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ABSTRACT
This paper presents a novel technique,anatomy, for publishing sen-
sitive data. Anatomy releases all the quasi-identifier and sensitive
values directly in two separate tables. Combined with a grouping
mechanism, this approach protects privacy, and captures a large
amount of correlation in the microdata. We develop a linear-time
algorithm for computing anatomized tables that obey thel-diversity
privacy requirement, and minimize the error of reconstructing the
microdata. Extensive experiments confirm that our technique al-
lows significantly more effective data analysis than the conven-
tional publication method based on generalization. Specifically,
anatomy permits aggregate reasoning with average error below
10%, which is lower than the error obtained from a generalized
table by orders of magnitude.

1. INTRODUCTION
Privacy preservation is a serious concern in publication ofpersonal
data. Using a popular example in the literature, assume thata hos-
pital wants to release patients’ medical records in Table 1,referred
to as themicrodata. AttributeDiseaseis sensitive, that is, the hos-
pital must ensure that no adversary can correctly infer the disease
of any patient with significant confidence.Age, Sex, andZipcode
are thequasi-identifier(QI) attributes, because they may be uti-
lized in combination to reveal the identity of an individual, leading
to privacy breach.

Consider an adversary who has the personal details (i.e., age 23 and
zipcode 11000) of Bob, and knows that Bob has been hospitalized
before. In Table 1, since only tuple 1 matches Bob’s QI-values, the
adversary asserts that Bob contracted pneumonia.

To avoid this problem,generalization[12, 13, 14, 10] divides tuples
into QI-groups, and transforms their QI-values into less specific
forms, so that tuples in the same QI-group cannot be distinguished
by their QI-values. Table 2 is a generalized version of Table1 (e.g.,
the age 23 and zipcode 11000 of tuple 1 have been replaced with
intervals[21, 60] and[10001, 60000], respectively). Here, general-
ization produces two QI-groups, including tuples 1-4 and 5-8, re-
spectively. As a result, even if an adversary has the exact QIvalues
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tuple ID Age Sex Zipcode Disease
1 (Bob) 23 M 11000 pneumonia

2 27 M 13000 dyspepsia
3 35 M 59000 dyspepsia
4 59 M 12000 pneumonia
5 61 F 54000 flu
6 65 F 25000 gastritis

7 (Alice) 65 F 25000 flu
8 70 F 30000 bronchitis

Table 1: The microdata
tuple ID Age Sex Zipcode Disease

1 [21, 60] M [10001, 60000] pneumonia
2 [21, 60] M [10001, 60000] dyspepsia
3 [21, 60] M [10001, 60000] dyspepsia
4 [21, 60] M [10001, 60000] pneumonia
5 [61, 70] F [10001, 60000] flu
6 [61, 70] F [10001, 60000] gastritis
7 [61, 70] F [10001, 60000] flu
8 [61, 70] F [10001, 60000] bronchitis

Table 2: A 2-diverse table

of Bob, s/he still does not know which tuple in the first QI-group
belongs to Bob.

Two notions,k-anonymityand l-diversity, have been proposed to
measure the degree of privacy preservation. A (generalized) table
is k-anonymous[12, 13, 14] if each QI-group involves at leastk
tuples (e.g., Table 2 is 4-anonymous). However, as shown in [10],
even with a largek, k-anonymity may still allow an adversary to
infer the sensitive value of an individual with extremely high con-
fidence. Hence, we adoptl-diversity [10], which provides stronger
privacy protection.

Specifically, a table isl-diverse if, in each QI-group, at most1/l of
the tuples possess the most frequent sensitive value1. For instance,
Table 2 is2-diverse because, in each QI-group, at most 50% of
the tuples have the sameDiseasevalue. As mentioned earlier, the
adversary (targeting Bob’s medical record) knows that Bob’s tuple
must be in the first QI-group, where two tuples are associatedwith
pneumonia, and two with dyspepsia. Hence, the adversary canonly
make a probabilistic conjecture: Bob could have contractedeither
disease with the same probability.

1.1 Defects of Generalization in Aggregate
Analysis

Although generalization preserves privacy, it often losesconsid-
erable information in the microdata, which severely compromises
1l-diversity has more complicated requirements, if an adversary’s
“background knowledge” is taken into account [10]. We will dis-
cuss this issue in Section 3.1.
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Figure 1: The original and generalized data in theAge-Zipcode
plane

the accuracy of data analysis. Assume that the hospital releases
Table 2, and that a researcher wants to derive from this tablean
estimate for the following query:

A: SELECT COUNT(*) FROM Unknown-Microdata
WHERE Disease= ‘pneumonia’ AND Age<= 30

AND ZipcodeIN [10001, 20000]

To illustrate how to process the query, Figure 1 shows a 2D space,
where the x-, y-dimensions areAgeandZipcode, respectively. Each
point denotes a tuple in the microdata of Table 1. For example, the
x-, y-coordinates of point 1 equal the age and zipcode of tuple 1,
respectively. RectangleR1 (orR2) is obtained from the generalized
values in the first (or second) QI-group in Table 2. For instance,
the x- (y-) projection ofR1 is the generalized age[20, 60] (zipcode
[10001, 60000]) of tuples 1-4. Query A is represented as the shaded
rectangleQ, whose projection on the x- (y-) dimension is decided
by the range conditionAge≤ 30 (10001 ≤ Zipcode≤ 20000).

Since the researcher sees onlyR1 andR2 (but not the points), s/he
answers query A in a way similar to selectivity estimation ona
multidimensional histogram [15], as suggested in [9]. Clearly, as
R2 is disjoint withQ, no tuple in the second QI-group can satisfy
the query. R1, however, intersectsQ, and hence, is examined as
follows.

From theDisease-values in Table 2, the researcher knows that 2 tu-
ples in the first QI-group are associated with pneumonia. It remains
to calculate the probabilityp that a tuple in the QI-group qualifies
the range predicates of A, or equivalently, the tuple’s point rep-
resentation falls inQ (Figure 1). Oncep is available, the query
answer can be estimated as2p.

Without additional knowledge, the researcher assumes uni-
form data distribution inR1, and computesp as Area(R1 ∩
RQ)/Area(R1) = 0.05. This value leads to an approximate an-
swer 0.1, which, however, is ten times smaller than actual query
result 1 (see Table 1).

The gross error is caused by the fact that the data distribution inR1

significantly deviates from uniformity. Nevertheless, given only
the generalized table, we cannot justify any other distribution as-
sumption. This is an inherent problem of generalization: itprevents
an analyst from correctly understanding the data distribution inside
each QI-group.

1.2 Rationale of Anatomy
To overcome the defects of generalization, we propose an innova-
tive technique,anatomy, to achieve privacy-preserving publication
that captures the exact QI-distribution.

Specifically, anatomy releases aquasi-identifier table(QIT) and a

row # Age Sex Zipcode Group-ID
1 23 M 11000 1
2 27 M 13000 1
3 35 M 59000 1
4 59 M 12000 1
5 61 F 54000 2
6 65 F 25000 2
7 65 F 25000 2
8 70 F 30000 2

(a) The quasi-identifier table (QIT)

Group-ID Disease Count
1 dyspepsia 2
1 pneumonia 2
2 bronchitis 1
2 flu 2
2 gastritis 1

(b) The sensitive table (ST)

Table 3: The anatomized tables

sensitive table(ST), which separate QI-values from sensitive val-
ues. For example, Tables 3a and 3b demonstrate the QIT and ST
obtained from the microdata Table 1, respectively.

