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Selecting the best items in a dataset is a common task in data exploration. However, the concept of “best”
lies in the eyes of the beholder: different users may consider different attributes more important and, hence,
arrive at different rankings. Nevertheless, one can remove “dominated” items and create a “representative”
subset of the data, comprising the “best items” in it. A Pareto-optimal representative is guaranteed to contain
the best item of each possible ranking, but it can be a large portion of data. A much smaller representative
can be found if we relax the requirement of including the best item for each user and, instead, just limit the
users’ “regret”. Existing work defines regret as the loss in score by limiting consideration to the representative
instead of the full dataset, for any chosen ranking function.

However, the score is often not a meaningful number, and users may not understand its absolute value.
Sometimes small ranges in score can include large fractions of the dataset. In contrast, users do understand the
notion of rank ordering. Therefore, we consider items’ positions in the ranked list in defining the regret and
propose the rank-regret representative as the minimal subset of the data containing at least one of the top-k of
any possible ranking function. This problem is polynomial time solvable in 2D space but is NP-hard on 3 or
more dimensions. We design a suite of algorithms to fulfill different purposes, such as whether relaxation is
permitted on k , the result size, or both, whether a distribution is known, whether theoretical guarantees or
practical efficiency is important, etc. Experiments on real datasets demonstrate that we can efficiently find
small subsets with small rank-regrets.

CCS Concepts: • Theory of computation→ Approximation algorithms analysis; • Information sys-
tems→ Top-k retrieval in databases.
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1 INTRODUCTION
Given a dataset with multiple attributes, it is a challenge to combine the values of multiple attributes
to arrive at a rank. In many applications, especially in databases with numeric attributes, a weight
vector w is used to express user preferences through a linear combination of the attributes (i.e.,∑

i w[i]Ai ). Finding flights based on a linear combination of criteria such as price and duration [12],
diamonds based on depth and carat [35], and houses based on price and floor area [35] are a few
examples.
The difficulty is that the concept of “best” lies in the eyes of the beholder. Various users may

consider different attributes more important and, hence, arrive at very different rankings. In the
absence of explicit user preferences, the system can remove dominated items and offer the remaining
Pareto-optimal [11] set as representing the desirable items in the dataset. Such a skyline (or the
set of convex hull points) is the smallest subset of the data that is guaranteed to contain the top
choice of a user based on any monotonic (or linear, resp.) ranking function. Since the introduction
of skylines to the database community [13], a large body of work has been conducted in this area.
A major issue with such representatives is that they can be a large portion of the dataset [8, 37],
especially when there are multiple attributes. Hence, several researchers have tackled [17, 61] the
challenge of finding a small subset of the data for further consideration.

One elegant way to find a smaller subset is to define the notion of regret for any particular user.
That is, how much this user loses by restricting consideration only to the subset rather than the
whole set. The goal is to find a small subset of the data such that this regret is small for every
user, no matter what their preference functions are. There has been considerable attention given
to the regret-ratio minimizing set [8, 51] problem and its variants [3, 16, 22, 41, 43, 50, 63]. Letmall
be the maximum score of the objects in dataset based on a scoring function f . Also, letmsub be
the maximum score for a subset of data. The regret-ratio of the subset for f is (mall −msub)/mall .
The classic regret-ratio minimizing set problem aims to find a subset of size r that minimizes the
maximum regret-ratio for any possible function. Other variations of the problem will be pointed
out in later sections.
Unfortunately, in most real situations, the actual score is a “made up” number with no direct

significance. This is especially true when attribute values are drawn from different domains. In fact,
the score itself could also be on a made-up scale. Considering the regret as a ratio helps, but is far
from being a complete solution, in particular, for ranking applications. To see a specific example,
let us consider wine ratings.

Example: Each year, Wine Spectator publishes a list of top wines reviewed over the past 12 months1.
This annual list honors successful wineries, regions, and vintages around the world. Let us consider
their 2017 list. The dataset contained 100 items, defined over the attributes rating, vintage year,
and price. Wine ratings are in the scale of 0 to 100. In our Wine dataset, the wine with the highest
rating is "Clos des Papes Châteauneuf-du-Pape" whose rating is 98. A regret of 6 points on the
rating gives a small regret-ratio of 6/98 ≈ 0.061. The small regret-ratio indicates the containment of
a “good” representative for the user’s choice: note that any subset that contains a wine with rating
of 92 satisfies this regret-ratio. However, a wine with this rating is even below the median of the

1http://top100.winespectator.com/lists/
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dataset based on ranking! An example of such a wine is "Volver Alicante Tarima Hill Old Vines". A
similar story holds for a ranking function that considers the combination of vintage year and
rating with equal weights (after normalizing each attribute to the same scale). In this case, an item
satisfying the small regret-ratio of 0.05 falls in the middle of the ranked list, i.e., half of the wines
in the dataset approximate the top choice better than that item according to the aforementioned
ranking function. □

Although ordinary users may not have a good sense of actual scores, they almost always
understand the notion of rank. Therefore, as an alternative to the regret-ratio, we consider items’
positions in the ranked list and propose the rank-regret measure to quantify an item’s distance
from the top of the list. We define the rank-regret of a subset of the data to be k , if it contains at
least one of the top-k objects of any possible ranking function.

Since items in a dataset are usually not uniformly distributed by score, solutions that minimize
regret-ratio do not typically minimize rank-regret. In this paper, we seek to find the smallest subset
of the given dataset that has a rank-regret of k . We call this subset a k-rank-regret representative of
the database. The 1-rank-regret representative of a database (for linear ranking functions) comprises
the points on the convex hull: guaranteed to contain the top choice of any linear ranking function.
The number of points on the convex hull is usually very large: almost the entire dataset when
there are five or more dimensions [8, 37]. By choosing a value of k larger than 1, we can drastically
reduce the size of the rank-regret representative set, while guaranteeing everyone has a choice in
their top-k even if not the absolute top choice.

