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ABSTRACT

This paper presents a novel technicargatomy for publishing sen-
sitive data. Anatomy releases all the quasi-identifier arbisive
values directly in two separate tables. Combined with a gjrau
mechanism, this approach protects privacy, and capturesga |
amount of correlation in the microdata. We develop a lineae
algorithm for computing anatomized tables that obey t#liwersity
privacy requirement, and minimize the error of reconstngcthe
microdata. Extensive experiments confirm that our tectenigiu
lows significantly more effective data analysis than theveon
tional publication method based on generalization. Spediyi
anatomy permits aggregate reasoning with average erromwbel
10%, which is lower than the error obtained from a generdlize
table by orders of magnitude.

1. INTRODUCTION

Privacy preservation is a serious concern in publicatioper§onal
data. Using a popular example in the literature, assumeathas-
pital wants to release patients’ medical records in Tabteférred

to as themicrodata Attribute Diseasds sensitivethat is, the hos-
pital must ensure that no adversary can correctly infer theagde
of any patient with significant confidencége Sex andZipcode
are thequasi-identifier(Ql) attributes, because they may be uti-
lized in combination to reveal the identity of an individui@ading

to privacy breach.

Consider an adversary who has the personal details (ie22&gnd
zipcode 11000) of Bob, and knows that Bob has been hosthliz
before. In Table 1, since only tuple 1 matches Bob’s Ql-\&|tiee
adversary asserts that Bob contracted pneumonia.

To avoid this problemgeneralizatior[12, 13, 14, 10] divides tuples
into QIl-groups and transforms their Ql-values into less specific
forms, so that tuples in the same QI-group cannot be disshgd

by their Ql-values. Table 2 is a generalized version of Take.g.,

the age 23 and zipcode 11000 of tuple 1 have been replaced wit
intervals[21, 60] and[10001, 60000], respectively). Here, general-
ization produces two QIl-groups, including tuples 1-4 ar| Be-
spectively. As aresult, even if an adversary has the exacalQés
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tuple ID [ Age | Sex | Zipcode Disease
1(Bob) | 23 M 11000 | pneumonia
2 27 M 13000 | dyspepsia
3 35 M 59000 | dyspepsia
4 59 M 12000 | pneumonia
5 61 F 54000 flu
6 65 F 25000 gastritis
7 (Alice) | 65 F 25000 flu
8 70 F 30000 bronchitis
Table 1: The microdata
tuple ID Age Sex Zipcode Disease
1 [21,60] | M | [10001, 60000]| pneumonia
2 [21,60] | M | [10001, 60000]| dyspepsia
3 21,60 M 10001, 60000]| dyspepsia
4 21,60 M 10001, 60000]] pneumonia
5 61, 70 F 10001, 60000 flu
6 61,70 F 10001, 60000 gastritis
7 61, 70 F 10001, 60000 flu
8 61, 70 F 10001, 60000]| bronchitis

Table 2: A 2-diverse table

of Bob, s/he still does not know which tuple in the first Ql-gpo
belongs to Bob.

Two notions,k-anonymityand I-diversity, have been proposed to
measure the degree of privacy preservation. A (generdlizdde
is k-anonymoug12, 13, 14] if each QI-group involves at ledst
tuples (e.g., Table 2 is 4-anonymous). However, as showh(j [
even with a largé:, k-anonymity may still allow an adversary to
infer the sensitive value of an individual with extremelglmicon-
fidence. Hence, we adopdiversity [10], which provides stronger
privacy protection.

Specifically, a table i&-diverse if, in each QIl-group, at mokt! of

the tuples possess the most frequent sensitive Yafar instance,
Table 2 is2-diverse because, in each QIl-group, at most 50% of
the tuples have the saniseasevalue. As mentioned earlier, the

hadversary (targeting Bob’s medical record) knows that Balple

must be in the first Ql-group, where two tuples are associattd

pneumonia, and two with dyspepsia. Hence, the adversargrdgn
make a probabilistic conjecture: Bob could have contraetttbr

disease with the same probability.

1.1 Defects of Generalization in Aggregate

Analysis
Although generalization preserves privacy, it often losessid-
erable information in the microdata, which severely compses

1]-diversity has more complicated requirements, if an adwgis
“background knowledge” is taken into account [10]. We wild
cuss this issue in Section 3.1.
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Figure 1: The original and generalized data in theAge-Zipcode
plane

the accuracy of data analysis. Assume that the hospitagete
Table 2, and that a researcher wants to derive from this table
estimate for the following query:

A:  SELECT COUNT(*) FROMUnknown-Microdata
VWHERE Disease= ‘pneumonia’ AND Age<= 30
AND Zipcodel N[10001, 20000]

To illustrate how to process the query, Figure 1 shows a 2Pespa
where the x-, y-dimensions afgeandZipcode respectively. Each
point denotes a tuple in the microdata of Table 1. For exantipée
X-, y-coordinates of point 1 equal the age and zipcode oktupl
respectively. RectanglR; (or R:) is obtained from the generalized
values in the first (or second) Ql-group in Table 2. For instan
the x- (y-) projection ofR; is the generalized ade0, 60] (zipcode
[10001, 60000]) of tuples 1-4. Query A is represented ashhded
rectangle), whose projection on the x- (y-) dimension is decided
by the range conditioAge < 30 (10001 < Zipcode< 20000).

Since the researcher sees oAly and R> (but not the points), s/he
answers query A in a way similar to selectivity estimationan
multidimensional histogram [15], as suggested in [9]. @leas
R is disjoint with @, no tuple in the second QI-group can satisfy
the query. R1, however, intersect§), and hence, is examined as
follows.

From theDiseasevalues in Table 2, the researcher knows that 2 tu-
ples in the first QI-group are associated with pneumonianftains

to calculate the probability that a tuple in the Ql-group qualifies
the range predicates of A, or equivalently, the tuple’s poap-
resentation falls irQ (Figure 1). Oncep is available, the query
answer can be estimated s

Without additional knowledge, the researcher assumes uni-
form data distribution inR;, and compute® as Area(R:1 N
Rg)/Area(R:) = 0.05. This value leads to an approximate an-
swer 0.1, which, however, is ten times smaller than actuahgu
result 1 (see Table 1).

The gross error is caused by the fact that the data distoibutiR;
significantly deviates from uniformity. Nevertheless, egivonly
the generalized table, we cannot justify any other distidiouas-
sumption. This is an inherent problem of generalizatiopratvents
an analyst from correctly understanding the data distiobunside
each QI-group.

1.2 Rationale of Anatomy

To overcome the defects of generalization, we propose awvain
tive techniqueanatomy to achieve privacy-preserving publication
that captures the exact QI-distribution.

Specifically, anatomy releasesjaasi-identifier tablgQIT) and a

row # [ Age | Sex | Zipcode | Group-ID
1 23 M 11000 1
2 27 M 13000 1
3 35 M 59000 1
4 59 M 12000 1
5 61 F 54000 2
6 65 F 25000 2
7 65 F 25000 2
8 70 F 30000 2
(a) The quasi-identifier table (QIT)
Group-ID Disease | Count
1 dyspepsia 2
1 pneumonia 2
2 bronchitis 1
2 flu 2
2 gastritis 1

(b) The sensitive table (ST)
Table 3: The anatomized tables

sensitive tablgST), which separate Ql-values from sensitive val-
ues. For example, Tables 3a and 3b demonstrate the QIT and ST
obtained from the microdata Table 1, respectively.