Construction of the anatomized tables can be (informally) under-
stood as follows. First, we partition the tuples of the microdata into
several QI-groups, based on a certain strategy. Here, following the
grouping in Table 2, let us place tuples 1-4 (or 5-8) of Table 1into
QI-group 1 (or 2).

Then, we create the QIT. Specifically, for each tuple in Table1, the
QIT (Table 3a) includes all itsexactQI-values, together with its
group membership in a new columnGroup-ID. However, QIT does
not store anyDiseasevalue.

Finally, we produce the ST (Table 3b), which retains theDisease
statistics of each QI-group. For instance, the first two records of
the ST (to avoid confusion, we use ‘record’, instead of ‘tuple’, for
the data of an ST) indicate that, two tuples of the first QI-group
are associated with dyspepsia, and two with pneumonia. Similarly,
the next three records imply that, the second QI-group has a tuple
associated with bronchitis, two with flu, and one with gastritis.

Anatomy preserves privacy because the QIT does not indicatethe
sensitive value of any tuple, which must be randomly guessedfrom
the ST. To explain this, consider again the adversary who hasthe
age 23 and zipcode 11000 of Bob. Hence, from the QIT (Table 3a),
the adversary knows that tuple 1 belongs to Bob, but does not ob-
tain any information about his disease so far. Instead, s/hegets the
id 1 of the QI-group containing tuple 1. Judging from the ST (Ta-
ble 3b), the adversary realizes that, among the 4 tuples in QI-group
1, 50% of them are associated with dyspepsia (or pneumonia) in
the microdata. Note that s/he does not gain any additional hints,
regarding the exact diseases carried by these tuples. Hence, s/he
arrives at the conclusion that Bob could have contracted dyspepsia
(or pneumonia) with 50% probability. This is the same conjecture
obtainable from the generalized Table 2, as mentioned earlier.

By announcing the QI values directly, anatomy permits more effec-
tive analysis than generalization. Given query A in Section1.1, we
know, from the ST (Table 3b), that 2 tuples carry pneumonia inthe
microdata, and they are both in QI-group 1. Hence, we proceedto
calculate the probabilityp that a tuple in the QI-group falls inQ
(Figure 1). This calculation does not need any assumption about
the data distribution in theAge-Zipcodeplane,because the distrib-



ution is precisely released. Specifically, the QIT (Table 3a) shows
that tuples 1 and 2 in QI-group 1 appear inQ, leading to theexact
p = 50%. Thus, we obtain an answer2p = 1, which is also the
actual query result.

1.3 Contributions
This paper presents a systematic study of the anatomy technique.
First, we formalize the new methodology, based on the privacy re-
quirement ofl-diversity. Every pair of QIT and ST ensures that the
sensitive value of any individual involved in the microdatacan be
correctly inferred by an adversary with probability at most1/l. A
largerl leads to stronger privacy protection.

Second, we clarify the theoretical reasoning behind the superiority
of anatomy in capturing data correlation. Our results show that
anatomy permits a more accurate modeling of each tuple in the
microdata than generalization. We provide detailed analysis of the
modeling error, and quantify it into a closed formula.

Third, we develop an algorithm that computes anatomized tables
in O(n/b) I/Os, wheren is the cardinality of the microdata, and
b the page size. These tables have provably good quality guaran-
tee, achieving a modeling error deviating from the theoretical lower
bound by a factor of at most1+1/n. Notice that,n is very large in
practice (e.g., at the order a million); hence, our algorithm is nearly
optimal.

Finally, we prove, through extensive experiments, that anatomy
significantly outperforms generalization, in botheffectiveness of
data analysisandcomputation cost. Specifically, the anatomized
tables permit highly accurate aggregate search (e.g., query A in
Section 1), with average error below 10%, which is lower than
the query error obtained from a generalized table by orders of
magnitude. The query accuracy of anatomy is unaffected by the
dataset dimensionality, whereas the accuracy of generalization de-
cays severely as dimensionality increases. Furthermore, anato-
mized tables can be computed much faster than generalized tables.

The rest of the paper is organized as follows. Section 2 surveys the
previous work on generalization. Section 3 formalizes the anatomy
methodology, and clarifies its privacy protection guarantees. Sec-
tion 4 analyzes correlation preservation. Section 5 develops an al-
gorithm for computing anatomized tables. Section 6 experimen-
tally evaluates the proposed solutions. Section 7 concludes the pa-
per with directions for future work.

2. RELATED WORK
Generalization has been very well studied in the literature[1, 2, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18]. LeFevre et al. [8] present
an interesting taxonomy to categorize alternative methodsbased on
their “encoding schemes”, which impose different constraints in
generalizing a QI-value. The highest level of the taxonomy dis-
tinguishesglobal recodingfrom local recoding. Specifically, the
former requires that, all the tuples with equivalent QI-values must
be included in the same QI-group. For instance, tuples 6 and 7in
Table 1 have identical QI-values; hence, they both appear inthe
second QI-group of Table 2. Local recoding removes this require-
ment, but has not received considerable attention in the literature
(currently, this approach is applied only in several “suppression-
based” solutions [8]).

The category of global recoding can be further divided intoSingle-
dimension encodingandmultidimension encoding. Specifically, an

encoding is single dimensional, if the generalized forms oftwo ar-
bitrary QI-groups on the same attribute are either disjointor equiv-
alent, as is the case in Table 2. When the condition is not sat-
isfied, the encoding is multidimensional. For example, imagine
that theZipcode-values of tuples 5-8 in Table 2 were changed to
[20001, 60000], which intersects but is not identical to theZipcode-
form of tuples 1-4; as a result, the generalization would become
multidimensional.

Computing the optimal generalization is harder for encoding
schemes with fewer constraints. Unfortunately, it is NP-hard to
find the optimal solution, even for simple schemes and quality met-
rics [2, 9, 11]. Therefore, the existing algorithms rely on heuristics
for pruning the search space, in order to discover reasonable gener-
alization within a time limit.

A majority of the literature focuses onk-anonymous general-
ization. However, Machanavajjhala et al. [10] observe thatk-
anonymity fails to secure privacy in practice. In particular, they
show that, the degree of privacy protection does not really depend
on the size of a QI-group, but instead, is determined by the number
of distinctsensitive values in each QI-group. The observation leads
to l-diversity (as will be formalized in Section 3). The analysis
of [17] proves thatl-diversity always guarantees stronger privacy
preservation thank-anonymity.

A serious drawback of generalization is that, when the number d of
QI attributes is large, any generalization necessarily loses consider-
able information in the microdata [1], due to the “curse of dimen-
sionality”. Specifically, in high dimensional spaces, eachgeneral-
ized value is always an exceedingly wide interval, in which case
the published table is simply useless for research.

This paper is virtually orthogonal to all the previous work.The
proposed anatomy technique is a brand-new approach for publish-
ing personal data, which remedies the defects of generalization.
Specifically, nearly-optimal anatomized tables can be computed in
linear-time with respect to the database cardinality, and capture a
significant amount of correlation for any dimensionality.

3. FORMALIZATION OF ANATOMY
Let T be the microdata that needs to be published.T containsd
quasi-identifier (QI) attributesAqi

1 , Aqi
2 , ..., Aqi

d , and a sensitive
attributeAs. EachAqi

i (1 ≤ i ≤ d) can be either numerical or
categorical, butAs should be categorical, following the assumption
of l-diversity [10]. For any tuplet ∈ T , we denotet[i] (1 ≤ i ≤ d)
as theAqi

i value of t, andt[d + 1] as itsAs value. As a result,
t can be regarded as a point in a(d + 1)-dimensional data space,
denoted asDS. In Section 3.1, we first clarify the relevant concepts
of anatomy. Then, Section 3.2 explains the privacy guarantees of
anatomized tables.