Example (cont.): As explained earlier, a small difference in regret ratio can actually result in a
large swing in rank. On the other hand, consider a subset that satisfies the rank-regret of 6. Such a
subset should contain one of the top 6 (i.e., top 6%, in other words) wines based on rating, which
serves as a good approximation for the top-1. "Cantina del Pino Barbaresco Ovello" (with rating of
97) is such a good representative. □

Before moving to our technical contributions, we would like to underscore the complimentary
nature of ranks and scores: neither should be regarded as the absolute winner. There are appli-
cations where scores are more meaningful, but there are also those where ranks matter more.
One major difference between ranks and scores is that the act of “ranking” has a notion of direct
competition at its heart, while the sense of competition is subtler with scores. Consider, as two
well-known applications, credit scores vs. university rankings. Credit scores are used to evaluate
the creditworthiness of an individual and are independent from how others perform. Therefore,
any one who has a credit above a specific threshold can be a candidate for a loan. On the contrary,
when one is interested in finding a top university, seeing a “high” score is seldom enough because
one must consider how this score stands in comparison with other universities. Therefore, while
regret-ratio makes sense for credit scores, rank-regret is the proper measure for university rankings.
Rank-regrets have the advantage of being insensitive to scaling, as is an important feature

because in practice various dimensions can have drastically different domain lengths (e.g., price
measured in dollar vs. ratings measured in percentile). The rank-regret of a subset remains the
same no matter how each dimension is scaled, while the ratio-regret of a subset can change
significantly! Preprocessing the data with normalization helps only to a rather limited extent
because normalization is only one possible way to scale and it is not clear at all why it is the best
way. With another moment of thoughts, one would realize that the root cause is still the fact that
the score of an item is not a reliable indication of its competition rank.

Contributions. The following is a summary of our contributions:
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dimension max rank regret representative size time source
any fixed d k O(nk logn) O(nk logn) Theorem 4

2 k OPT Õ(nk) Theorem 7
2 (2 + δ )k ≤ OPT O(n logn) Theorem 12
3 (1 + δ )k Õ(OPT) Õ(nk2) Theorem 13
3 k Õ(OPT) O(nk5/2) Theorem 15

d ≥ 4 k Õ(OPT) O(n ⌊d/2⌋k ⌈d/2⌉+1) Theorem 15
d ≥ 3 k OPT NP-hard Section 4.1
d ≥ 4 Õ(k) Õ(OPT) no fixed-para near- Theorem 14

linear algorithms
(see Section 5.5)

Note 1: n is the dataset size, d is the dimensionality, and OPT is the minimum size of k-rank-regret
representatives.
Note 2: Õ(.) hides a polylogn factor.

Table 1. Summary of formal results

(1) We propose the rank-regret representative as a way of choosing a small subset of the database
guaranteed to contain at least one good choice for every user.

(2) We establish its connection to the notion of ϵ-net in computational geometry and initialize
the study of instance optimal ϵ-nets.

(3) We give an algorithm to find an optimal k-rank-regret representative in 2D space efficiently.
(4) When the dimensionality is 3 or above, finding an optimal k-rank-regret representative is

NP-hard. We present polynomial time algorithms for discovering near-optimal rank regret
representatives under different approximation schemes. We also formally separate the case
of d ≤ 3 (where d is the dimensionality) from d ≥ 4 in terms of what type of polynomial
efficiency is achievable.

(5) We design a space partition algorithm that returns a k-rank-regret representative of a small
size based on a non-trivial rank-sum lemma.

(6) We develop a randomized algorithm that utilizes the knowledge of query distribution to find
a k-rank-regret representative with probabilistic guarantees.

(7) We conduct extensive experimental evaluation based on real datasets to verify the effective-
ness and efficiency of our techniques.

Table 1 gives an overview of the formal results in this paper.
A short version of this paper appeared in [9]. Compared to that preliminary work, the current pa-

per presents a more comprehensive treatment of the k-rank-regret problem. The new contributions
include bullets (2), (3), new 2D and 3D approximation algorithms in bullet (4), a more powerful
rank-sum lemma in bullet (5), and experimentation with all the new algorithms.

The rest of the paper is organized as follows. Section 2 formally defines the k-rank-regret problem
in the primal and dual spaces. Section 3 clarifies its relevance to ϵ-nets. Section 4 settles the problem
optimally in 2D space and proves the NP-hardness on d ≥ 3. Section 5 presents a systematic study
on approximation algorithms. Section 6 leverages a query distribution to discover a good solution,
while Section 7 introduces our space partitioning algorithm. Section 8 evaluates our algorithms
with extensive experiments. Section 9 reviews the previous work directly related to ours. Finally,
Section 10 concludes the paper with a summary of findings.
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o1(−1, 24)

o2(−14/24, 14)

o3(−8/24, 13)

o4(5/24, 9)

o5(13/24, 4)

o6(17/24, 1)

O x

y

Fig. 1. The input set P for our running example

2 PROBLEM DEFINITIONS
Section 2.1 will first formulate k-rank-regret representative as a problem on multidimensional
points. Section 2.2 will then present an equivalent formulation that redefines the problem on
multidimensional planes. Our technical discussion will switch between the two formulations,
depending on which is easier to work with in a specific context.

2.1 Formulation in the Primal Space
Define P as a set of points in Rd , where d ≥ 2 is a constant integer. We will refer to each point in P
as an object, reserving the term “point” for general points in Rd ; for the same reason, we reserve the
symbol o for objects and p for general points in Rd . For a point p ∈ Rd , p[i] (1 ≤ i ≤ d) denotes its
coordinate on dimension i . We will sometimes treat p as a d-dimensional vector p = (p[1], ...,p[d])
where p[i] = p[i].

A weight vector is a d-dimensional vectorw = (w[1], ...,w[d]) wherew[i] ≥ 0 for each i ∈ [1,d].
Thew-score of an object o ∈ P is the dot productw ·o. Thew-rank of o, denoted as rankw (o), equals
r if exactly r − 1 objects in P have higherw-scores than o. The t-set ofw , denoted as Pw (t), contains
the objects in P with w-ranks 1, 2, ..., t , respectively. Denote by W the set of all possible weight
vectors.

For a non-empty subset S ⊆ P , define itsw-rank regret under aw ∈ W as

RRw (S) = min
o∈S

rankw (o)

and its maximum rank regret as

MRR(S) = max
w ∈W

RRw (S). (1)

S is a k-rank-regret representative of P if MRR(S) ≤ k . The problem studied in this paper is:

Problem 1 (k-Rank Regret Representative Problem). Given a set P of n points and an
integer k ∈ [1,n], find a k-rank-regret representative of P with the smallest size.

