2)

a dangling pair in A2, which leads to a contradiction that A2 is a fair
assignment. Case 2: There exists only one adjacent edge to (p, o)
in B. We must know that this edge is (p′, o) (connecting at o) and
(p′, o) ∈ A2. Similarly, we deduce that |p′, o| > |p, o|. Besides,
p has no partner in A2. The second condition of Definition 2 is
trivially true. Thus, (p, o) is a dangling pair in A2, which leads to
a contradiction that A2 is a fair assignment.

PROOF OF LEMMA 2: Given an instance of computing the BRNN
set of each object p ∈ P , we perform a transformation as follows.
For each p ∈ P , p.w is set to |O|. For each o ∈ O, o.w is set to
1. We want to prove that the solution A of the constructed SPM
problem is a solution of the problem of computing the BRNN set
of each p ∈ P . We prove by contradiction. Suppose the solution
A is not a solution of the problem of computing the BRNN set
of some p ∈ P . There exists (p, o, 1) ∈ A where p is not the
nearest neighbor of o. Let p′ be the nearest neighbor of o. We
have |p, o| > |p′, o|. Since (p, o, 1) ∈ A, p′ has at most |O| − 1
partners. Thus, the capacity of p′ (i.e., p′.w) has not been exhausted
according to A. Thus, (p′, o) is a dangling pair, which leads to a
contradiction that A is a fair assignment.

PROOF OF LEMMA 3: Consider an assignment A for the SPM
problem with P and O. Given any (p, o) ∈ A and (p′, o′) ∈ A, we
will prove that, if (p′, o) is a dangling pair, then in the constructed
stable marriage problem, (i) man p′ prefers woman o to his current
partner o′, and (ii) woman o prefers man p′ to her current partner
p. A (p′, o) satisfying conditions (i) and (ii) is called an unstable
pair in the stable marriage problem.

In fact, since (p′, o) is dangling, we have |p′, o| < |p, o| and
|p′, o| < |p′, o′|. Then, p′ has a higher priority than p in the pref-
erence list of woman o, and o has a higher priority than o′ in the
preference list of man p′. Therefore, (p′, o) is an unstable pair.
Thus, if there exists a dangling pair, there also exists an unstable
pair. By contrapositivity, if there does not exist any unstable pair
in the stable marriage problem, there does not exist any dangling
pair in the SPM problem. Therefore, a feasible marriage scheme
of the stable marriage problem is a fair assignment in the original
un-weighted SPM.

PROOF OF LEMMA 4: This lemma is an immediate corollary of
Lemma 6, since a closest-pair is a pair of mutual NNs.

PROOF OF LEMMA 5: There always exists a closest-pair, which is
also a mutual-NN pair.

PROOF OF LEMMA 6: We prove by contradiction. Suppose that
A′ ∪ {(p, o)} is not a fair assignment between P and O, meaning
that there exists a dangling pair. Since A′ is a fair assignment be-
tween P ′ and O′, the dangling pair must include p or o (not both).
There are two cases. Case 1: The pair has the form (p′, o), where
p′ ∈ P ′ and p′ 6= p. As (p′, o) is dangling, we have |p′, o| < |p, o|,
implying that p is not the NN of o in P , contradicting the fact that
p and o are mutual NNs. Case 2: The pair is (p, o′), where o′ ∈ O′

and o′ 6= o. By symmetry, this case leads to the same contradiction.

PROOF OF LEMMA 7: We prove by contradiction. Suppose that,
at some moment, there is a loop in the chain list C (i.e. an object
appears more than once). At that moment, let the objects in C be
x1, x2, ..., xl, xl+1 where xi 6= xj for all i, j ∈ [1, l] and x1 =
xl+1. That is, x1 and xl+1 are the same object. Let ri be the
distance between xi and its NN in the opposite dataset, i.e., if xi

is from P (O), then the opposite dataset is O (P). As explained in
Section 4.2, ri ≥ ri+1 for i ∈ [1, l]. Without loss of generality,
assume x1 ∈ O, implying that x2 and xl are in P . We distinguish

two cases. First, if |x1, xl| < r1 = |x1, x2|, then x2 cannot be the
NN of x1 in P , leading to a contradiction. Second, if |x1, xl| > r1,
then |xl+1, xl| = |x1, xl| > |x1, x2|, indicating rl > r1, which
also generates a contradiction.