3.1 Concepts
As with generalization, Anatomy requires partitioning themicro-
dataT .

DEFINITION 1. (Partition/QI-group) A partition consists of
several subsets ofT , such that each tuple inT belongs to exactly
one subset. We refer to these subsets asQI-groups, and denote
them asQI1, QI2, ...,QIm. Namely,

�m
j=1 QIj = T and, for any

1 ≤ j1 6= j2 ≤ m, QIj1 ∩ QIj2 = ∅.



We are interested only inl-diverse partitions that can lead to prov-
ably good privacy guarantees:

DEFINITION 2. (l-diverse partition [10]) A partition with m
QI-groups isl-diverse, if each QI-groupQIj (1 ≤ j ≤ m) satisfies
the following condition. Letv be the most frequentAs value in
QIj , andcj(v) the number of tuplest ∈ QIj with t[d + 1] = v;
then

cj(v)/|QIj | ≤ 1/l (1)

where|QIj | is the size (the number of tuples) ofQIj.

Table 1 shows a partition with two QI-groups, whereQI1 con-
tains tuples 1-4, andQI2 includes tuples 5-8. InQI1, dys-
pepsia and pneumonia are equally frequent, i.e.,c1(dyspepsia) =
c1(pneumonia) = 2. InQI2, the most frequentAs value is flu, i.e.,
c2(flu) = 2. Since|QI1| = |QI2| = 4, according to Inequality 1,
we know thatQI1 andQI2 constitute a 2-diverse partition.

We are ready to formulate the QIT and ST tables published by
anatomy.

DEFINITION 3. (Anatomy) Given anl-diverse partition with
m QI-groups,anatomy produces aquasi-identifier table (QIT)
and asensitive table(ST) as follows. The QIT has schema

(Aqi
1 , Aqi

2 , ..., Aqi
d , Group-ID).

For each QI-groupQIj (1 ≤ j ≤ m) and each tuplet ∈ QIj , QIT
has a tuple of the form:

(t[1], t[2], ..., t[d], j).

The ST has schema

(Group-ID, As, Count).

For each QI-groupQIj (1 ≤ j ≤ m) and each distinctAs valuev
in QIj , the ST has a record of the form:

(j, v, cj(v))

wherecj(v) is the number of tuplest ∈ QIj with t[d + 1] = v.
Apart from the tuples (or records) defined earlier, the QIT (or ST)
does not contain any other data.

For instance, based on the 2-diverse partition suggested inTable 2,
anatomy produces the QIT and ST in Tables 3a and 3b respectively,
as explained in Section 1.2.

When there is no ambiguity, we refer to a pair of QIT and ST col-
lectively as theanatomized tables. In Section 4, we will show that
anatomized tables capture the correlation inT more accurately than
generalized tables. For this purpose, we also need to formalize gen-
eralization.

DEFINITION 4. (Generalization) Given a partition ofT with
m QI-groups, for any tuplet ∈ T , a generalized tableof T con-
tains a tuple of the form

(QIj[1], QIj[2], ..., QIj[d], t[d + 1])

whereQIj (1 ≤ j ≤ m) is the unique QI-group includingt, and
QIj [i] (1 ≤ i ≤ d) is an interval2 coveringt[i]. Furthermore,
2If Aqi

i is categorical, following a common assumption in the liter-
ature, we consider that there is a total ordering onAqi

i .

QIj [i] is identical for all tuplest ∈ QIj . Apart from the tuples
defined earlier, the table does not contain any other data.

For instance, lett be tuple 1 in the microdata Table 1. We havej =
1, namely,t is contained in the first QI-group. In the generalized
Table 2,QI1[1] = [21, 60] (the generalized age of tuple 1),QI1[2]
= M, andQI1[3] = [100001, 60000], which, together witht[4] =
pneumonia, form the first tuple.

We would like to point out that, although Definition 3 is based
on anl-diverse partition, in general, anatomy produces a pair of
QIT and ST from any partition (Definition 1) in exactly the same
way. In particular, anyk-anonymous orl-diverse table has an
anatomized counterpart. We concentrate onl-diverse partitions to
achieve strong privacy preservation.

It is worth mentioning that Machanavajjhala et al. [10] provide sev-
eral other “instantiations” ofl-diversity to guard against potential
“background knowledge” from adversaries. However, as acknowl-
edged in [10], it is impossible to compute a “perfect”l-diverse
partition that denies privacy breach from all adversaries,without
knowing their background knowledge in advance. Various instan-
tiations apply additional heuristics to enhance the level of privacy
protection. For simplicity, we focus on the instantiation of Def-
inition 2 (termed “recursive( 1

l−1
, 2)-diversity” in [10]), but it is

straightforward to extend the anatomy formulation to otherinstan-
tiations.

3.2 Privacy Preservation
A pair of anatomized tables provide a convenient way for the data
publisher to find out, for each tuplet ∈ T , all theAs values that an
adversary can associatet with, and the probability of each associa-
tion. This is formally explained in the next lemma.

LEMMA 1. If we perform a natural join QIT./ ST, the join
result is a table withd + 3 attributes, containing records of the
form

(t[1], t[2], ..., t[d], j, v, cj(v))

wherej is the ID of the QI-group includingt (i.e., t ∈ QIj), v an
As value, andcj(v) the number of tuples inQIj with As valuev.
Then, from an adversary’s perspective,

Pr{t[d + 1] = v} = cj(v)/|QIj | (2)

where|QIj | denotes the size ofQIj .

PROOF. Consider any tuplet ∈ T , which is contained in QI-
group QIj (in the underlyingl-diverse partition) for somej ∈
[1, m]. The adversary, who attempts to find outt[d+1], can obtain
j from the QIT which, however, does not haveAs data. Hence, the
adversary can only conjecture thatt[d + 1] equals one of theAs

values (pertinent toQIj) summarized the ST. Without any other
information, the adversary assumes that every tuple inQIj has an
equal chance to carry anyAs value relevant toQIj , which leads to
Equation 2.

We explain the lemma using Table 4, which demonstrates part of
the result of the natural join between Tables 3a and 3b (only the join
results related to QI-group 1 are shown). QI-group 1 has 4 tuples.
Hence, from the first record of Table 4, an adversary knows that



Age Sex Zipcode Group Disease Count
ID

23 M 11000 1 dyspepsia 2
23 M 11000 1 pneumonia 2
27 M 13000 1 dyspepsia 2
27 M 13000 1 pneumonia 2
35 M 59000 1 dyspepsia 2
35 M 59000 1 pneumonia 2
59 M 12000 1 dyspepsia 2
59 M 12000 1 pneumonia 2
... ... ... ... ... ...

Table 4: Partial result of the natural join between Tables 3a
and 3b (only results pertinent to QI-group 1 are shown)

tuple 1 in the QIT (Table 3a) has probability 2 / 4 = 50% to carry
dyspepsia in the microdata, according to Equation 2. Similarly, the
second record implies that tuple 1 has 50% probability to be asso-
ciated with pneumonia. On the other hand, the QI-values of tuple 1
are not combined with any other disease such as flu, meaning that
tuple 1 cannot have flu as its realDisease-value.

COROLLARY 1. Given a pair of QIT and ST, an adversary can
correctly re-construct any tuplet ∈ T with a probability at most
1/l.