Example: Figure 1 shows a set P of 6 objects in 2D space; this input set will serve as our running
example throughout the paper. Consider the weight vector w = (20, 1). The w-score of o1 is

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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h1 : y = x− 24

(0, 0) (24, 0)x = 20

h2 : y = 14
24x− 14

h3 : y = 8
24x− 13

h6 : y = −17
24 x− 1

h5 : y = −13
24 x− 4

h4 : y = −5
24x− 9

y = 0

Fig. 2. The dual lines in 2D space for the input P in Figure 1

(−1) · 20+ 24 · 1 = 4. Thew-ranks of o6,o5,o4,o3,o1, and o2 are 1, 2, 3, 4, 5, and 6, respectively. Thus,
the 3-set ofw is {o6,o5,o4}. Let S = {o3,o4}. Itsw-rank regret RRw (S) = 3, namely, thew-rank of
o4, which is smaller than that of o3. Later, we will see that MRR(S) = 3, i.e., S is a 3-rank-regret
representative of P . Furthermore, P admits no smaller 3-rank-regret representatives. □

2.2 Formulation in the Dual Space
Next, we provide another formulation under the point-plane duality transformation [25] and
establish its equivalence to Problem 1. Define

W[d ],0 = {w ∈ W | w[d] , 0}.

Compared to W , W[d ],0 leaves out the weight vectors w with w[d] = 0 that turn out to be
unimportant:

Lemma 1. For any S ⊆ P , MRR(S) (defined in (1)) is exactly maxw ∈W[d ],0 RRw (S).

The proof can be found in the appendix. Define

W[d ]=1 = {w ∈ W | w[d] = 1}.

For any object, its w-rank remains the same when w is scaled by a positive factor. Thus, every
w ∈ W[d ],0 has the same k-set asw ′ = (w [1]w [d ] , ...,

w [d−1]
w [d ] , 1). Hence, it suffices to consider onlyW[d ]=1,

where the weight vectors are said to be canonical henceforth.
Under point-plane duality, each object o = (o[1], ...,o[d]) in P defines a dual plane

x[d] =

(
d−1∑
i=1
(−o[i]) · x[i]

)
− o[d] (2)

in the dual space Rd (the plane includes all the points x in Rd satisfying the equation). Denote by
H the set of n dual planes obtained from P in this manner.

Example: Consider, again, the set P of points o1,o2, ...,o6 in Figure 1. Figure 2 shows the corre-
sponding dual planes (which are lines in 2D) h1,h2, ..., and h6, which constitute the set H . Take o1
as an example. Recall from Figure 1 that o1 has coordinates (−1, 24), i.e., o1[1] = −1 and o1[2] = 24.
From (2), we know that its dual plane h1 is given by the equation x[2] = −o1[1] · x[1] −o1[2], which
is x[2] = −(−1) · x[1] − 24. In Figure 2, x[1] and x[2] correspond to the “x” and “y” dimensions,
respectively. This explains why h1 is represented by the equation y = x − 24. □

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Define the query spaceQ as the set of all possible (d−1)-dimensional vectorsq = (q[1], ...,q[d−1])
satisfying q[i] ≥ 0 for all i ∈ [1,d − 1]. Each query q ∈ Q determines a line ℓq in the dual space
Rd that is parallel to dimension d and passes the point (q[1], ...,q[d − 1],−∞). Consider the n
intersections between ℓq and the planes in H . For each plane h ∈ H , define its q-rank, denoted
as rankq(h), as r if exactly r − 1 intersections have smaller coordinates on dimension d than the
intersection between ℓq and h. The t-set of q, denoted as Hq(t), includes the planes in H with
q-ranks 1, 2, ..., t , respectively.

Example (cont.): The dimensionality d of the dual space is 2. Hence, the query space Q in Figure 2
is one dimensional (= d − 1), because of which we will simplify the vector representation q into a
real value q. Consider the query q = 20. Line ℓq is the vertical line x = 20, namely, the line parallel to
dimension d = 2 (i.e., y-axis) and passing the point (q[1],−∞) = (20,−∞). The lines in H intersect
ℓq in the bottom-up order of h6,h5,h4,h3,h1,h2 (see Figure 2). The q-ranks of h6,h5,h4,h3,h1, and
h2 are, therefore, 1, 2, ..., 6, respectively. □

It is rudimentary to verify the following one-one correspondence between W[d ]=1 and Q:

Proposition 1. Fix any canonical weight vectorw ∈ W[d ]=1. Set q = (w[1], ...,w[d − 1]). For any
object o ∈ P with dual plane h ∈ H , rankw (o) = rankq(h).

Example (cont.): Consider the canonical weight vectorw = (20, 1); recall thatw is canonical if and
only ifw[2] = 1. As mentioned in an earlier example, thew-ranks of o6,o5,o4,o3,o1, and o2 are 1, 2,
3, 4, 5, and 6, respectively. These are identical to the q-ranks (where q = 20) of their corresponding
dual planes, namely, h6,h5,h4,h3,h1,h2, respectively (see the previous example for how the q-ranks
are computed. □

Given a non-empty subset S ⊆ H , we define its q-rank regret as

RRq(S) = min
h∈S

rankq(h)

and accordingly the maximum rank regret of S as

MRR′(S) = max
q∈Q

RRq(S). (3)

Problem 2 (Dual Version of Problem 1). Given a set H of n planes in Rd and an integer
k ∈ [1,n], find a non-empty S ⊆ H with the smallest size satisfying MRR′(S) ≤ k .

Problems 1 and 2 are equivalent:

Lemma 2. For any S ⊆ P , MRR(S) = MRR′(S), where S = {dual plane of o | o ∈ S}.

Proof. Let us first prove MRR(S) ≤ MRR′(S). Consider any w ∈ W achieving rankw (S) =
MRR(S). By Lemma 1, there is a w+ ∈ W[d ],0 satisfying rankw (S) = rankw+ (S), which implies a
canonicalw ′ ∈ W[d ]=1 satisfying rankw ′(S) = rankw+ (S) = MRR(S). By Proposition 1, there is a q ∈
Q such that rankq(S) = rankw ′(S) = MRR(S). It thus follows that MRR′(S) ≥ rankq(S) ≥ MRR(S).
Reversing the above proves MRR′(S) ≤ MRR(S). □

3 EQUIVALENCE TO EPSILON-NETS
A halfspace in Rd is the set of points p ∈ Rd satisfying

∑d
i=1 ci · p[i] ≥ cd+1, where c1, ..., cd+1 are

real-valued coefficients. The halfspace is non-negative if c1, c2, ..., cd are non-negative (note: there
are no constraints on cd+1).