PROOF OF THEOREM 1: Suppose that A is the assignment re-
turned by Chain (Algorithm 2). For each couple (p, o) ∈ A, we
have to perform at least two NN queries: (1) one NN query from
p and (2) one NN query from o. Besides, each couple (p, o) found
by Chain must appear at the end of the chain. Without loss of gen-
erality, assume that p appears as the last object of the chain and o

appears at the second last object of the chain. There are two cases.
Case (a): There is no previous object before o along the chain. In
other words, the generation of the couple (p, o) requires only the
two NN queries mentioned. Case (b): There is a previous object
p′ before o along the chain. In this chain, the only NN operation
involving p and o other than the two NN queries just mentioned
above is the NN query from the previous object p′ along the chain.
In this case, the couple (p, o) involves three NN queries. Thus, the
best case of Chain appears when all couples appear as Case (a).
Since |P | ≥ |O|, there are |O| couples in the assignment returned
by Chain. Thus, the total number of NN queries is at least 2|O|.
The worst case appears when all couples appear as Case (b). Sim-
ilarly, the total number of NN queries is at most 3|O|. Besides,
whenever we find a couple, we remove one object from P and one
object from O. Since there are |O| couples, the total number of
deletions is equal to 2|O|.

PROOF OF THEOREM 2: Chain performs O(|O|) NN queries and
object deletions. Thus, this theorem results.

PROOF OF LEMMA 8: We prove by contradiction. Suppose that
Weighted-Chain (Algorithm 3) does not return a fair weighted as-
signment. That is, the weighted assignment A returned by Weighted-
Chain triggers a dangling pair (p, o). The “dangling” may be caused
by two reasons. Reason 1: There exist p′ ∈ P and o′ ∈ O such
that (p′, o, w1) ∈ A, (p, o′, w2) ∈ A, |p, o| < |p′, o| and |p, o| <

|p, o′|. We distinguish two cases. Case (a): (p′, o, w1) is found be-
fore (p, o′, w2). Hence, p is in P when (p′, o, w1) is reported. As
p′ is the NN of o in that P , we have |p′, o| < |p, o|, which leads
to a contradiction. Case (b): (p, o′, w2) is found before (p′, o, w1).
This is impossible either, due to the reasoning stated in the previ-
ous case. Reason 2: There exists p′ ∈ P such that (p′, o, w) ∈ A

and |p, o| < |p′, o| but p does not appear in A. Therefore, at the
time when (p′, o, w) is discovered, p exists in P . Since p′ is the
NN of o in that P , it holds that |p′, o| < |p, o|, which generates a
contradiction.

PROOF OF THEOREM 3: As with Chain, to find an extended cou-
ple (p, o, w), Weighted-Chain issues at most 3 NN queries. Unlike
Chain, however, when an extended couple is produced, Weighted-
Chain may remove only one object from its origin dataset. The to-
tal number of extended couples (p, o, w) cannot exceed |P | + |O|.
Thus, the number of NN queries is bounded by 3(|P | + |O|), and
the number of deletions by |P | + |O|.

PROOF OF THEOREM 4: An NN query and an object deletion on
P take α(|P |) and β(|P |), respectively. Similarly, a NN query and
an object deletion on O incur α(|O|) and β(|O|) cost, respectively.
Theorem 3 shows that Weighted-Chain performs O(|P |+ |O|) NN
queries and object deletions in total. Hence, the running time of
the algorithm is ((|P | + |O|) · (α(|P |) + β(|P |) + α(|O|) +
β(|O|))).