PROOF. Tuplet is correctly re-constructed, if and only if the ad-
versary precisely obtains its realAs valuevreal. By Equation 2, we
know thatPr{t[d+1] = vreal} = cj(vreal)/|QIj |, whereQIj is
the unique QI-group containingt. Recall that a pair of anatomized
tables is obtained from anl-diverse partition (Definition 2). Hence,
by Equation 1,cj(vreal)/|QIj | ≤ 1/l.

Corollary 1 gives the privacy protection guarantee at thetuple level.
It is also necessary to discuss the corresponding guaranteeat the
individual level, since in practice multiple individuals may have
the same QI-values, thus complicating the privacy-attack process
performed by an adversary.

To explain this, consider that an adversary has the age 65 andzip-
code 25000 of Alice (the “owner” of tuple 7 in Table 1), and wants
to infer the medical record of Alice from the QIT and ST in Ta-
bles 3a and 3b, respectively. S/he consults the QIT, and seesthat,
in QI-group 2 (denoted asQI2), both tuples 6 and 7 match the QI-
values of Alice. Hence, s/he examines two scenarios.

First, assuming that tuple 6 belongs to Alice, the adversaryuses
Lemma 1 to derive the probability distribution for the tuple’s dis-
ease value. According to Equation 2, tuple 6 has probability
c2(flu)/|QI2| = 2/4 = 50% to carry flu. Notice that, in the mi-
crodata, tuple 6 does not really belong to Alice. However, itdoes
not matter —the adversary may “happen to” use a wrong tuple to
infer the correct sensitive value of Alice!From tuple 6, the adver-
sary actually has 50% probability to figure out that Alice contracted
flu.

In the second scenario, the adversary assumes that tuple 7 belongs
to Alice, through which (similar to tuple 6) s/he also has 50%prob-
ability to obtain the real disease of Alice. Finally, (without further
knowledge) the adversary assumes that the two scenarios occur
with the same likelihood1

2
. Therefore, the overall breach proba-

bility should be calculated as1
2
·50%+ 1

2
·50%, where1

2
and 50%

have the same semantics as in the above discussion.

In fact, Lemma 1 shows that tuple 7 (the real tuple of Alice) can be
re-constructed with 50% likelihood. Namely, the breach probabil-
ity at the individual level coincides with that at the tuple level. This
happens because tuples 6 and 7 appear in the same QI-group. In
general, as long as tuples with identical QI-values always end up in
the same QI-group (as is true for global-recoding generalization re-
viewed in Section 2), the probabilities of the two levels arealways
equivalent. In this case, it suffices to discuss only the (simpler) tu-
ple level; as a result, the individual level has not been addressed
before (all the existing generalization schemes adopt global recod-
ing).

Anatomy, however, allows high flexibility in forming QI-groups
such that tuples with the same QI-values do not always belongto
the same QI-group. Therefore, we must provide a formal result
regarding the individual-level breach probability.

THEOREM 1. Given a pair of QIT and ST, an adversary can
correctly infer the sensitive value of any individual with probability
at most1/l.

PROOF. Consider any individualo whose QI-values are equiv-
alent to those of totallyf tuples t1, t2, ..., tf in the microdata.
Assume that tupleti (1 ≤ i ≤ f ) belongs to QI-groupQIji

(1 ≤ ji ≤ m, wherem is the total number of QI-groups). Let
vreal be the realAs value ofo.

The adversary infersvreal in two steps. First, s/he guesses that
each oft1, ..., tf belongs too with probability 1/f . Then, for
each scenario whereti (1 ≤ i ≤ f ) belongs too, by Lemma 1,
s/he figures out thatvreal is the As value of o with probability
cji

(vreal)/|QIji
|. Hence, the overall probability that theAs value

of o is inferred equals

f�

i=1

cji
(vreal)/(f · |QIji

|)

Recall that, by the property ofl-diverse partition (Definition 2),
cji

(vreal)/|QIji
| ≤ 1/l. Hence, the above formula is at most� f

i=1(
1
f
· 1

l
) = 1/l.

3.3 Comparison with Generalization
We would like to emphasize that our intention is not to eliminate
generalization; there is no doubt that generalization is animpor-
tant technique, partly proved by the fact that it has received much
attention in the literature. Instead, our goal is to presentan alterna-
tive option for privacy preservation, which has its own advantages,
since it can retain a larger amount of data characteristics (as shown
in the subsequent sections). Indeed, anatomy is not an all-around
winner. Intuitively, by releasing the QI-values directly,anatomy
may allow a higher breach probability than generalization.Nev-
ertheless, such probability is always bounded by1/l, as long as
the background knowledge of an adversary is not stronger than the
level allowed by thel-diversity model. Next, we will explain these
observations in detail.

The derivation in Section 3.2 implicitly makes two assumptions:

• A1: the adversary has the QI-values of the target individual
(i.e., Alice);



Name Age Sex Zipcode
Ada 61 F 54000
Alice 65 F 25000
Bella 65 F 25000
Emily 67 F 33000

Stephanie 70 F 30000
... ... ... ...

Table 5: The voter registration list (publicly accessible)

• A2: the adversary also knows that the individual is definitely
involved in the microdata.

In fact, usually both assumptions are satisfied in practicalprivacy-
attacking processes. For example, in her pioneering paper [14],
Sweeney shows how to reveal the medical record of the governor
of Massachusetts from the data released by the Group Insurance
Commission, after obtaining the governor’s QI-values frompublic
sources. The revelation is possible because Sweeney knew inad-
vance that the record of the governor must be present in the micro-
data. Otherwise, no inference could be drawn against the governor
because the “privacy-leaking” record could as well just belong to a
person who happens to share the same QI-values as the governor.

In general, if both Assumptions A1 and A2 are true, anatomy pro-
vides as much privacy control as generalization, that is, the privacy
of a person is breached with a probability at most1/l. For instance,
if an adversary is sure that Alice has been hospitalized before, from
Alice’s QI-values, s/he can assert that Alice must be described by
one of tuples 5-8 in the generalized Table 2. Then, s/he carries out
the rest of her/his probabilistic conjecture (about the disease of Al-
ice) in the same way as s/he would do after identifying Alice to be
in Group 2 of the anatomized Table 3a.

Now, consider the case where A1 holds, but A2 does not. Accord-
ingly, the overall breach probability of Alice has a Bayes form:

PrA2(Aliceqi) · Prbreach(Alices|A2) (3)

wherePrA2(Aliceqi) is the chance for Alice to be involved in the
microdata, andPrbreach(Alices|A2) the likelihood for the adver-
sary to correctly guess the disease of Alice on condition that Alice
appears in the microdata. As analyzed earlier, anatomy and gener-
alization give the samePrbreach(Alices|A2), which is simply the
preach probability when both A1 and A2 are valid.

To computePrA2(Aliceqi), an adversary typically needs to consult
another external database [17], which relates QI-values toconcrete
personal identities for all the persons in the microdata, perhaps to-
gether with some other people. An example of such an external
source is a voter registration list, partially demonstrated in Table 5,
where the record of Emily is italicized to indicate that she is not in-
volved in the microdata of Table 1. In this scenario, generalization
and anatomy make a difference. Specifically, judging from (the QI-
values of tuples 5-8 in) the generalized Table 2, the adversary sees
that each person shown in Table 5 could be involved in the micro-
data with equal likelihood, and hence, calculatesPrA2(Aliceqi) as
4/5. On the other hand, given the anatomized Table 3, the adver-
sary concludes thatPrA2(Aliceqi) = 1 (here s/he can figure out that
Emily is definitely absent from the microdata). As a result, gener-
alization provides a stronger overall privacy-preservingguarantee.
Nevertheless, since anatomy ensuresPrbreach(Alices|A2) ≤ 1/l,
it also secures the same upper bound1/l for Formula 3.