Construction of the anatomized tables can be (informalhgeu-
stood as follows. First, we partition the tuples of the mitata into
several QIl-groups, based on a certain strategy. Herewioigpthe
grouping in Table 2, let us place tuples 1-4 (or 5-8) of Tabietd

Ql-group 1 (or 2).

Then, we create the QIT. Specifically, for each tuple in Table
QIT (Table 3a) includes all itexactQI-values, together with its
group membership in a new colun@roup-1D. However, QIT does
not store anyDiseasevalue.

Finally, we produce the ST (Table 3b), which retains Disease
statistics of each QI-group. For instance, the first two mésmf
the ST (to avoid confusion, we use ‘record’, instead of ‘&lplor
the data of an ST) indicate that, two tuples of the first Qlugro
are associated with dyspepsia, and two with pneumonia.l&igi
the next three records imply that, the second QIl-group hasle t
associated with bronchitis, two with flu, and one with gaistri

Anatomy preserves privacy because the QIT does not indibate
sensitive value of any tuple, which must be randomly guefseaa

the ST. To explain this, consider again the adversary whahes
age 23 and zipcode 11000 of Bob. Hence, from the QIT (Table 3a)
the adversary knows that tuple 1 belongs to Bob, but doeshiot o
tain any information about his disease so far. Instead,ggtethe

id 1 of the QIl-group containing tuple 1. Judging from the Sa-(T
ble 3b), the adversary realizes that, among the 4 tuples-grQlp

1, 50% of them are associated with dyspepsia (or pneumanmia) i
the microdata. Note that s/he does not gain any additiomds hi
regarding the exact diseases carried by these tuples. Hefhee
arrives at the conclusion that Bob could have contractegeafysa
(or pneumonia) with 50% probability. This is the same conjex
obtainable from the generalized Table 2, as mentionedeearli

By announcing the QI values directly, anatomy permits méfexe
tive analysis than generalization. Given query A in Seclidn we
know, from the ST (Table 3b), that 2 tuples carry pneumonién
microdata, and they are both in QI-group 1. Hence, we proteed
calculate the probability that a tuple in the Ql-group falls i)
(Figure 1). This calculation does not need any assumptioutab
the data distribution in thAge Zipcodeplane,because the distrib-



ution is precisely releasedspecifically, the QIT (Table 3a) shows
that tuples 1 and 2 in Ql-group 1 appeargnleading to theexact
p = 50%. Thus, we obtain an answep = 1, which is also the
actual query result.

1.3 Contributions

This paper presents a systematic study of the anatomy tpehni
First, we formalize the new methodology, based on the pyivae
quirement ofi-diversity. Every pair of QIT and ST ensures that the
sensitive value of any individual involved in the microdatm be
correctly inferred by an adversary with probability at mbgt. A
larger! leads to stronger privacy protection.

Second, we clarify the theoretical reasoning behind thesoiity

of anatomy in capturing data correlation. Our results shioat t
anatomy permits a more accurate modeling of each tuple in the
microdata than generalization. We provide detailed aigbfsthe
modeling error, and quantify it into a closed formula.

Third, we develop an algorithm that computes anatomizebbsab
in O(n/b) 1/0s, wheren is the cardinality of the microdata, and
b the page size. These tables have provably good quality guara
tee, achieving a modeling error deviating from the theoattower
bound by a factor of at most4- 1/n. Notice thaty is very large in
practice (e.g., at the order a million); hence, our algarith nearly
optimal.

Finally, we prove, through extensive experiments, thatamg
significantly outperforms generalization, in bogffectiveness of
data analysisand computation cost Specifically, the anatomized
tables permit highly accurate aggregate search (e.g.yquen
Section 1), with average error below 10%, which is lower than
the query error obtained from a generalized table by ordérs o
magnitude. The query accuracy of anatomy is unaffected &y th
dataset dimensionality, whereas the accuracy of genatialivde-
cays severely as dimensionality increases. Furthermaor@oa
mized tables can be computed much faster than generalizkss ta

The rest of the paper is organized as follows. Section 2 garthe

previous work on generalization. Section 3 formalizes theg@my

methodology, and clarifies its privacy protection guarasteSec-
tion 4 analyzes correlation preservation. Section 5 dpgetm al-

gorithm for computing anatomized tables. Section 6 expemnim
tally evaluates the proposed solutions. Section 7 conslthizpa-

per with directions for future work.

2. RELATED WORK

Generalization has been very well studied in the literafiy@, 4,
56,7,8,9,10,11, 12,13, 14, 16, 17, 18]. LeFevre et al.[@8}ent
an interesting taxonomy to categorize alternative metbhagsd on
their “encoding schemes”, which impose different constsain
generalizing a Ql-value. The highest level of the taxonorsy d
tinguishesglobal recodingfrom local recoding Specifically, the
former requires that, all the tuples with equivalent Qlexes must
be included in the same QIl-group. For instance, tuples 6 and 7
Table 1 have identical Ql-values; hence, they both appeénen
second QIl-group of Table 2. Local recoding removes thisiregu
ment, but has not received considerable attention in theatiire
(currently, this approach is applied only in several “s@sgion-
based” solutions [8]).

The category of global recoding can be further divided Bitegle-
dimension encodingndmultidimension encodindSpecifically, an

encoding is single dimensional, if the generalized formsnaf ar-
bitrary QI-groups on the same attribute are either disjoirgquiv-
alent, as is the case in Table 2. When the condition is not sat-
isfied, the encoding is multidimensional. For example, imag
that theZipcodevalues of tuples 5-8 in Table 2 were changed to
[20001, 60000], which intersects but is not identical to thgpcode

form of tuples 1-4; as a result, the generalization wouldobee
multidimensional.

Computing the optimal generalization is harder for encgdin
schemes with fewer constraints. Unfortunately, it is Nidh@
find the optimal solution, even for simple schemes and quatét-
rics [2, 9, 11]. Therefore, the existing algorithms rely @ulistics
for pruning the search space, in order to discover reaseigler-
alization within a time limit.

A majority of the literature focuses ok-anonymous general-
ization. However, Machanavajjhala et al. [10] observe that
anonymity fails to secure privacy in practice. In particuldoey
show that, the degree of privacy protection does not reapedd

on the size of a Ql-group, but instead, is determined by tmetau

of distinctsensitive values in each QIl-group. The observation leads
to I-diversity (as will be formalized in Section 3). The anadysi
of [17] proves that-diversity always guarantees stronger privacy
preservation thak-anonymity.

A serious drawback of generalization is that, when the nurrdloé

Ql attributes is large, any generalization necessarilgda®nsider-
able information in the microdata [1], due to the “curse ahdn-

sionality”. Specifically, in high dimensional spaces, egeheral-
ized value is always an exceedingly wide interval, in whielse
the published table is simply useless for research.

This paper is virtually orthogonal to all the previous workhe
proposed anatomy technique is a brand-new approach foispubl
ing personal data, which remedies the defects of genetializa
Specifically, nearly-optimal anatomized tables can be agatin
linear-time with respect to the database cardinality, aaquture a
significant amount of correlation for any dimensionality.

3. FORMALIZATION OF ANATOMY

Let T" be the microdata that needs to be publishgdcontainsd
quasi-identifier (Ql) attributest{’, A, ..., A%, and a sensitive
attribute A°. EachA;?i (1 < i < d) can be either numerical or
categorical, butl® should be categorical, following the assumption
of [-diversity [10]. For any tuple € T, we denote[i] (1 <14 < d)

as theA!" value oft, andt[d + 1] as itsA® value. As a result,

t can be regarded as a point i@+ 1)-dimensional data space,
denoted a®S. In Section 3.1, we first clarify the relevant concepts
of anatomy. Then, Section 3.2 explains the privacy guaesnté
anatomized tables.