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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O x

y

p1(−1, 1) p2(1, 1)

p3(−1,−1) p4(1,−1)

l : 2x + y = −2

Fig. 3. Illustration of ϵ-net

Given a real value ϵ ∈ (0, 1], we call a subset S ⊆ P an ϵ-net if every non-negative halfspace
covering at least ϵn objects in P must cover at least one object in S .

Example: Consider the set P = {p1,p2,p3,p4} of 2D points shown in Figure 3. S = {p1,p4} is a
1/2-net. Let us examine the (non-negative) halfspace 2x + y ≥ −2 (with boundary line l ). Because
(i) the halfspace covers 3 points (p1,p2,p4) in P and (ii) 3 is greater than 4 · (1/2) = 2, the 1/2-net
definition demands that the halfspace should contain at least one point in S , which is indeed the
case (actually, both points in S fall in the halfspace). □
The lemma below reveals a connection between ϵ-nets and rank regret representatives:

Lemma 3. A subset S of P is a k-rank-regret representative of P if and only if S is a (k/n)-net of P .

Proof. The IF direction: Consider an arbitrary weight vectorw = (w[1], ...,w[d]). Let o ∈ P
be an object withw-rank k ; specially, if no such objects exist (due to ties in scores), define o as an
object that has the largestw-rank among all the objects withw-ranks at most k . Set τ = w · o. At
least k objects o′ ∈ P satisfyw · o′ ≥ τ . Thus, the halfplanew · p ≥ τ covers at least k objects of P
and, by definition of (k/n)-net, must contain an object o′′ ∈ S . Thew-rank of o′′, therefore, is at
most k . This means that S is a k-rank-regret representative.

The ONLY-IF direction: Consider any halfspace h covering at least k objects of P . Let
∑d

i=1 ci ·
p[i] ≥ cd+1 be the inequality of h. Setw = (c[1], ..., c[d]). Being a k-rank-regret representative, S
must contain an object o in the k-set ofw . Thew-score of o must be at least cd+1 (otherwise, the at
least k objects covered by h all have scores strictly higher than o, giving a contradiction). It thus
follows that o is covered by h. This means that S is a (k/n)-net. □

Obtaining an ϵ-net is simple. As proved in [38], by random sampling O(nk logn) points from
P with replacement (assuming that d is a fixed constant), we obtain a set Ssam of points that is a
(k/n)-net with probability at least 1 − 1/n2. Combining this with Lemma 3 yields:

Theorem 4. We can compute in O(nk logn) time a subset S ⊆ P of size O(nk logn) that is a k-rank-
regret representative of P with probability at least 1 − 1/n2.

Instance optimal ϵ-nets. Lemma 3 gives an alternative interpretation of Problem 1: its goal is
to find the smallest ϵ-net (where ϵ = k/n) on the given P , namely, an instance optimal ϵ-net of P .
Even at d = 2, 1/ϵ is a known worst-case lower bound on the ϵ-net size (a higher lower bound of
Ω(nk log n

k ) holds for d ≥ 4; see [44]). Hence, when measured by the worst-case quality, n/k is the
best possible, and Theorem 4 is already near optimal. However, n/k is a pessimistic estimate on
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algorithm net-extreme-skyline (P)
1. sample a set Ssam of O(nk logn) points from P with replacement
2. EXT (Ssam) ← the extreme set of Ssam
3. S ← the skyline of EXT (Ssam)
4. return S

Fig. 4. The net-extreme-skyline algorithm

the size of the smallest (k/n)-net for every P . As shown in the experiments, we can find (k/n)-nets
whose sizes are considerably smaller than n/k on real-world data.

Heuristics. In practice, we may shrink the sample set Ssam described earlier to produce a smaller
k-rank-regret representative. The first idea is to keep only the extreme set of Ssam — denoted as
EXT (Ssam) — namely, the set of objects on the convex hull boundary of Ssam. We can shrink Ssam
even further by resorting to skylines [13]. Given two distinct objects o,o′ ∈ EXT (Ssam), we say
that o dominates o′ if o[i] ≥ o′[i] on all i ∈ [1,d]. The skyline of EXT (Ssam) is the set of objects in
EXT (Ssam) that are not dominated by other objects in EXT (Ssam). The skyline serves as a k-rank-
regret representative. We refer to the above method as net-extreme-skyline (NES), as shown in
Figure 4.

4 EXACT ALGORITHMS
Section 4.1 will point out the relationships between the proposed k-rank-regret problem and
the existing k-regret minimizing set problem, and establish the former’s NP-hardness for d ≥ 3.
Section 4.2 will explain how to solve Problem 1 in polynomial time for d = 2.

4.1 Connections to Regret-Ratio Minimizing Sets
In this subsection, each object o ∈ P is assumed to have positive coordinates o[1], ...,o[d], which
can be achieved by shifting the coordinate system appropriately. Accordingly, the score of an object
is always non-negative under any weight vectorw .
Define gainw (P ,k) as the lowestw-score of the objects in the k-set ofw . Given a subset S ⊆ P ,

Chester et al. [22] defined its k-regret ratio underw as

k-regratiow (S) =
max{0, gainw (P ,k) − gainw (S, 1)}

gainw (P ,k)
and its maximum k-regret ratio as

k-regratio(S) = max
w ∈W

k-regratiow (S).

In the k-regret minimizing set problem, given an integer k ∈ [1,n] and a size threshold s , we want
to find a subset S with |S | = s to minimize k-regratio(S).

MRR(S) (see (1)) has a connection to k-regratio(S):

Lemma 5. For any S ⊆ P and any k ∈ [1,n], MRR(S) ≤ k if and only if k-regratio(S) = 0.