Although generalization has the above advantage over anatomy, the
advantage cannot be leveraged in computing the published data.

This is because the publisher cannot predict or control the external
database to be utilized by an adversary, and therefore, mustguard
against an “accurate” external source that does not involveany per-
son absent in the microdata. For instance, if Table 5 did not contain
Emily, the voter list would producePrA2(Aliceqi) = 1 in attack-
ing the privacy of Alice from Table 2 (instead of 4/5 as discussed
earlier). In other words, to ensure a maximum breach probability
p using generalization, we must still setl to d1/pe, i.e., same as in
applying anatomy.

Finally, if neither assumption A1 nor A2 is satisfied, the breach
probability of Alice becomes
�

∀x

PrA1(x) · PrA2(x|A1) · Prbreach(Alices|A1, A2) (4)

wherex is a vector representing a possible set of QI-values of Al-
ice, andPrA1(x) equals the probability thatx captures Alice’s real
QI-values, whereasPrA2 andPrbreach follow the same semantics
as in Formula 3, but on condition thatx is real. The comparison
results between anatomy and generalization are analogous to those
discussed for the previous case where A1 is true and A2 is not.

4. PRESERVING CORRELATION
A good publication method should preserve both privacy and data
correlation (between QI- and sensitive attributes). Usinga concrete
query, we have shown in Section 1.1 that anatomy allows more
effective aggregate analysis than generalization. Next, we provide
the underlying theoretical rationale.

Obviously, for any tuplet ∈ T , every publication method will lose
certain information oft (if not, it is equivalent to disclosingt di-
rectly, contradicting the goal of privacy). On the other hand, the
method should permit development of an approximate modeling of
t (otherwise, the published table is useless for research). Hence,
the quality of correlation preservation depends on how accurate the
re-constructed modeling is.

Intuition. Let us first examine the correlation betweenAge and
Diseasein the microdata of Table 1. The two attributes define a 2D
spaceDSA,D. Every tuple in the table can be mapped to a point
in DSA,D . For example, tuple 1, denoted ast1, corresponds to
point (t1[A], t1[D]), wheret1[A] is the age 23 oft1, andt1[D] its
disease ‘pneumonia’.

We can modelt1 using a probability density function (pdf)Gt1 :
DSA,D → [0, 1]. Specifically:

Gt1(x) = � 1 if x = (t1[A], t1[D])
0 otherwise

(5)

wherex is a 2D random variable inDSA,D . Figure 2a demon-
strates the pdf.

Assume that a researcher wants to re-construct an approximate pdf
G̃gen

t1
of t1 from the generalized Table 2. From her/his perspec-

tive, t1[A] can be any value in the interval[21, 60] with equality
probability1/40, butt1[D] must be pneumonia. Hence,

G̃gen
t1

(x) = ��� 1/40 if x[A] ∈ [21, 60] and
x[D] =pneumonia

0 otherwise
(6)

which is illustrated in Figure 2b.
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(a) Original (b) Approximated from generalization (c) Approximated from anatomy

Figure 2: Original/re-constructed pdf of tuple 1 in Table 1

Instead, suppose that the researcher re-constructs a pdfG̃ana
t1 from

the QIT and ST in Tables 3a and 3b. This time, s/he knows that
t1[A] must be 23 (since age is published directly), butt1[D] can
be pneumonia or dyspepsia with 50% probability (the ST shows
that half of the tuples in QI-group 1 are associated with these two
diseases, respectively). Therefore,

G̃ana
t1 (x) = ��� 1/2 if x = (23, pneumonia) or

x = (23, dyspepsia)
0 otherwise

(7)

as shown in Figure 2c. Obviously, the pdf approximated from the
anatomized tables is more accurate than that (Figure 2b) from the
generalized table.

Towards a more rigorous comparison, given an approximate pdf
G̃t1 (Equation 6 or 7), a natural way of quantifying its approxima-
tion quality is to calculate its “L2 distance” from the actual pdfGt1

(Equation 5):

�

x∈DSA,D �G̃t1(x) − Gt1(x)�2

. (8)

The distance ofG̃ana
t1 is 0.5, indeed significantly lower than the

distance 22.5 of̃Ggen
t1

.

Although we focused ont1, in the same way, it is easy to verify
that the anatomized tables permit better re-construction of the pdfs
of all tuples in Table 1.

General Results and Quality Metric. As defined in Section 3,
each tuplet in the microdataT can be regarded as a point in a
(d + 1)-dimensional spaceDS (including all the QI- and sensitive
dimensions). Next, we generalize the above discussion toDS.

We modelt as a pdfGt(x) : DS → [0, 1]:

Gt(x) = � 1 if x = t
0 otherwise

(9)

wherex is a random variable inDS. Note that the conditionx = t
impliesx[i] = t[i] for all i ∈ [1, d + 1], wherex[i] andt[i] are the
i-th coordinates ofx andt, respectively.

In a generalized table, lett belong to a QI-groupQI .
As stated in Definition 4, the generalized form oft is
(QI [1], QI [2], ..., QI [d], t[d + 1]), whereQI [i] (1 ≤ i ≤ d) is
an interval enclosingt[i]. Denote the length ofQI [i] asL(QI [i])
(if Aqi

i is discrete,L(QI [i]) should be interpreted as the number of
different values inQI [i]). Then, the reconstructed pdf̃Ggen

t (x) of

t is

G̃gen
t (x)= � 1�

d
i=1

L(QI[i])
if x[i]∈QI [i] ∀i∈ [1,d]

0 otherwise
(10)

Next we discuss anatomized tables. Also assumeQI as the QI-
group containingt (in the underlyingl-diverse partition). Letv1,
v2, ...,vλ be all the distinctAs values inQI (e.g., for QI-group 1
in Table 3a,λ = 2, whereas for QI-group 2,λ = 3). Denotec(vh)
(1 ≤ h ≤ λ) as theCountvalue in the ST corresponding tovh.
The reconstructed pdf̃Gana

t (x) of t is

G̃ana
t (x) =

�������
c(v1)/|QI | if x = (t[1], ..., t[d], v1)
... ...
c(vλ)/|QI | if x = (t[1], ..., t[d], vλ)
0 otherwise

(11)

where|QI | is the number of tuples inQI , and the QI-valuest[1],
..., t[d] of t are directly released in the QIT.

Notice thatG̃ana
t (x) is greater than 0, only whenx lies at one of the

λ points inDS, as described in the if-conditions of Equation 11.
That is,G̃ana

t (x) consists ofλ “spikes” at these points (λ = 2 in
Figure 2c). On the other hand, in practice,G̃gen

t (x) typically takes
a small value whenx distributes across a large region. Namely, the
occurrence probability oft is “smeared” onto all the points in that
region (see Figure 2b), thus deviating significantly from the actual
Gt(x).

Given an approximate pdf̃Gt (Equation 10 or 11), we quantify its
error from the actualGt (Equation 9) as

Errt = �
x∈DS �G̃t(x) − Gt(x)�2

dx. (12)

Naturally, taking into account all tuplest ∈ T , a good publica-
tion method should minimize the followingre-construction error
(RCE):

RCE =
�

∀t∈T

Errt. (13)

5. A NEARLY-OPTIMAL ANATOMIZING
ALGORITHM

We propose an efficient algorithm for computing anatomized tables
that (almost) minimize the RCE (Equation 13). In particular, the
RCE of the resulting QIT and ST achieve an RCE that deviates
from the theoretical lower bound by only a factor less than1+1/n
wheren is the size ofT . Furthermore, our algorithm has linear I/O
complexityO(n/b), whereb denotes the page size.