3.1 Concepts
As with generalization, Anatomy requires partitioning thero-
dataT'.

DEFINITION 1. (Partition/QI-group) A partition consists of
several subsets @, such that each tuple ifi" belongs to exactly
one subset. We refer to these subset§hkgroups, and denote
them asQ 1, QIz, ..., Q. Namely|J7", QI; = T and, for any
1< ji#j2 <m, QL NQL, = 0.



We are interested only ikdiverse partitions that can lead to prov-
ably good privacy guarantees:

DEFINITION 2. (I-diverse partition [10]) A partition withm
QI-groups id-diverse, if each Ql-groupQI; (1 < j < m) satisfies
the following condition. Leb be the most frequend® value in
QI;, andc;(v) the number of tuples € QI; with t[d + 1] = v;
then

¢j(v)/1QL;| < 1/1

where|Q1I;| is the size (the number of tuples)@1 ;.

@)

Table 1 shows a partition with two QIl-groups, whepd; con-
tains tuples 1-4, and)I- includes tuples 5-8. ImQI;, dys-
pepsia and pneumonia are equally frequent, &g dyspepsia =
c1(pneumonia = 2. In @I, the most frequent® value is flu, i.e.,
c2(flu) = 2. Since|QI1| = |QI2] = 4, according to Inequality 1,
we know thatQ I; andQI- constitute a 2-diverse partition.

We are ready to formulate the QIT and ST tables published by

anatomy.

DEFINITION 3. (Anatomy) Given anl-diverse partition with
m Ql-groups, anatomy produces aguasi-identifier table (QIT)
and asensitive table(ST) as follows. The QIT has schema

(AY", AL, ..., A% Group-ID).
For each Ql-groupR; (1 < j < m)and each tuple € QI;, QIT
has a tuple of the form:
(t[],¢2], ..., t[d], 7).
The ST has schema
(Group-ID, A*, Count).
For each QI-groupQI; (1 < j < m) and each distinci® valuev
in Q1;, the ST has a record of the form:
(v, ¢5(v))
wherec; (v) is the number of tuples € QI; with t[d + 1] = v.

Apart from the tuples (or records) defined earlier, the QIT £&3)
does not contain any other data.

For instance, based on the 2-diverse partition suggestéabie 2,
anatomy produces the QIT and ST in Tables 3a and 3b respgctive
as explained in Section 1.2.

When there is no ambiguity, we refer to a pair of QIT and ST col-
lectively as theanatomized tabledn Section 4, we will show that
anatomized tables capture the correlatiof’imore accurately than
generalized tables. For this purpose, we also need to faregen-
eralization.

DEFINITION 4. (Generalization) Given a partition ofl” with
m QI-groups, for any tupleé € T', a generalized tableof 7' con-
tains a tuple of the form

(QL[1], QL;[2], ..., Q1;d], t[d + 1])

where@I; (1 < 5 < m)is the unique QIl-group including, and
QL[] 1 < i < d)is an intervaf coveringt[i]. Furthermore,

2)f Aj” is categorical, following a common assumption in the liter-
ature, we consider that there is a total ordering4gh

QI,i] is identical for all tuplest € QI;. Apart from the tuples
defined earlier, the table does not contain any other data.

For instance, let be tuple 1 in the microdata Table 1. We have:

1, namely,t is contained in the first Ql-group. In the generalized
Table 2,Q1,[1] = [21, 60] (the generalized age of tuple 1)/, [2]
=M, and@QI:[3] = [100001, 60000], which, together witht[4] =
pneumonia, form the first tuple.

We would like to point out that, although Definition 3 is based
on anl-diverse partition, in general, anatomy produces a pair of
QIT and ST from any partition (Definition 1) in exactly the sam
way. In particular, anyk-anonymous oti-diverse table has an
anatomized counterpart. We concentratd-gliverse partitions to
achieve strong privacy preservation.

It is worth mentioning that Machanavajjhala et al. [10] pd&v/sev-
eral other “instantiations” of-diversity to guard against potential
“background knowledge” from adversaries. However, as askn
edged in [10], it is impossible to compute a “perfeéttiiverse
partition that denies privacy breach from all adversaneishout
knowing their background knowledge in advance. Varioutaims
tiations apply additional heuristics to enhance the ledgrivacy
protection. For simplicity, we focus on the instantiationDmef-
inition 2 (termed “recursive 1+, 2)-diversity” in [10]), but it is
straightforward to extend the anatomy formulation to othstan-
tiations.

3.2 Privacy Preservation

A pair of anatomized tables provide a convenient way for thia d
publisher to find out, for each tuplec T, all the A° values that an
adversary can associdtith, and the probability of each associa-
tion. This is formally explained in the next lemma.

LEMMA 1. If we perform a natural join QITbx ST, the join
result is a table withd + 3 attributes, containing records of the
form

(t[1]7 t[2], ey t[d]7j7 v, Cj(v))

wherej is the ID of the QI-group including (i.e.,t € QI;), v an
A® value, andc; (v) the number of tuples i I; with A® valuew.
Then, from an adversary’s perspective,

Pr{tld+1] = v} = ¢;(v)/|QL|

where|QI;| denotes the size ¢} ;.

@)

PrROOF Consider any tuplé € T, which is contained in QI-
group QI; (in the underlyingl-diverse partition) for somg &
[1,m]. The adversary, who attempts to find ojst + 1], can obtain
j from the QIT which, however, does not haxé data. Hence, the
adversary can only conjecture thgd + 1] equals one of thet®
values (pertinent t@1;) summarized the ST. Without any other
information, the adversary assumes that every tup@inhas an
equal chance to carry any”® value relevant t@)I;, which leads to
Equation 2. O

We explain the lemma using Table 4, which demonstrates fart o
the result of the natural join between Tables 3a and 3b (twelydin
results related to QI-group 1 are shown). Ql-group 1 has kesup
Hence, from the first record of Table 4, an adversary knows tha



Age | Sex | Zipcode | Group Disease | Count
ID
23 M 11000 1 dyspepsia 2
23 M 11000 1 pneumonia 2
27 M 13000 1 dyspepsia 2
27 M 13000 1 pneumonia 2
35 M 59000 1 dyspepsia 2
35 M 59000 1 pneumonia 2
59 M 12000 1 dyspepsia 2
59 M 12000 1 pneumonia 2

Table 4: Partial result of the natural join between Tables 3a
and 3b (only results pertinent to QI-group 1 are shown)

tuple 1 in the QIT (Table 3a) has probability 2 / 4 = 50% to carry
dyspepsia in the microdata, according to Equation 2. Siiwiléne
second record implies that tuple 1 has 50% probability todsea
ciated with pneumonia. On the other hand, the QIl-valuespiéti

are not combined with any other disease such as flu, mearang th
tuple 1 cannot have flu as its rdaiseasevalue.

COROLLARY 1. Given a pair of QIT and ST, an adversary can
correctly re-construct any tuple € T with a probability at most

11,

PROOF. Tuplet is correctly re-constructed, if and only if the ad-
versary precisely obtains its reaf valuev,.,;. By Equation 2, we
know thatPr{t[d+ 1] = vreai} = ¢j(vrear)/|Q1;], whereQI; is
the unique QI-group containing Recall that a pair of anatomized
tables is obtained from drdiverse partition (Definition 2). Hence,
by Equation 1¢;(vreat)/|QL;| < 1/1. O

Corollary 1 gives the privacy protection guarantee attipte level

It is also necessary to discuss the corresponding guarantie
individual leve| since in practice multiple individuals may have
the same Ql-values, thus complicating the privacy-attadcgss
performed by an adversary.