Proof. If k-regratio(S) = 0, gainw (P ,k) ≤ gainw (S, 1) holds for any weight vectorw , implying
that S contains at least one object in the k-set ofw . Hence, MRR(S) ≤ k . Reversing the argument
proves the only-if direction. □

In 2D space, the k-regret minimizing set problem can be settled in Õ(n2) time [16] (where Õ(.)
hides a polylogn factor). Problem 1 can then be settled in Õ(n2) time. By Lemma 5, it suffices to
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find the smallest s ∈ [1,n] such that some subset S ⊆ P of size s achieves k-regratio(S) = 0. Since
k-regratio(S)monotonically decreases when |S | increases, we can discover the desired s with binary
search, which requires solving O(logn) instances of the k-regret minimizing set problem. In the
next subsection, we will present an algorithm with a more appealing time complexity of Õ(nk).
When d = 3, Agarwal et al. [3] proved the NP-hardness of the following problem: given a

size threshold s ∈ [1,n], decide whether there is an S with |S | = s and 2-regratio(S) = 0. This
implies that the 3D version Problem 1 is NP-hard even when k = 2. To see why, if we could find in
polynomial time an S ⊆ P satisfying MRR(S) ≤ k with the smallest |S |, we could settle the above
decision problem by comparing |S | to s (by Lemma 5). The NP-hardness at d = 3 indicates that
Problem 1 is NP-hard for all d ≥ 3.

4.2 A Faster 2D Algorithm
4.2.1 Levels. In general, let H be a set of n planes in Rd . Fix an arbitrary point p ∈ Rd and a plane
h that does not pass p. We say that p is above h if we must move p towards the negative direction
of dimension d for p to touch h; otherwise, p is below h. The level of p is the number of planes in
H below p. The l-level (l ∈ [0,n]) is the set of all points in Rd whose levels are exactly l , and the
(≤ l)-level is the set of all points in Rd whose levels are at most l .

h2h1h6

h3

h4

h5

012

2 2 2

1

1

2

13
3 3

3
4

4
4

4

5
5

6

Fig. 5. Illustration of levels. Each number indicates the level of the corresponding cell. The gray area is the
(≤ 2)-level, while the striped area is the 3-level.

Example: To illustrate the above concepts, Figure 5 shows a set H of 2D planes — a.k.a., lines —
which are taken directly from Figure 2. Every number indicates the level at the point where the
number is placed. The gray area represents the (≤ 2)-level, the striped area represents the 3-level,
and their union is the (≤ 3)-level. □
In 2D space, the (≤ k)-level induced by H consists of non-overlapping polygons (see Figure 5)

whose edges we refer to as boundary edges. There are O(nk) boundary edges [5, 23] and they can
be computed in Õ(nk) time [32]. See Figure 6 for an illustration.

4.2.2 Algorithm. We can rephrase (the 2D version of) Problem 2 in terms of levels. Recall that the
input is a set H of lines in the dual space R2 and the query space Q is the interval [0,∞). Each
query q ∈ Q corresponds to a point (q,−∞) at the bottom of the dual space. Imaging shooting a ray
ρ from (q,−∞) upwards, which stops right before leaving the (≤ k − 1)-level. Hq(k) (the k-set of q)
includes exactly those lines of H intersecting with ρ. A subset S ⊆ H hits q if S has at least one line
intersecting with ρ. The goal of Problem 2 is to find the smallest S that hits all queries in Q.
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(q1,−∞)

ρ1

(q2,−∞)

ρ2
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Fig. 6. The boundary edges in the (≤ 2)-level (taken from Figure 5) are shown in bold segments.

Example (cont.): Recall that the gray area of Figure 6 corresponds to the (≤ 2)-level defined by
the set of lines in Figure 5. Assuming k = 3, the rays shot from points (q1,−∞) and (q2,−∞) are ρ1
and ρ2, respectively. S = {h1,h2,h3} hits q1, but does not hit q2, meaning that S contains at least a
line in the 3-set of q1, but nothing in that of q2. Hence, S is not a solution to Problem 2. An optimal
solution is S = {h3,h4} (it hits all queries). Optimal solutions are not unique; e.g., S = {h2,h5} is
another example. □

Next, we explain how to solve Problem 2 in Õ(nk) time. Define an envelop chain as a sequence C
of line segments σ1,σ2, ...,σ |C | such that:
• every segment of C is in the (≤ k − 1)-level and is part of a line in H , i.e., the segment’s
support line;
• C is connected, namely, σi and σi+1 share an endpoint for all i ∈ [1, |C | − 1];
• C is x-monotone, namely, any vertical line in R2 can intersect with at most one segment inC ;
• C is concave, namely, the support line of σi has a larger slope than that of σi+1 (equivalently,
we need to make a right turn in walking from σi onto σi+1).

Example (cont.): In Figure 6. The sequence AC, CD, DF is connected, x-monotone, but not concave
(we make a left turn in walking from AC to CD). Two envelop examples are AF, FK, KO and AG, GO. □

The length of an envelop chain C = σ1,σ2, ...,σ |C | is |C |. The projection of C onto the x-axis
gives an interval [x1,x2] (specifically, x1 and x2 are the x-coordinates of the left endpoint and right
endpoint of σ1 and σ |C | , respectively). Let H [C] be the set of support lines of σ1,σ2, ...,σ |C | .

Lemma 6. Let C∗ be an envelop chain of the minimum length whose x-projection covers the entire
Q = [0,∞). Then, H [C∗] is an optimal solution to Problem 2.

Proof. It is obvious thatH [C∗] hits all possible queries and, hence, is a legal solution to Problem 2.
Next, we will prove that every optimal solution S to Problem 2 defines an envelop chain C with
H [C] = S such that the x-projection of C covers Q. This implies the correctness of the lemma.
The upper boundary of the (≤ 0)-level of S must be an envelop chain C . Furthermore, every

h ∈ S must contribute an edge to the (≤ 0)-level; otherwise, h is completely above C , because of
which S \ {h} must still hit all the queries, giving a contradiction to the optimality of S. C is thus
the envelop chain promised. □
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algorithm 2D-exact (H )
1. compute the (≤ k − 1)-level induced by H
2. E ← the set of (directed) boundary edges in the (≤ k − 1)-level
3. sort, in ascending order, the edges in E using their right endpoints’ x-coordinates
4. for each e ∈ E (in the sorted order) do
5. if the x-projection of e covers coordinate 0 then minlen(e) ← 1
6. else
7. p ← the left endpoint of e
8. IN(p) ← the incoming edges of p in E
9. for each e ′ ∈ IN(p)
10. if e ′ and e are on the same line in H thenw(e ′) ← minlen(e ′)
11. else if e ′ has a greater slope than e thenw(e ′) ← minlen(e ′) + 1
12. elsew(e ′) ← ∞
13. minlen(e) ← mine ′∈IN(p)w(e ′)
14. e∗ ← a terminal edge e ∈ E with the smallest minlen(e)
15.C∗ ← an optimal envelop chain whose last segment contains e∗