5.1 Lower Bound of Reconstruction Error
The following theorem establishes the lower bound of the RCE
achievable by any anatomized tables.

THEOREM 2. RCE (Equation 13) is at leastn(1 − 1/l), for
any pair of QIT and ST, wheren is the cardinality of the microdata
T .

PROOF. Anatomized tables (Definition 3) are computed from
an l-diverse partition. Let the partition contain QI groupsQI1, ...,
QIm. For eachj ∈ [1, m], useαj to denote the averageErrt

(Formula 12) for all tuplest ∈ QIj . Thus,RCE can be rewritten
as

RCE =
m�

j=1

(|QIj | · αj).

The rest of the proof will show thatαj ≥ 1−1/l, for all j ∈ [1, m].
As a result, the above equation leads to

RCE ≥
m�

j=1

(|QIj | · (1 − 1/l)) = n(1 − 1/l),

thus completing the proof (notice
�m

j=1 |QIj | = n).

By symmetry, it suffices to proveαj ≥ 1−1/l for anyQIj . Hence,
we omit the subscriptj in the sequel. Without loss of generality,
assume thatQI containsλ distinct As valuesv1, ..., vλ. In par-
ticular, there arec(vh) (1 ≤ h ≤ λ) tuples inQI with As value
vh.

Consider an arbitrary tuplet ∈ QI with As valuevh (for some
h ∈ [1, λ]). The actual pdfGt and approximatẽGDZ

t are given in
Equations 9 and 11, respectively. Thus, by Equation 12, we have

Errt = �1 −
c(vh)

|QI | �2

+
λ�

h′=1∧h′ 6=h

c(vh′)2

|QI |2
.

For computing the averageα of Errt for all t ∈ QI , we combine
the above formula with the fact thatc(vh) tuples haveAs valuevh:

α =

�λ
h=1 c(vh) · ��1 − c(vh)

|QI| �2

+
� λ

h′=1
h′ 6=h

c(vh′ )
2

|QI|2 �
|QI |

.

Thus, it remains to solve the minimumα subject to the constraints

λ�

h=1

c(vh) = |QI |, andc(vh) ≤
|QI |

l
for all h ∈ [1, λ]

(the second constraint is due to Definition 2).

Let us ignore the second constraint temporarily. Then, minimiza-
tion of α subject to the first constraint is a standard problem tackled
by theLagrange multiplier method[3]. Application of the method
results inα ≥ (1 − 1/λ), where the equality holds only when
c(v1) = ... = c(vh) = |QI |/l.

Now, we take into account the second constraint, which leadsto�λ
h=1 c(vh) ≤ λ · |QI |/l. The left side of the inequality equals

|QI |. Hence, the inequality indicates thatλ ≥ l.

Therefore,α ≥ (1 − 1/λ) ≥ (1 − 1/l), where the equality holds
whenc(v1) = ... = c(vh) = |QI |/l, andλ = l.

5.2 The Algorithm
Figure 3 presents the algorithmAnatomizewhich, given a micro-
data tableT and a parameterl, obtains a pair of QIT and ST for
publication. Anatomizefirst computes anl-diverse partition ofT
(Lines 1-12), and then, produces the QIT and ST (Lines 13-18)
from the partition. Since populating the QIT and ST is already
clarified in Definition 3, we concentrate on finding the partition.

Anatomizestarts (Line 1) by initiating an empty QIT and ST, and
variable gcnt, which counts the number of QI-groups created.
Then, it hashes the tuples ofT into buckets byAs, so that each
bucket includes the tuples with the sameAs value (Line 2). The
subsequent execution involves agroup-creationstep, followed by a
residue-assignmentphase.

Group-Creation. This step is performed in iterations, and con-
tinues as long as there are at leastl non-empty buckets (Line 3).
Each iteration yields a new QI-groupQIgcnt (Line 4) as follows.
First, Anatomizeobtains a setS consisting of thel hash buckets
thatcurrentlyhave the largest number of tuples (Line 5). Note that
the content ofS may vary in different iterations. Then, from each
bucket inS (Line 6), a random tuple is selected (Line 7), and added
to QIgcnt (Line 8). Therefore,QIgcnt containsl tuples with dis-
tinct As values.

PROPERTY 1. At the end of the group-creation phase, each
non-empty bucket has only one tuple.

PROOF. An l-diverse partition exists, if and only ifT satisfies
aneligibility condition3 [10]: at mostn/l tuples are associated with
the sameAs value, wheren is the cardinality ofT . We will prove
that, Property 1 always holds under this condition.

Assume, on the contrary, after the first (group-creation) phase, a set
of bad bucketshave sizes at least 2. Obviously, there are at most
l− 1 bad buckets (otherwise, the group-generation phase could not
have terminated). Since each iteration movesl tuples from buckets
into a QI-group, the first phase executesbn/lc iterations, denoted
asI1, I2, ...,Ibn/lc, respectively.

Before iterationIbn/lc starts, at mostl − 1 buckets (termedsizable
bn/lc-buckets) have sizes at least 2 (otherwise, there would be at
leastl non-empty buckets afterIbn/lc, contradicting the fact that
Ibn/lc is the last iteration). On the other hand, we already know
that,after Ibn/lc, all the bad buckets have sizes at least 2. Hence,
every bad bucket is a sizablebn/lc-bucket, and must belong toS
(retrieved at Line 5) inIbn/lc. Thus, each bad bucket loses a tuple
in Ibn/lc, meaning that,beforeIbn/lc, the bucket has size at least
3.

Similarly, beforeIbn/lc−1, at mostl − 1 buckets (termedsizable
(bn/lc − 1)-buckets) have sizes at least 3 (otherwise, there would
be at leastl sizablebn/lc-buckets, contradicting our earlier analy-
sis). On the other hand, we already know that,after Ibn/lc − 1,
all the bad buckets have sizes at least 3. Hence, every bad bucket
is a sizable(bn/lc − 1)-bucket, and must belong toS in Ibn/lc−1.
Thus, each bad bucket loses a tuple inIbn/lc−1, meaning that,be-
fore Ibn/lc−1, the bucket has size at least 4.

3If this condition is violated, neitherk-anonymity norl-diversity
can prevent an adversary from correctly inferring a tuple inT with
a probability at least1/l.



Algorithm Anatomize (T , l)
1. QIT =∅; ST =∅; gcnt = 0
2. hash the tuples inT by theirAs values (each bucket perAs value)

/* Lines 3-8 are the group-creation step*/

3. while there are at leastl non-empty hash buckets

/* Lines 4-8 form a new QI-group*/

4. gcnt = gcnt + 1; QIgcnt = ∅
5. S = the set ofl largest buckets
6. for each bucket inS
7. remove an arbitrary tuplet from the bucket
8. QIgcnt = QIgcnt ∪ {t}

/* Lines 9-12 are the residue-assignment step*/

9. for each non-empty bucket
/* this bucket has only one tuple; see Property 1*/

10. t = the only residue tuple of the bucket
11. S′ = the set of QI-groups that do not contain theAs valuet[d + 1]

/* S′ has at least one QI-group; see Property 2*/
12. assignt to a random QI-group inS′

/* Lines 13-18 populate QIT and ST*/

13. forj = 1 togcnt
14. for each tuplet ∈ QIj

15. insert tuple(t[1], ..., t[d], j) into QIT
16. for each distinctAs valuev in QIj

17. cj(v) = the number of tuples inQIj with As valuev
18. insert record(j, v, cj(v)) into ST

19. return QIT and ST

Figure 3: The anatomizing algorithm

Carrying out the same discussion to the other iterations, wearrive
at a fact that each bucket inSbad has size at leastbn/lc + 1 at the
beginning ofAnatomize. The fact violates the eligibility condition,
becausebn/lc + 1 > n/l.