To explain this, consider that an adversary has the age 63ipnd
code 25000 of Alice (the “owner” of tuple 7 in Table 1), and w&n
to infer the medical record of Alice from the QIT and ST in Ta-
bles 3a and 3b, respectively. S/he consults the QIT, andtkats
in Ql-group 2 (denoted ag15), both tuples 6 and 7 match the QI-
values of Alice. Hence, s/he examines two scenarios.

First, assuming that tuple 6 belongs to Alice, the adversans
Lemma 1 to derive the probability distribution for the tupldis-
ease value. According to Equation 2, tuple 6 has probability
c2(flu)/|QI2| = 2/4 = 50% to carry flu. Notice that, in the mi-
crodata, tuple 6 does not really belong to Alice. Howevetdois

not matter —the adversary may “happen to” use a wrong tuple to
infer the correct sensitive value of AlicBrom tuple 6, the adver-
sary actually has 50% probability to figure out that Alice ttanted

flu.

In the second scenario, the adversary assumes that tuplerigbe

to Alice, through which (similar to tuple 6) s/he also has 5084b-
ability to obtain the real disease of Alice. Finally, (wititdurther
knowledge) the adversary assumes that the two scenarias occ
with the same Iikelihood}. Therefore, the overall breach proba-
bility should be calculated a§ 50% + % -50%, Where% and 50%
have the same semantics as in the above discussion.

In fact, Lemma 1 shows that tuple 7 (the real tuple of Alice) ba
re-constructed with 50% likelihood. Namely, the breachopiml-
ity at the individual level coincides with that at the tupde¢l. This
happens because tuples 6 and 7 appear in the same Ql-group.
general, as long as tuples with identical Ql-values alwaybup in
the same QI-group (as is true for global-recoding genextidin re-
viewed in Section 2), the probabilities of the two levels algays
equivalent. In this case, it suffices to discuss only the (ffem tu-
ple level; as a result, the individual level has not been eskird
before (all the existing generalization schemes adoptajliczod-

ing).

Anatomy, however, allows high flexibility in forming QI-gups
such that tuples with the same QI-values do not always beiong
the same QIl-group. Therefore, we must provide a formal resul
regarding the individual-level breach probability.

THEOREM 1. Given a pair of QIT and ST, an adversary can
correctly infer the sensitive value of any individual witolpability
at mostl /1.

PROOF Consider any individuab whose Ql-values are equiv-
alent to those of totallyf tuplesti, to, ..., t¢ in the microdata.
Assume that tuple; (1 < ¢ < f) belongs to Ql-groupRlI;,
1 < j; < m, wherem is the total number of Ql-groups). Let
vreq; D€ the reald® value ofo.

The adversary infers,...; in two steps. First, s/lhe guesses that
each ofti, ..., ty belongs too with probability 1/f. Then, for
each scenario where (1 < ¢ < f) belongs too, by Lemma 1,
s/he figures out that,..; is the A® value of o with probability

cj; (vreat)/|Q1;,;|. Hence, the overall probability that the’ value

of o is inferred equals

f
Z Cj; (U'r'eal)/(f : |QIJ¢ |)

Recall that, by the property dfdiverse partition (Definition 2),
¢ (vreat)/1Q1L;;| < 1/1. Hence, the above formula is at most

SLG-p=1L O

3.3 Comparison with Generalization

We would like to emphasize that our intention is not to eliatéen
generalization; there is no doubt that generalization isngor-
tant technique, partly proved by the fact that it has reckiveich
attention in the literature. Instead, our goal is to prese@rglterna-
tive option for privacy preservation, which has its own ateges,
since it can retain a larger amount of data characterisgsifown
in the subsequent sections). Indeed, anatomy is not amaalhd
winner. Intuitively, by releasing the Ql-values directhpatomy
may allow a higher breach probability than generalizatibrev-
ertheless, such probability is always boundedily, as long as
the background knowledge of an adversary is not strongerttrea
level allowed by thé-diversity model. Next, we will explain these
observations in detail.

The derivation in Section 3.2 implicitly makes two assurops:

e Al: the adversary has the Ql-values of the target individual
(i.e., Alice);



Name Age | Sex | Zipcode
Ada 61 F 54000
Alice 65 F 25000
Bella 65 F 25000
Emily 67 F 33000
Stephanie| 70 F 30000

Table 5: The voter registration list (publicly accessible)

e A2: the adversary also knows that the individual is defigitel
involved in the microdata.

In fact, usually both assumptions are satisfied in practicsacy-
attacking processes. For example, in her pioneering pdgdr [
Sweeney shows how to reveal the medical record of the gowerno
of Massachusetts from the data released by the Group Ir=uran
Commission, after obtaining the governor’'s Ql-values froublic
sources. The revelation is possible because Sweeney knag in
vance that the record of the governor must be present in tbemi
data. Otherwise, no inference could be drawn against thergov
because the “privacy-leaking” record could as well jusbhglto a
person who happens to share the same Ql-values as the governo

In general, if both Assumptions Al and A2 are true, anatonay pr
vides as much privacy control as generalization, that esptiivacy
of a person is breached with a probability at mb&t For instance,
if an adversary is sure that Alice has been hospitalizedrbefom
Alice’s Ql-values, s/he can assert that Alice must be desdrby
one of tuples 5-8 in the generalized Table 2. Then, s/heasaott
the rest of her/his probabilistic conjecture (about theats of Al-
ice) in the same way as s/he would do after identifying Alcéé

in Group 2 of the anatomized Table 3a.

Now, consider the case where Al holds, but A2 does not. Aecord
ingly, the overall breach probability of Alice has a Bayesio

Pras(Alice”) - Pryyeach(Alice®| A2) ®)

where Pr 42 (Alice?") is the chance for Alice to be involved in the
microdata, andPry,.qch (Alice®| A2) the likelihood for the adver-
sary to correctly guess the disease of Alice on conditiohAliae
appears in the microdata. As analyzed earlier, anatomy energ
alization give the sam@ry,.cqcn (Alice®| A2), which is simply the
preach probability when both A1 and A2 are valid.

To computePr 42 (Alice?"), an adversary typically needs to consult
another external database [17], which relates Ql-valuesrorete
personal identities for all the persons in the microdatahges to-

This is because the publisher cannot predict or control xtereal
database to be utilized by an adversary, and therefore, goastl
against an “accurate” external source that does not inatyeper-
son absent in the microdata. For instance, if Table 5 did owtain
Emily, the voter list would producér 42 (Alice?’) = 1 in attack-
ing the privacy of Alice from Table 2 (instead of 4/5 as disat
earlier). In other words, to ensure a maximum breach prdibabi
p using generalization, we must still detb [1/p], i.e., same as in
applying anatomy.

Finally, if neither assumption Al nor A2 is satisfied, the dmie
probability of Alice becomes

> Prai(z) - Pras(z|Al) - Propcacn(Alice®| AL, A2)  (4)
VYV

wherex is a vector representing a possible set of Ql-values of Al-
ice, andPr 41 (x) equals the probability that captures Alice’s real
Ql-values, wherea®r 42 and Pry;-cqch follow the same semantics
as in Formula 3, but on condition thatis real. The comparison
results between anatomy and generalization are analogahese
discussed for the previous case where Al is true and A2 is not.