/* the x-projection of C∗ covers [0,∞) and |C∗ | = minlen(e)*/
16. return C∗

Fig. 7. The 2D exact algorithm

Example (cont.): In Figure 6, no envelop chains of length 1 have an x-projection covering Q. On
the other hand, the x-projection ofC = AF, FP covers Q. Hence,H [C] = {h3,h4} must be an optimal
solution (this corresponds to {p3,p4} in Figure 1). □
We are now ready to clarify our algorithm for computing C∗. The algorithm, summarized in

Figure 7, combines a dynamic programming strategy of [22] with ideas specific to our context. Let
e be a boundary edge in the (≤ k − 1)-level of H (Lines 1- 3), p be the right endpoint of e , and p[1]
be the x-coordinate of p. Define minlen(e) as the smallest length of all envelop chains C such that
• the last segment of C contains e;
• the x-projection of C covers [0,p[1]].

Call e terminal if its right endpoint falls on the dual space’s right boundary. OPT (i.e., |C∗ |) must be
equal to the minlen(e) of some terminal boundary edge e (Lines 14-15).

Example (cont.): Set k = 3. For the boundary edge CD in Figure 6, we have minlen(CD) = 1 because
there is a monotone chain C with only one segment BD such that (i) BD contains CD and (ii) the
x-projection of C covers [0, D[1]]. Similarly, minlen(LP) = 2, evidenced by the monotone chain C =
AF, FP; this C is an optimal solution to Problem 2. □

To describe the computation of minlen(e) (Lines 4-13), let us view each boundary edge e in the
(≤ k − 1)-level as a directed edge pointing from the left endpoint to the right endpoint. Trivially,
minlen(e) = 1 if the x-projection of e covers the coordinate 0 (Line 5). Otherwise, let p be the left
endpoint of e and IN(p) be the set of incoming edges of p in the (≤ k − 1)-level (Lines 7-8). For each
e ′ ∈ IN(p), define its contribution as:
• minlen(e ′) if e ′ and e are on the same line in H (Line 10);
• 1 +minlen(e ′) if e ′ has a greater slope than e (Line 11) ;
• ∞ otherwise (Line 12).

Then, minlen(e) equals the minimum contribution of all e ′ ∈ IN(p) (Line 13).
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Ifm is the total number of boundary edges in the (≤ k − 1)-level, it is now straightforward to
compute the minlen(e) of all those edges e in Õ(m) time by dynamic programming. This produces
the value of OPT. It is standard to construct an optimal solution C∗ from the above dynamic
programming process using the same time complexity. As all the boundary edges can be found in
Õ(m) = Õ(nk) time (Section 4.2.1), we have arrived at:

Theorem 7. When d = 2, Problem 2 (hence, Problem 1) can be settled in Õ(nk) time.

5 A THEORY ON APPROXIMATION ALGORITHMS
This section will present algorithms for solving Problem 1 with strong approximation guarantees.
Section 5.1 first illustrates our high-level objectives in terms of approximation quality and running
time. Then, Section 5.2 will introduce the shallow cutting technique, which we apply to design
2D and 3D algorithms in Sections 5.3 and 5.4, respectively. Sections 5.5 and 5.6 are dedicated to
dimensionalities 4 and higher.

5.1 Overview of Our Approximation Schemes
Denote by OPT the size of an optimal k-rank-regret representative of the input P . In terms of result
quality, our goal is to compute a c1k-rank-regret representative of size c2 ·OPT where 1 ≤ c1 = Õ(1)
and 1 ≤ c2 = Õ(1). If an algorithm can always return such representatives, we call it a bi-criteria
approximation algorithm. Even better, if an algorithm guarantees c1 = 1 and c2 ≥ 1, we refer to it as
a size-approximation algorithm; similarly, if an algorithm guarantees c1 ≥ 1 and c2 = 1, we refer to
it as a regret-approximation algorithm.
The k-rank-regret representative problem is NP-hard when d ≥ 3 (Section 4.1). To tackle this

computation barrier, we want to design bi-criteria algorithms finishing in f (k) · Õ(n) time, where
f (k) is a monotonic function depending only on k and satisfying f (k) = Õ(1) for k = O(polylogn).
Such algorithms have practical significance because users prefer small values of k in real-world
applications. In particular, when k = O(polylogn) (we believe this already fulfills the needs of most
applications), the running time of those algorithms is bounded by Õ(n).

Motivated by this, we say that a bi-criteria approximation algorithm A is fixed-parameter near-
linear if its running time is bounded by f (k) · Õ(n). This name suggests that if the parameter k is
“fixed” (i.e., Õ(1)), then the computation time is “near-linear” (i.e., Õ(n)). We will strive to design
such algorithms whenever possible. As it will turn out, they exist for dimensionalities d = 2 and 3
but do not exist for d ≥ 4 (unless major breakthroughs could be made in computational geometry).
For d ≥ 4, therefore, we will drop the fixed-parameter near-linear requirement and, instead, aim to
design bi-criteria algorithms that terminate in polynomial time (for arbitrary k).

5.2 Shallow Cutting
A simplex in Rd is a d-dimensional convex polytope with d + 1 vertices. A 1D simplex is an interval,
a 2D simplex is a triangle, a 3D simplex is a tetrahedron, etc. A prism inRd is a special d-dimensional
simplex that has a vertex at the bottom of Rd , namely, the vertex’s d-th coordinate is −∞. Figure 8
shows an example for d = 2 and 3, respectively. A 2D prism has the shape of an infinitely extending
trapezoid, which can be thought of as a triangle whose lower vertex is at the bottom of R2. Likewise,
a 3D prism can be thought of as a tetrahedron whose lower vertex has z-coordinate −∞.
Let H be a set of n planes in Rd . Fix some integer k ∈ [0,n] and a constant λ > 0. A (λ,k/n)-

shallow-cutting of H is a set Ξ of prisms satisfying:
• Every prism in Ξ is covered by the (≤ (1 + λ)k)-level;
• The union of all prisms in Ξ covers the (≤ k)-level;
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Fig. 8. 2D and 3D prisms
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Fig. 9. A (1, 1/3)-shallow cutting in 2D space. All the lines come from Figure 6. The gray area is the (≤ 2)-level,
the striped area is a part of the 3-level, and the closed white region is a part of the 4-level.