We use the termresidue tupleto refer to a tuple remaining in a
bucket, at the end of the group-creation phase. Clearly, there are at
mostl − 1 such tuples.

Residue-Assignment.For each residue tuplet, Anatomizecollects
a setS′ of QI-groups (produced from the previous step), where no
tuple has the sameAs value ast (Lines 8-11). Interestingly, as
proved shortly,S′ includes at least one QI-group. Then, at Line 12,
t is assigned to an arbitrary group inS′.

PROPERTY 2. The setS′ (computed at Line 11 of Figure 3) al-
ways includes at least one QI-group.

PROOF. Assume, on the contrary, thatS′ is empty when
processing tuplet (at Line 11). As explained in the previous proof,
the number of QI-groups isbn/lc. SinceS′ is empty, each QI-
group has at least a tuple whoseAs value equalst[d + 1]. It fol-
lows that the number of tuples inT with As valuet[d+1] is at least
1 + bn/lc, which is larger thann/l. This contradicts the eligibility
condition mentioned in the proof of Property 1.

Correctness.Since Lines 13-19 of Figure 3 essentially implement
Definition 3, Anatomizeis correct, if and only if Lines 1-12 pro-
duce anl-diverse partition ofT . We establish this in the following
property, which actually shows a stronger fact.

PROPERTY 3. After the residue-assignment phase, each QI-
group has at leastl tuples. Furthermore, all tuples in each QI-
group have distinctAs values.

PROOF. After the group-creation step, every QI-group hasl tu-
ples with distinctAs values (these tuples are obtained from differ-
ent hash buckets). In the residue-assignment phase, the assignment
of a tuple into a QI-group ensures that all tuples in the groupstill
have distinctAs values. Hence, Property 3 is correct.

5.3 Analysis
In this section, we analyze the efficiency and effectivenessof Anat-
omize(Figure 3). First, Theorem 3 provides the space and time
complexities ofAnatomize. In particular, the proof of the theorem
describes an efficient way to implement the algorithm. Then,The-
orem 4 explains the quality of the resulting QIT and ST.

THEOREM 3. AnatomizerequiresO(λ) memory, andO(n/b)
I/Os, whereλ is the number of distinctAs values inT , n is the
cardinality ofT , andb is the disk page size.

PROOF. The hashing at Line 1 of Figure 3 consumesO(λ)
memory, and performsO(n/b) I/Os.

During the first phase, we can keep in memory an array withλ el-
ements, where thei-th (1 ≤ i ≤ λ) element maintains the size of
the i-th bucket. Therefore, at Line 5, setS can be decided with
no I/O overhead. To implement Line 7, for each bucket, we allo-
cate a buffer page for reading its content. All the QI-groupsare
sequentially into aQI-group file, in the order they are created. For
this purpose, we allocate an output buffer page. In this way,the
group-creation step requiresO(λ) memory andO(n/b) I/Os.

At the beginning of the residue-assignment phase, we read all the
(at mostl − 1) residue residue tuples into memory. Next, we per-
form a single scan of the QI-group file, and assign these tuples to
appropriate QI-groups during the scan. This step needsO(l) mem-
ory (l ≤ λ, for satisfying the eligibility condition in the proof of
Property 1), and performsO(n/b) I/Os.

Each QI-group so far hasO(l) tuples. Thus, populating the QIT
and ST (Lines 13-18) can be easily achieved withO(l) memory,
andO(n/b) I/Os. Therefore, the overall space and I/O complexi-
ties ofAnatomizeareO(λ) andO(n/b), respectively.

THEOREM 4. If the cardinalityn of T is a multiple ofl, the
QIT and ST computed byAnatomizeachieve the lower bound of
RCE in Theorem 2. Otherwise, the RCE of the anatomized tables
is higher than the lower bound by a factor at most1 + 1

n
.

PROOF. Let r = n mod l. Depending on whethern is a mul-
tiple of l, there are two cases.

Case 1(r = 0): Anatomizeterminates directly after the group-
creation phase. Each QI-group has exactlyl tuples with distinctAs

values. Combining Equations 9, 11, and 12, we have, for each tuple
t ∈ T ,

Errt = �1 −
1

l �2

+
l − 1

l2
= 1 −

1

l
.

By Equation 13,RCE = n(1 − 1
l
).

Case 2(r 6= 0): Consider the moment when the group-creation
phase finishes. So far, totallyn − r (a multiple of l) tuples have



been added into QI-groups. According to the analysis of Case1,
the current RCE (with respect to the tuples already in QI-groups) is
(n − r)(1 − 1

l
).

Next, we show that, after assigning a residue tuplet at Line 12 of
Figure 3, the overall RCE increases by 1. With out loss of gener-
ality, assume thatt is assigned to a QI-groupQI with β tuples, all
of which have distinctAs values, and theirAs values are different
from that oft (see Property 3). Before the assignment, following
the derivation of Case 1, the RCE ofQI4 equalsβ(1 − 1

β
). After

the assignment, the RCE ofQI becomes(β +1)(1− 1
β+1

), so that
the overall RCE (of all the tuples in QI-groups) increases by

(β + 1) �1 −
1

β + 1� − β �1 −
1

β � = 1.

As mentioned earlier, before the assignment step starts, the overall
RCE equals(n−r)(1− 1

l
). Therefore, after assigning allr residue

tuples, the RCE becomes

(n − r) �1 −
1

l � + r = n �1 −
1

l � �1 +
r

n(l − 1)� .

which is greater than the lower boundn(1 − 1
l
) by a factor of

1 + r
n(l−1)

. Given thatr ≤ l − 1, we complete the proof.

Note that, for a largeT , 1 + 1
n
≈ 1, namely, the RCE of the tables

output byAnatomizeis extremely close to the lower bound.

6. EXPERIMENTS
This section experimentally evaluates the effectiveness and effi-
ciency of anatomy. For this purpose, we utilize a real dataset CEN-
SUS5 containing personal information of 500k American adults.
The dataset has9 discrete attributes as summarized in Table 6.

From CENSUS, we create two sets of microdata tables, in orderto
examine the influence of dimensionality and sensitive-value distri-
bution. The first set has 5 tables, denoted as OCC-3, ..., OCC-7,
respectively. Specifically, OCC-d (3 ≤ d ≤ 7) treats the firstd
attributes in Table 6 as the QI-attributes, andOccupationas the
sensitive attributeAs. For example, OCC-3 is 4D, and contains
QI-attributesAge, Gender, andEducation. The second set also has
5 tables SAL-3, ..., SAL-7, where SAL-d (3 ≤ d ≤ 7) has the same
QI-attributes as OCC-d, but includesSalary-classas theAs.

To study the impact of cardinality, we generate datasets with vari-
ous cardinalitiesn, by randomly samplingn tuples from the “full”
OCC-d or SCC-d (3 ≤ d ≤ 7) with 500k tuples.