4. PRESERVING CORRELATION

A good publication method should preserve both privacy aatd d
correlation (between QI- and sensitive attributes). Usiegncrete
query, we have shown in Section 1.1 that anatomy allows more
effective aggregate analysis than generalization. Negtpravide

the underlying theoretical rationale.

Obviously, for any tuple € T, every publication method will lose
certain information of (if not, it is equivalent to disclosing di-
rectly, contradicting the goal of privacy). On the other thathe
method should permit development of an approximate moglelin
t (otherwise, the published table is useless for researciencél
the quality of correlation preservation depends on how r@atetthe
re-constructed modeling is.

Intuition. Let us first examine the correlation betwe&ge and
Diseasen the microdata of Table 1. The two attributes define a 2D
spaceDS4,p. Every tuple in the table can be mapped to a point
in DSa,p. For example, tuple 1, denoted &s corresponds to
point (¢1[A], t1[D]), wheret,[4] is the age 23 of, and¢:1[D] its
disease ‘pneumonia’.

We can modet; using a probability density function (pd§, :

gether with some other people. An example of such an external DSa,p — [0, 1]. Specifically:

source is a voter registration list, partially demonsutateTable 5,
where the record of Emily is italicized to indicate that shedt in-
volved in the microdata of Table 1. In this scenario, gefieaiibn
and anatomy make a difference. Specifically, judging frdme @I-
values of tuples 5-8 in) the generalized Table 2, the adwesses
that each person shown in Table 5 could be involved in theanicr
data with equal likelihood, and hence, calculafes,» (Alice?) as
4/5. On the other hand, given the anatomized Table 3, theradve
sary concludes tha®r 4 (Alice?*) = 1 (here s/he can figure out that
Emily is definitely absent from the microdata). As a resutner-
alization provides a stronger overall privacy-presengugrantee.
Nevertheless, since anatomy ensules,...»(Alice®|A2) < 1/1,

it also secures the same upper bouaritifor Formula 3.

Although generalization has the above advantage over zyatioe
advantage cannot be leveraged in computing the publishéal da

1 if 2 = (t1[A],t1[D])
0 otherwise

G, 2) = { ©)
wherex is a 2D random variable iS4, p. Figure 2a demon-
strates the pdf.

Assume that a researcher wants to re-construct an apprexjpda
7™ of t1 from the generalized Table 2. From her/his perspec-
tive, t1[A] can be any value in the intervi1, 60] with equality
probability 1/40, but¢,[D] must be pneumonia. Hence,
1/40 if 2[A] € [21,60] and
z[D] =pneumonia
0 otherwise

Gie" (@) = ®)

which is illustrated in Figure 2b.
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Figure 2: Original/re-constructed pdf of tuple 1 in Table 1

Instead, suppose that the researcher re-constructsé@‘pﬂﬁrom tis
the QIT and ST in Tables 3a and 3b. This time, s/he knows that 1 it ol Tivielld
t1[A] must be 23 (since age is published directly), biD] can Goen () =4 T L@IED if 2[] E.Q [i] Vie [1,d] (10)
be pneumonia or dyspepsia with 50% probability (the ST shows 0 otherwise

that half of the tuples in QI-group 1 are associated withéhes
diseases, respectively). Therefore,

{

as shown in Figure 2c. Obviously, the pdf approximated frbm t
anatomized tables is more accurate than that (Figure 2b) e
generalized table.

1/2 if = = (23, pneumonia) or
x = (23, dyspepsia)

otherwise

Gi(z) = @)

0

Towards a more rigorous comparison, given an approximate pd
G:, (Equation 6 or 7), a natural way of quantifying its approxima
tion quality is to calculate itsE» distance” from the actual pdf;,
(Equation 5):

> (6@ - @)

z€DSA D

®)

The distance 0@,?1"“ is 0.5, indeed significantly lower than the
distance 22.5 of{*".

Although we focused om,, in the same way, it is easy to verify
that the anatomized tables permit better re-constructidineopdfs
of all tuples in Table 1.

General Results and Quality Metric. As defined in Section 3,
each tuplet in the microdatdl” can be regarded as a point in a
(d + 1)-dimensional spac®.5 (including all the QI- and sensitive
dimensions). Next, we generalize the above discussidndo

We modelt as a pdiG:(z) : DS — [0, 1]:

1 fz=t
0 otherwise

gt(l’) (9)

wherex is a random variable i S. Note that the conditiom = ¢
impliesz[i] = t[¢] for all ¢ € [1,d + 1], wherez[:] andt[i] are the
i-th coordinates of andt, respectively.

In a generalized table, let belong to a Ql-groupQI.
As stated in Definition 4, the generalized form of is
(QIN],QI2],...,QId],t[d + 1]), whereQI[:]] (1 < i < d)is
an interval enclosing[i]. Denote the length o1 [i] as L(QI[i])
(if A" is discrete L(QI[i]) should be interpreted as the number of
different values inQI[:]). Then, the reconstructed p@f“" () of

Next we discuss anatomized tables. Also assdhieas the QI-
group containing (in the underlyingl-diverse partition). Leb.,
va, ..., v be all the distinctd® values inQI (e.g., for Ql-group 1
in Table 3a)\ = 2, whereas for QI-group 2, = 3). Denotec(vy,)
(1 < h < )) as theCountvalue in the ST corresponding tg,.
The reconstructed pdf¢™®(z) of ¢ is

c(v)/IQI] if x = (t[1], ..., t[d],v1)
M@= oIl o= (@1 tid, v D
0 otherwise

where|QI| is the number of tuples i1, and the Ql-values[1],
...,t|d] of t are directly released in the QIT.

Notice thatG¢™* (x) is greater than 0, only whenlies at one of the

A points in DS, as described in the if-conditions of Equation 11.
That is,G¢™? () consists of\ “spikes” at these points\(= 2 in
Figure 2c). On the other hand, in practigés™ (z) typically takes

a small value when distributes across a large region. Namely, the
occurrence probability of is “smeared” onto all the points in that
region (see Figure 2b), thus deviating significantly from #ctual

Gt (37)

Given an approximate pdf; (Equation 10 or 11), we quantify its
error from the actuafj; (Equation 9) as

Erry = /ccEDS (ét(x) — gt(x))Q dz.

Naturally, taking into account all tuplese T, a good publica-
tion method should minimize the following-construction error
(RCE):

12

RCE =Y Err. (13)
vteT
5. A NEARLY-OPTIMAL ANATOMIZING

ALGORITHM
We propose an efficient algorithm for computing anatomizdtits
that (almost) minimize the RCE (Equation 13). In particutae
RCE of the resulting QIT and ST achieve an RCE that deviates
from the theoretical lower bound by only a factor less thanl /n
wheren is the size ofl’. Furthermore, our algorithm has linear 1/0
complexityO(n/b), whereb denotes the page size.



5.1 Lower Bound of Reconstruction Error
The following theorem establishes the lower bound of the RCE
achievable by any anatomized tables.

THEOREM 2. RCE (Equation 13) is at least(1 — 1/1), for
any pair of QIT and ST, wherneis the cardinality of the microdata
T.

PROOF Anatomized tables (Definition 3) are computed from
an!-diverse partition. Let the partition contain QI groupd, ...,
QI,.. For eachj € [1,m], usea; to denote the averagBrr,
(Formula 12) for all tuple$ € QI,. Thus,RCE can be rewritten
as

RCE =Y (IQL] - ;).
j=1
The rest of the proof will show that; > 1—1/1, forall j € [1,m].
As aresult, the above equation leads to

RCE >3 (1QL] - (1= 1/1) = n(1 - 1/1),

=1

thus completing the proof (noticE;”:1 |QL;| = n).