• Each prism ∆ ∈ Ξ intersects with O(1 + k) planes in H , which constitute the conflict set of ∆,
denoted as H∆.

Example: To further illustrate the above concepts, Figure 9 shows a (λ,k/n)-shallow cutting Ξ
where n = 6, k = 2, and λ = 1. Ξ consists of the four prisms ∆1, ...,∆4 as shown. The union of all
those prisms covers the (≤ 2)-level, but is also contained in the (≤ 4)-level. The conflict set H∆4 , for
example, includes h4,h5, and h6. □

Lemma 8 ([1, 20]). When d = 2 and 3, for any λ > 0 and k ∈ [0,n], we can compute a (λ,k/n)-
shallow cutting of O(n/(1 + k)) non-overlapping prisms and all the conflict sets in O(n logn) time.

5.3 A 2D Algorithm
We will describe a regret-approximation algorithm to solve Problem 1 with d = 2. Our goal is to
find a small subset S ⊆ P that is a ck-rank-regret representative where c = 2 + δ and δ > 0 can be
an arbitrarily small constant.

We will work on the corresponding instance of Problem 2. Here, the input is a set H of n lines in
R2, from which we want to extract a subset S to make sure RRq(S) ≤ ck for every query q ∈ Q.
The query space Q is [0,∞). Accordingly, we will represent each query simply as a real-value
q ≥ 0.

A rank-sum lemma. Consider any query q ∈ [0,∞) and the vertical line ℓq passing the point
(q,−∞). Let h be a line in H and p be the intersection point between h and ℓq . Recall that rankq(h)
(i.e., the q-rank of h) equals 1 plus the number of lines below p in H . The lemma states an important
property about rankq(h):

ACM Trans. Datab. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



On Finding Rank Regret Representatives 1:15

Lemma 9. Consider any line h ∈ H . Let q1 and q2 be queries satisfying q1 ≤ q2. For any q ∈ [q1,q2],
rankq(h) ≤ rankq1 (h) + rankq2 (h) − 1.

The above will be subsumed by Lemma 16 which, however, requires a more sophisticated
argument. Understanding the proof of Lemma 9 will make it easier to follow that of Lemma 16.
Let us first see an illustration in Figure 9. Line h5 has q1-rank 2 and q2-rank 2 (see q1 and q2 in the
figure). The lemma assures us that h5 has q-rank at most 3 for any q ∈ [q1,q2].

Proof. Given a query q, define (i) pq as the intersection point between h and ℓq , and (ii) ρq as
the downward-shooting ray that emanates from but does not include pq . Let Sq be the set of lines
in H intersecting with ρq . |Sq1 | = rankq1 (h) − 1 and |Sq2 | = rankq2 (h) − 1. We will prove that, for
any q ∈ [q1,q2], any line h′ ∈ Sq must belong to either Sq1 or Sq2 . This indicates |Sq | ≤ |Sq1 | + |Sq2 |,
from which the lemma follows.

pq1 pq2h

h′

ρq1

ρq2

p′q1 p′q2

query space Q

(q1,−∞) (q2,−∞)

(q,−∞)

Fig. 10. Proof of Lemma 9

Let p ′q1 (or p
′
q2 ) be the intersection point between h′ and ℓq1 (or ℓq2 , resp.), as shown in Figure 10.

Assume that h′ belongs to neither Sq1 nor Sq2 , which means that p ′q1 and p
′
q2 must be on or above

h. Hence, the entire segment p ′q1p
′
q2 must be on or above h. Therefore, the q-rank of h′ cannot be

lower than that of h, contradicting h′ ∈ Sq . □

The algorithm. Figure 12 shows the pseudocode of our algorithm. We start by using Lemma 8
to obtain a (δ/2, (k − 1)/n)-shallow cutting Ξ on H . Remember that Lemma 8 also produces the
conflict set of each prism ∆, namely, the set H∆ ⊆ H of lines intersecting with ∆ (Line 1).
For each line h ∈ H , we generate an interval Ih as follows (Line 4). First, identify the leftmost

(or rightmost) prism ∆1 (or ∆2, resp.) intersecting h. Let σ1 be the part of h that appears in ∆1;
note that σ1 is a segment. Obtain similarly a segment σ2 with respect to ∆2. Define I1 (or I2) as the
x-projection of σ1 (or σ2, resp.). The interval Ih is the minimum bounding interval of I1 and I2. See
Figure 11 for an illustration. In the special case where h intersects with no prisms of Ξ, define Ih as
the empty interval.

Lemma 10. For any line h ∈ H whose Ih is not empty, rankq(h) < (2 + δ )k for any q ∈ Ih ∩Q.

Proof. Let ∆1 and ∆2 be the two prisms that define Ih . By the fact that q ∈ Ih , we can find
queries q1,q2 ∈ Ih such that (i) 0 < q1 ≤ q ≤ q2, and (ii) the x-projection of ∆1 (or ∆2) covers q1 (or
q2, resp.). Suppose that ℓq1 intersects h at point p1. Since p1 is inside ∆1, the level of p1 must be at
most (1 + δ/2)(k − 1) because the entire ∆1 is in the (≤ (1 + δ/2)(k − 1))-level of H (definition of
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h

Ih

∆1 ∆2

Fig. 11. Illustration of Ih

shallow cutting; see Section 5.2). Hence, rankq1 (h) ≤ (1 + δ/2)(k − 1) + 1 < (1 + δ/2)k . Similarly,
rankq2 (h) < (1 + δ/2)k . The claim then follows from Lemma 9. □

Denote by S∗ an optimal solution to Problem 2. We observe:

Lemma 11. The union of Ih for all the h ∈ S∗ covers Q.