We compare anatomy against (l-diverse) generalization on two as-
pects: (i) usefulness of the resulting publishable tables for data
analysis, and (ii) cost of computing these tables. For generaliza-
tion, we employ the state-of-the-art algorithm in [9], which adopts
multi-dimension recoding (explained in Section 2). The value of
l is fixed to 10, i.e., the sensitive value of each individual can be
correctly inferred by an adversary with at most 10% probability.

As stated in Definition 4, each generalized value is an interval. The
last column of Table 6 describes the details of generalization on
each QI-attribute. Specifically, “free interval” means that the end

4The RCE ofQI equals the sum ofErrt of all tuplest ∈ QI .
5Downloadable athttp://www.ipums.org.

Attribute Number of Generalization method
distinct values (inapplicable to anatomy)

Age 78 Free interval
Gender 2 Taxonomy tree (2)

Education 17 Free interval
Marital 6 Taxonomy tree (3)
Race 9 Taxonomy tree (2)

Work-class 10 Taxonomy tree (4)
Country 83 Taxonomy tree (3)

Occupation 50 NA (sensitive)
Salary-class 50 NA (sensitive)

Table 6: Summary of attributes

Parameter Values
l 10

cardinalityn 100k, 200k,300k, 400k, 500k
number of QI-attributesd 3, 4,5, 6, 7
query dimensionalityqd 1, 2, ...,d

expected selectivitys 1%, ...,5%, ..., 10%

Table 7: Parameters and tested values
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Figure 4: Query accuracy vs. the numberd of QI-attributes

points of a generalized interval can fall on any value in the domain
of the corresponding attribute. “Taxonomy tree (x)”, on the other
hand, indicates that the end points must lie on particular values,
conforming to a taxonomy with heightx (see [8] for more details
of generalization based on a taxonomy).

6.1 Effectiveness for Aggregate Reasoning
We consider queries of the form:

SELECT COUNT(*) FROM Unknown-Microdata
WHERE pred(Aqi

1 ) AND ... AND pred(Aqi
qd) AND pred(As)

Specifically, a query involvesqd random QI-attributesAqi
1 , ...,Aqi

qd

(in the underlying microdata), and the sensitive attributeAs, where
qd is a parameter calledquery dimensionality. For instance, if the
microdata is OCC-3 andqd = 2, then{Aqi

1 , Aqi
2 } is a random 2-

sized subset of{Age, Gender, Education}. For any attributeA, the
predicatepred(A) has the form

(A = x1 OR A = x2 OR ... OR A = xb)

wherexi(1 ≤ i ≤ b) is a random value in the domain ofA (re-
call that all attributes are discrete). The value ofb depends on the
expected query selectivitys:

b = �|A| · s1/(qd+1)� (14)

where|A| is the domain size ofA. A highers leads to more selec-
tion conditions inpred(A).

Table 7 summarizes the parameters of our experiments, as well as
their values examined. The values in bold are the defaults. Unless
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Figure 5: Query accuracy vs. query dimensionalityqd

specifically stated, each parameter is set to its default value in the
following experiments.

Given a microdata relation, we compute the corresponding anat-
omized and generalized tables. Then, we process aworkload of
10000 queries (with the sameqd ands) on the resulting tables, us-
ing the algorithms explained in Sections 1.1 (for generalized tables)
and 1.2 (for anatomized tables), respectively. The effectiveness of
anatomy/generalization is measured as itsaverage relative error
in answering a query. Specifically, for each query, its relative er-
ror equals|act − est|/act, whereact is its actual result derived
from the microdata, andest the estimate computed from the anat-
omized/generalized table.

The first set of experiments investigates the effect ofd on query
accuracy. Figure 4a (4b) plots the error of anatomy and generaliza-
tion as a function ofd, for dataset OCC-d (SAL-d). As expected,
anatomy permits significantly more accurate aggregate analysis,
since it captures a larger amount of correlation in the microdata
than generalization, as discussed in Section 4. Furthermore, the
effectiveness of anatomy is not affected byd (its error is always be-
low 10%), whereas the error of generalization grows exponentially
with d. In particular, ford = 7, the error of anatomy is lower by
two orders of magnitude.

Next, we concentrate on 3 values ofd = 3, 5, and 7. For each
d, we measure the accuracy of anatomy and generalization using
workloads of different query dimensionalitiesqd. Figures 5a and
5b illustrate the results for OCC-3 and SAL-3 (i.e.,d = 3), re-
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spectively. Interestingly, the error of generalization decreases as
qd grows higher. To explain this, recall that all queries have the
same (expected) selectivitys = 5%. Hence, whenqd becomes
larger, the numberb (Equation 14) of values queried on each at-
tribute increases considerably, leading to a more sizable search re-
gion, which in turn reduces error.

Figures 5c, 5d repeat the above experiments on OCC-5 and SAL-
5 respectively, validating similar observations. Figures5e and 5f
demonstrate the results on the microdata withd = 7. Notice
that, here the effectiveness of generation no longer improves with
qd, which indicates that all the generalized values have become
exceedingly-wide intervals underd = 7. As a result, the general-
ized tables are useless for analysis. In contrast, regardless ofd and
qd, anatomy is consistently more accurate than generalization by at
least an order of magnitude.
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To study the impact of query selectivitys, we again examine the
microdata withd = 3, 5, and 7. Figures 6a-6f present the error of
both techniques as a function ofs, for the 6 microdata tables used in
Figure 5, respectively. The precision of both anatomy and general-
ization improves ass increases, with anatomy being the clear win-
ner. Finally, Figure 7 examines how the accuracy of each method
scales with the dataset cardinality. Again, Anatomy achieves sig-
nificantly lower error in all cases.

In summary, we showed that anatomy allows very accurate ag-
gregate analysis. Its error is usually smaller than that of general-
ization by an order of magnitude. Furthermore, the effectiveness
of anatomy is not affected by the dimensionalities of datasets and
queries.

6.2 Computation Overhead
In the sequel, we compare anatomy against generalization onthe
I/O cost of computing publishable tables, with the page sizeset to
4096 bytes, and a memory capacity of 50 pages. Figure 8 presents
the comparison results asd varies from 3 to 7. Evidently, anatomy
incurs significantly fewer I/Os. Figure 9 plots the I/O overhead as
a function ofn. As predicted by Theorem 3, the cost of anatomy
scales linearly withn, as opposed to the super-linear behavior of
generalization. For larged or n, anatomy is 10 times faster than
generalization.

7. CONCLUSIONS
Although generalization is a common methodology for protect-
ing privacy, it loses considerable information in the microdata,
and thus, prohibits effective data analysis. This paper developed
anatomy, an innovative technique which preserves both privacy and
correlation in the microdata, and hence, overcomes the drawbacks
of generalization. Extensive experiments confirm that anatomy per-
mits researchers to derive, from the published tables, highly accu-
rate aggregate information about the unknown microdata, with an
average error below 10% (as opposed to over 100% error of gener-
alization).

As another important fact, anatomized tables can be computed in
I/O cost linear to the database cardinality. In particular,these ta-
bles have nearly optimal quality guarantees in correlationpreserv-
ing. Furthermore, despite its rigorous theoretical justification, our
anatomizing algorithm is simple, and can be easily implemented in
an existing database system.

This work also initiates several directions for future investigation.
For example, in this paper, we focused on the case where thereis
a single sensitive attribute. Extending our technique to multiple
sensitive attributes is an interesting topic. As another direction, it
would be highly useful to study how anatomized tables can be uti-
lized for effective mining of interesting patterns in the microdata,
perhaps through minimization of other metrics of measuringinfor-
mation loss (e.g., KL-divergence [7] and discernibility [4, 9]).
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