By symmetry, it suffices to prowe; > 1—1/1 forany@I;. Hence,
we omit the subscripj in the sequel. Without loss of generality,
assume thaf)I contains) distinct A° valuesvs, ..., vx. In par-
ticular, there are:(vy) (1 < h < ) tuples inQI with A° value
Vh .

Consider an arbitrary tuple € QI with A® value v, (for some
h € [1, A]). The actual pdfG; and approximat&”Z are given in
Equations 9 and 11, respectively. Thus, by Equation 12, we ha

x

h'=1Ah'#h

c(vn) c(vw)®

Q1| QI

For computing the average of Err, for all t € QI, we combine
the above formula with the fact thatv, ) tuples haved® valuevy:

Erry = (1 —

2 2
A c(v A C(’Ul/)
2 ewn) - ((1— ) + 2, Q’Iz)
h'#h
o = .
Q1|

Thus, it remains to solve the minimumsubject to the constraints
A

> e(vn) = QI ande(vn)

h=1
(the second constraint is due to Definition 2).

< @foranh € (1, A]

Let us ignore the second constraint temporarily. Then, mmiza-

tion of a subject to the first constraint is a standard problem tackled
by theLagrange multiplier methoB]. Application of the method
results ina > (1 — 1/)), where the equality holds only when

c(v1) = ... = c(vn) = |QI|/I.

Now, we take into account the second constraint, which I¢ads
22:1 c(vp) < M- |QI|/I. The left side of the inequality equals
|QI|. Hence, the inequality indicates that> 1.

Thereforea > (1 — 1/X) > (1 — 1/1), where the equality holds
whenc(vi) = ... = c¢(vp) = |QI|/l,andA = 1. O

5.2 The Algorithm

Figure 3 presents the algorithAnatomizewhich, given a micro-
data tablel” and a parametdr, obtains a pair of QIT and ST for
publication. Anatomizefirst computes ari-diverse partition ofl’
(Lines 1-12), and then, produces the QIT and ST (Lines 13-18)
from the partition. Since populating the QIT and ST is alsead
clarified in Definition 3, we concentrate on finding the paotit

Anatomizestarts (Line 1) by initiating an empty QIT and ST, and
variable gent, which counts the number of QI-groups created.
Then, it hashes the tuples @f into buckets byA®, so that each
bucket includes the tuples with the samé value (Line 2). The
subsequent execution involveg@up-creationstep, followed by a
residue-assignmemhase.

Group-Creation. This step is performed in iterations, and con-
tinues as long as there are at leasibn-empty buckets (Line 3).
Each iteration yields a new QI-grou® ..+ (Line 4) as follows.
First, Anatomizeobtains a sefS consisting of thed hash buckets
thatcurrently have the largest number of tuples (Line 5). Note that
the content ofS may vary in different iterations. Then, from each
bucket inS (Line 6), a random tuple is selected (Line 7), and added
t0 QI4cne (Line 8). Therefore)I,..: containsl tuples with dis-
tinct A® values.

PROPERTY 1. At the end of the group-creation phase, each
non-empty bucket has only one tuple.

PROOF An [-diverse partition exists, if and only if satisfies
aneligibility conditior? [10]: at mostn /I tuples are associated with
the samed? value, wheren is the cardinality ofl". We will prove
that, Property 1 always holds under this condition.

Assume, on the contrary, after the first (group-creatiomspha set

of bad bucketdave sizes at least 2. Obviously, there are at most
I — 1 bad buckets (otherwise, the group-generation phase cotild n
have terminated). Since each iteration molvegples from buckets
into a QI-group, the first phase executes/l] iterations, denoted
asl, Ia, ..., I, 1), respectively.

Before iteration/|,, ;| starts, at most— 1 buckets (termedizable
|n/l]-buckety have sizes at least 2 (otherwise, there would be at
least/ non-empty buckets aftef,, ,;|, contradicting the fact that
I, is the last iteration). On the other hand, we already know
that, after 1|, ), all the bad buckets have sizes at least 2. Hence,
every bad bucket is a sizab|e /I |-bucket, and must belong t®
(retrieved at Line 5) in|,,;;. Thus, each bad bucket loses a tuple
in I,,,, meaning thatpefore!, /|, the bucket has size at least
3.

Similarly, beforel|,,/;;—,, at mostl — 1 buckets (termedizable
(|n/1] — 1)-bucket} have sizes at least 3 (otherwise, there would
be at least sizable|n /I |-buckets, contradicting our earlier analy-
sis). On the other hand, we already know ttadter 1|, ,;; — 1,

all the bad buckets have sizes at least 3. Hence, every b&étbuc
is a sizablg(|n/l] — 1)-bucket, and must belong ®in 7, ;1.
Thus, each bad bucket loses a tupld iR, -1, meaning thatbe-
fore I}, /1)1, the bucket has size at least 4.

3If this condition is violated, neithek-anonymity nori-diversity
can prevent an adversary from correctly inferring a tupl@' with
a probability at least /!.



Algorithm Anatomize (T, 1)
1. QIT=0;ST=0; gent=0
2. hash the tuples i’ by their A® values (each bucket pet® value)
/* Lines 3-8 are the group-creation st&p
3. while there are at leasnhon-empty hash buckets
/* Lines 4-8 form a new Ql-groufJ
gent = gent + 1, QIgent =0
S =the set of largest buckets
for each bucket it
remove an arbitrary tuplefrom the bucket
ngcnt = ngcnt U {t}
/* Lines 9-12 are the residue-assignment step

9. for each non-empty bucket

/* this bucket has only one tuple; see Property 1
t = the only residue tuple of the bucket
S’ = the set of QI-groups that do not contain thé valuet[d + 1]
[* S’ has at least one QI-group; see Property/2

12.  assigrn to a random Ql-group %’

/* Lines 13-18 populate QIT and ST
13. forj =1togent

oNo O

10.
11.

14. foreach tuple € QI;

15. insert tuple(¢[1], ..., t[d], j) into QIT

16. for each distincid® valuev in QI;

17. ¢j(v) = the number of tuples i@ I; with A® valuev

18. insert recordyj, v, ¢j(v)) into ST
19. return QIT and ST
Figure 3: The anatomizing algorithm

Carrying out the same discussion to the other iterationsanee
at a fact that each bucket B.q has size at leagtn/I] + 1 at the
beginning ofAnatomize The fact violates the eligibility condition,
becausdn/l] +1 >n/l. O

We use the ternesidue tupleto refer to a tuple remaining in a
bucket, at the end of the group-creation phase. Clearlse thwe at
mostl — 1 such tuples.

Residue-AssignmentFor each residue tuple Anatomizecollects

a setS’ of Ql-groups (produced from the previous step), where no
tuple has the samd? value ast (Lines 8-11). Interestingly, as
proved shortly,S” includes at least one QI-group. Then, at Line 12,
t is assigned to an arbitrary group$i.

PROPERTY 2. The setS’ (computed at Line 11 of Figure 3) al-
ways includes at least one Ql-group.

PrROOF Assume, on the contrary, tha8’ is empty when
processing tuple (at Line 11). As explained in the previous proof,
the number of QI-groups i$n/l|. SinceS’ is empty, each QI-
group has at least a tuple whodé value equalg[d + 1]. It fol-
lows that the number of tuples with A® valuet[d+1] is at least
14 [n/l], which is larger tham /l. This contradicts the eligibility
condition mentioned in the proof of Property 1]

Correctness.Since Lines 13-19 of Figure 3 essentially implement
Definition 3, Anatomizeis correct, if and only if Lines 1-12 pro-
duce anl-diverse partition ofl’. We establish this in the following
property, which actually shows a stronger fact.

PROPERTY 3. After the residue-assignment phase, each QI-
group has at least tuples. Furthermore, all tuples in each QI-
group have distincd® values.

PROOF. After the group-creation step, every Ql-group has-
ples with distinctA® values (these tuples are obtained from differ-
ent hash buckets). In the residue-assignment phase, igaagnt
of a tuple into a Ql-group ensures that all tuples in the grstilp
have distinctA® values. Hence, Property 3 is correct.]

5.3 Analysis

In this section, we analyze the efficiency and effectiveinégsat-
omize(Figure 3). First, Theorem 3 provides the space and time
complexities ofAnatomize In particular, the proof of the theorem
describes an efficient way to implement the algorithm. THéme-
orem 4 explains the quality of the resulting QIT and ST.

THEOREM 3. AnatomizerequiresO(\) memory, andD(n/b)
1/0s, where) is the number of distinctl® values inT, n is the
cardinality of T, andb is the disk page size.

PROOF The hashing at Line 1 of Figure 3 consum@$\)
memory, and perform@®(n/b) 1/Os.

During the first phase, we can keep in memory an array wigt
ements, where theth (1 < 7 < \) element maintains the size of
the i-th bucket. Therefore, at Line 5, sStcan be decided with
no 1/0 overhead. To implement Line 7, for each bucket, we-allo
cate a buffer page for reading its content. All the Ql-groaps
sequentially into @I-group filg in the order they are created. For
this purpose, we allocate an output buffer page. In this wey,
group-creation step requir€3\) memory and)(n/b) I/Os.

At the beginning of the residue-assignment phase, we réaldeal
(at mostl — 1) residue residue tuples into memory. Next, we per-
form a single scan of the Ql-group file, and assign these suple
appropriate QI-groups during the scan. This step négdsmem-
ory (I < ), for satisfying the eligibility condition in the proof of
Property 1), and perform®(n/b) 1/Os.

Each QI-group so far ha®(!) tuples. Thus, populating the QIT
and ST (Lines 13-18) can be easily achieved v@t{l) memory,
andO(n/b) 1/0s. Therefore, the overall space and 1/0O complexi-
ties of AnatomizeareO(\) andO(n/b), respectively. [

THEOREM 4. If the cardinalityn of T' is a multiple ofl, the
QIT and ST computed bynatomizeachieve the lower bound of
RCE in Theorem 2. Otherwise, the RCE of the anatomized tables
is higher than the lower bound by a factor at maost %

PROOF Letr = n mod I. Depending on whether is a mul-
tiple of [, there are two cases.

Case 1(r = 0): Anatomizeterminates directly after the group-
creation phase. Each QIl-group has exattlyples with distinctA®
values. Combining Equations 9, 11, and 12, we have, for eguié t

teT,
1\? 1-1
ET?”t: (1—7> +l—2

By Equation 13RCE = n(1 — 7).

1
=1—-.
l

Case 2(r # 0): Consider the moment when the group-creation
phase finishes. So far, totalty — » (a multiple of!) tuples have



been added into QI-groups. According to the analysis of Qase
the current RCE (with respect to the tuples already in Qligs) is

(n—r)(1-— %)

Next, we show that, after assigning a residue tupé Line 12 of
Figure 3, the overall RCE increases by 1. With out loss of gene
ality, assume thatis assigned to a Ql-grouf I with 3 tuples, all

of which have distinctd® values, and theid® values are different
from that oft (see Property 3). Before the assignment, following
the derivation of Case 1, the RCE 6f[* equals3(1 — %). After

the assignment, the RCE G becomes3 + 1)(1 — 517 ), so that

the overall RCE (of all the tuples in QI-groups) increases by

(ﬂ+1)<1—ﬁ>—ﬁ(l—%>:1.

As mentioned earlier, before the assignment step stagswbrall
RCE equal§n —r)(1—1). Therefore, after assigning alresidue
tuples, the RCE becomes

(n—r)(l—%)—&-rzn(l—%) (1+n(+_1)>.

which is greater than the lower boumd1 — ;) by a factor of
1+ ﬁ Given thatr < — 1, we complete the proof. (J

Note that, for a largd’, 1 + % ~ 1, namely, the RCE of the tables
output byAnatomizds extremely close to the lower bound.

6. EXPERIMENTS

This section experimentally evaluates the effectiveness efi-
ciency of anatomy. For this purpose, we utilize a real datagN-
SUS containing personal information of 500k American adults.
The dataset hagdiscrete attributes as summarized in Table 6.

From CENSUS, we create two sets of microdata tables, in aoder
examine the influence of dimensionality and sensitive e/alistri-

bution. The first set has 5 tables, denoted as OCC-3, ..., OCC-

respectively. Specifically, OC@+3 < d < 7) treats the firsd
attributes in Table 6 as the Ql-attributes, &@dcupationas the
sensitive attributed®. For example, OCC-3 is 4D, and contains
Ql-attributesAge Gender andEducation The second set also has
5tables SAL-3, ..., SAL-7, where SAL{3 < d < 7) has the same
Ql-attributes as OC@; but includesSalary-classas theA®.

To study the impact of cardinality, we generate datasets véiti-
ous cardinalities:, by randomly sampling tuples from the “full”
OCC< or SCC4d (3 < d < 7) with 500k tuples.

We compare anatomy againstdiverse) generalization on two as-
pects: (i) usefulness of the resulting publishable tabtesdbta
analysis, and (ii) cost of computing these tables. For gdizer
tion, we employ the state-of-the-art algorithm in [9], wihiadopts
multi-dimension recoding (explained in Section 2). Theueabf

1 is fixed to 10, i.e., the sensitive value of each individuai ba
correctly inferred by an adversary with at most 10% proligbil

As stated in Definition 4, each generalized value is an iateivhe
last column of Table 6 describes the details of generatinatin
each Ql-attribute. Specifically, “free interval” meanstttize end

“The RCE ofQI equals the sum aErr; of all tuplest € QI.
SDownloadable ahttp://www.ipums.org

Attribute Number of Generalization method
distinct values| (inapplicable to anatomy
Age 78 Free interval
Gender 2 Taxonomy tree (2)
Education 17 Free interval
Marital 6 Taxonomy tree (3)
Race 9 Taxonomy tree (2)
Work-class 10 Taxonomy tree (4)
Country 83 Taxonomy tree (3)
Occupation 50 NA (sensitive)
Salary-class 50 NA (sensitive)

Table 6: Summary of attributes

Parameter Values
l 10
cardinalityn 100k, 200k, 300k, 400k, 500k
number of Ql-attributed 3,4,56,7
query dimensionalityyd 1,2,..d
expected selectivity 1%, ...,5%, ..., 10%

Table 7: Parameters and tested values

average relative error (%) average relative error (%)

generalization m=== 10° | generalization ===

10° anatomy—— anatomy——
1P 10?

i m HT i HT HT
1 1 Hj
3 4 5 6 7 3 4 5 6 7
d d
() 0CCd (b) SAL-d

Figure 4: Query accuracy vs. the numberd of Ql-attributes

points of a generalized interval can fall on any value in tomdin
of the corresponding attribute. “Taxonomy treg”( on the other
hand, indicates that the end points must lie on particulares
conforming to a taxonomy with height (see [8] for more details
of generalization based on a taxonomy).

6.1 Effectiveness for Aggregate Reasoning
We consider queries of the form:

SELECT COUNT(*) FROMUnknown-Microdata
VHERE pred(A{") AND... AND pred(A,) ANDpred(A®)

Specifically, a query involvegd random Ql-attributesi?’, ..., A%,
(in the underlying microdata), and the sensitive attribitewhere
qd is a parameter calleguery dimensionalityFor instance, if the
microdata is OCC-3 angd = 2, then{A%*, AT} is a random 2-
sized subset ofAge Gender Educatior}. For any attributed, the
predicatepred(A) has the form

(A:CC1 mA:$2 O?O?A::cb)

wherez;(1 < i < b) is a random value in the domain df (re-
call that all attributes are discrete). The valuehafepends on the
expected query selectivity

b= [|A| ,81/(qd+1)]

where|A| is the domain size afl. A highers leads to more selec-
tion conditions inpred(A).

(14)

Table 7 summarizes the parameters of our experiments, assvel
their values examined. The values in bold are the defaultdéedd
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generalization === generalization = generalization —=— generalization—=—
102 anatomy— 1 anatomy 1P anatomy —e— anatomy —e—
10 ¢
10 ;\S\M
10 h 10 M M\G\M
1 1 1 1
1 2 3 1 2 3 1% 4% 7% 10% 1% 4% 7% 10%
qd qd S S
(a) OCC-3 (b) SAL-3 (a) OCC-3 (b) SAL-3
average relative error (%) average relative error (%) average relative error (%) average relative error (%)
generalization==== | 3 generalization == generalization —=— generalization—=—
10° anatomy— 1 anatomy— 1 10° anatomy —e— {10° anatomy —e—

102 102 m (l_‘ 102 102 3\E"\En—E»—El——En—E»—E\E'_E
2 3 4 5

10 10 10 M@—H__{ 10
1 1 1 1
1 2 3 4 5 1 1% 4% 7% 10% 1% 4% 7% 10%
qd qd S S
(c) OCC-5 (d) SAL-5 (c) OCC-5 (d) SAL-5
average relative error (%) average relative error (%) 10t average relative error (%) 10t average relative error (%)
generalization === generalization == generalization —=— generalization—=—
16 anatomy— | 103 anatomy—1 ¢ 3\% 1P anatomy —e—
107 10° 107 107
10 10 10 M 10
Ke\e\e—e—e_a_e_e_é
1 1 1 1
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1% 4% 7% 10% 1% 4% 7% 10%
qd qd S S
(e) OCC-7 (f) SAL-7 (e) OCC-7 (f) SAL-7
Figure 5: Query accuracy vs. query dimensionalitygd Figure 6: Query accuracy vs. selectivitys
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Given a microdata relation, we compute the correspondirag-an 107

omized and generalized tables. Then, we proces®rikload of
10000 queries (with the sange andss) on the resulting tables, us- 10 10

ing the algorithms explained in Sections 1.1 (for geneeditables)
and 1.2 (for anatomized tables), respectively. The effentiss of
anatomy/generalization is measured asaiterage relative error 100k 200k 3?]0k 400k 500k 100k 200k 3%0k 400k 500k
in answering a query. Specifically, for each query, its retaér-

ror equals|act — est|/act, whereact is its actual result derived (a) OC(.:'S (b).SA.L'S

from the microdata, andst the estimate computed from the anat- Figure 7: Accuracy vs. dataset cardinalityn
omized/generalized table.

spectively. Interestingly, the error of generalizatiorcr@gases as

The first set of experiments investigates the effect @ah query qd grows higher. To explain this, recall that all queries hawe t
accuracy. Figure 4a (4b) plots the error of anatomy and géinar same (expected) selectivity = 5%. Hence, wherd becomes

tion as a function ofi, for dataset OCGL (SAL-d). As expected, larger, the numbeb (Equation 14) of values queried on each at-
anatomy permits significantly more accurate aggregateysisal tribute increases considerably, leading to a more sizaalech re-
since it captures a larger amount of correlation in the ndata gion, which in turn reduces error.

than generalization, as discussed in Section 4. Furtheinibe

effectiveness of anatomy is not affecteddijts error is always be- Figures 5c, 5d repeat the above experiments on OCC-5 and SAL-
low 10%), whereas the error of generalization grows exptiakgn 5 respectively, validating similar observations. Figubesand 5f

with d. In particular, ford = 7, the error of anatomy is lower by  demonstrate the results on the microdata with= 7. Notice

two orders of magnitude. that, here the effectiveness of generation no longer ingzrovith

qd, which indicates that all the generalized values have becom
Next, we concentrate on 3 values @f= 3, 5, and 7. For each exceedingly-wide intervals unddr= 7. As a result, the general-
d, we measure the accuracy of anatomy and generalizatiog usin ized tables are useless for analysis. In contrast, regardiel and
workloads of different query dimensionalitied. Figures 5a and qd, anatomy is consistently more accurate than generalizagiat
5b illustrate the results for OCC-3 and SAL-3 (i.€.= 3), re- least an order of magnitude.
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Figure 9: I/O cost vs. dataset cardinalityn

To study the impact of query selectivity we again examine the
microdata withd = 3, 5, and 7. Figures 6a-6f present the error of
both techniques as a functiongffor the 6 microdata tables used in
Figure 5, respectively. The precision of both anatomy anmb -
ization improves as increases, with anatomy being the clear win-
ner. Finally, Figure 7 examines how the accuracy of each odeth
scales with the dataset cardinality. Again, Anatomy aasesig-
nificantly lower error in all cases.

In summary, we showed that anatomy allows very accurate ag-
gregate analysis. lIts error is usually smaller than thateofegal-
ization by an order of magnitude. Furthermore, the effectass

of anatomy is not affected by the dimensionalities of dataaad
queries.

6.2 Computation Overhead

In the sequel, we compare anatomy against generalizatidheon
1/0 cost of computing publishable tables, with the page seteo
4096 bytes, and a memory capacity of 50 pages. Figure 8 figesen
the comparison results dsvaries from 3 to 7. Evidently, anatomy
incurs significantly fewer 1/0s. Figure 9 plots the 1/0 ovesld as

a function ofn. As predicted by Theorem 3, the cost of anatomy
scales linearly witm, as opposed to the super-linear behavior of
generalization. For largé or n, anatomy is 10 times faster than
generalization.

7. CONCLUSIONS

Although generalization is a common methodology for prtec
ing privacy, it loses considerable information in the miata,
and thus, prohibits effective data analysis. This papeeldped
anatomy, an innovative technique which preserves botlagyiand
correlation in the microdata, and hence, overcomes theldreks

of generalization. Extensive experiments confirm that@ngtper-
mits researchers to derive, from the published tables hiatcu-
rate aggregate information about the unknown microdatty an
average error below 10% (as opposed to over 100% error of-gene
alization).

As another important fact, anatomized tables can be compnte
1/0 cost linear to the database cardinality. In particulbese ta-
bles have nearly optimal quality guarantees in correlgpi@serv-
ing. Furthermore, despite its rigorous theoretical jusdifion, our
anatomizing algorithm is simple, and can be easily impleein
an existing database system.

This work also initiates several directions for future istigation.
For example, in this paper, we focused on the case where ithere
a single sensitive attribute. Extending our technique tdtipie
sensitive attributes is an interesting topic. As anothezation, it
would be highly useful to study how anatomized tables cantbe u
lized for effective mining of interesting patterns in thecnoidata,
perhaps through minimization of other metrics of measuirifior-
mation loss (e.g., KL-divergence [7] and discernibility §3).
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