Proof. Assume, on the contrary, that the union fails to include a query q ≥ 0. By definition of
S∗, there exists a line h ∈ S∗ whose q-rank is at most k . Let p be the intersection point between h
and ℓq . The fact rankq(h) ≤ k indicates that the level of p is at most k − 1. Now, consider the prism
∆ ∈ Ξwhose x-projection covers q. We assert that p must fall inside ∆; otherwise, p falls outside the
union of all the prisms of Ξ, contradicting the fact that the union must contain the (≤ k − 1)-level
of H . However, ∆ covering p implies that Ih must contain q, giving a contradiction. □

Define I = {Ih | h ∈ H } (Line 5). We find a subset J ⊆ I of the smallest size having the
property that the union of all the intervals in J covers Q (Line 6). The existence of J is guaranteed
by Lemma 11. Finally, we return S = {h ∈ H | Ih ∈ J} as our final result (Lines 7-8).

Theorem 12. In 2D space, the above algorithm runs inO(n logn) time and returns a set S of size at
most OPT whose maximum rank regret is at most (2 + δ )k , where δ > 0 can be an arbitrarily small
constant.

Proof. Lemma 11 and the minimality of J together imply |S| = |J | ≤ |S∗ | = OPT. MRR(S) ≤
(2 + δ )k follows from Lemma 10 and the fact that every query is covered by the Ih of at least one
h ∈ S.

Regarding the running time, Lemma 8 itself costs O(n logn) time. For each line h ∈ H , its ∆1
and ∆2 can be found in time proportional to the number of prisms intersecting h. Hence, the total
time spent for this purpose is proportional to the total size of all the prisms’ conflict sets, which is
O( n

1+k · (1 + k)) = O(n). The problem of discovering J from I is known as the interval covering
problem, which can be optimally settled in O(n logn) time (see, e.g., [9]). □

5.4 A 3D Algorithm
The 3D space can also be dealt with using shallow cutting in a manner similar to what was described
in the 2D algorithm. We move the proof of the following theorem to the appendix because the
details are somewhat repetitive.

Theorem 13. Ford = 3, we can compute in Õ(nk2) time a subset S ⊆ H of size at most OPT·O(logn)
whose maximum rank regret is at most (1 + δ )k , where δ > 0 can be an arbitrarily small constant.

Remark. Theorem 13 is mainly of theoretical interest. Its primary purpose is to prove the existence
of fixed-parameter near-linear algorithms in 3D space. The algorithm in Theorem 13, unfortunately,
is a bit sophisticated and may not be suitable for practical implementation (for this reason, we will
omit it in the experiments). In Sections 6 and 7, we will develop alternative algorithms for 3D space.
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algorithm 2D-shallow-cutting (H )
1. obtain a (δ/2, (k − 1)/n)-shallow cutting Ξ on H and, thus, the conflict sets {H∆ ⊆ H | ∆ ∈ Ξ }
2. I ← ∅
3. for h ∈ H do
4. generate the interval Ih for h (from the leftmost and rightmost prisms intersecting h)
5. I ← I ∪ {Ih}

6. find a minimum subset J ⊆ Isuch that the union of the intervals in J covers Q
7. S← {h ∈ H | Ih ∈ J}
8. return S

Fig. 12. The 2D shallow cutting algorithm

5.5 Hardness of Dimensions d ≥ 4
In this subsection, we will prove that no fixed-parameter near-linear algorithms exist for d ≥ 4
subject to a conjecture on a well-known problem in computational geometry.

An object o ∈ P is an extreme point of P if it is a vertex of the convex hull of P . The extreme point
problem, where the goal is to report all the extreme points of P , has been extensively studied. The first
major result was a 1993 algorithm due to Matousek [48] that has running time O(n2−2/( ⌈d/2⌉+1)+ϵ ).
In his 1996 paper [18], Chan pointed out that the time can be improved to O(n2−2/( ⌈d/2⌉+1)). In
the same paper, Chan gave an output-sensitive algorithm with time Õ(n + (n · OUT)1−1/( ⌈d/2⌉+1)),
where OUT is the number of extreme points. For d = 4, the bound is Õ(n + (n · OUT)2/3), which
still remains the best today.

In this subsection, we will prove:

Theorem 14. Let OPT be the size of an optimal k-rank-regret representative of P . Suppose that
there exists an algorithm A that, for some value c = O(polylogn), can compute a (ck)-rank-regret
representative of size Õ(OPT) in f (k) · Õ(n) time in 4D space where function f (k) satisfies f (k) =
O(polylogn) for k = O(polylogn). Then, there exists an algorithm solving the 4D extreme point
problem in Õ(n + OUT4/3) time.

Õ(n+OUT4/3) compares more favorably with Chan’s bound Õ(n + (n ·OUT)2/3) and would make
an exciting result. An impossibility result in 4D space trivially holds for d ≥ 5 as well.

Proof for c = 1. Denote by X the set of extreme points of P . The optimal 1-rank-regret repre-
sentative is the set S∗ of objects each maximizing the score of at least one weight vector. Thus,
S∗ ⊆ X .
S∗ is only a subset of X because we have restricted each weight vectorw to take non-negative

components w[1], ...,w[4]. By requiring each w[i] (i ∈ [1, 4]) to be positive or negative indepen-
dently, we obtain 24 = 16 instances of Problem 1, all on the same P . Denote by S∗j (1 ≤ j ≤ 16) the
optimal 1-rank-regret representative of the j-th instance. X must be the union of S∗1 , ..., S

∗
16.

Let us runA on each of the 16 instances on P , by forcing the input k to 1. Denote by S j the output
of A for the j-th instance. Since c = 1, it must hold that S∗j ⊆ S j for all j ∈ [1, 16]. Furthermore, the
Õ(OPT)-output-size requirement of A guarantees |S j | = |S∗j | · Õ(1). The total running time of A

in solving all the instances is f (1) · Õ(n) = Õ(n).
Set S = S1 ∪ S2 ∪ ... ∪ S16. Because

|S | ≤ 16 · 16max
j=1
|S j | = Õ

(
16max
j=1
|S∗j |

)
= Õ(|X |) = Õ(OUT)
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we can find X in Õ(OUT4/3) time by running Chan’s algorithm on S . This gives an overall algorithm
to compute X in Õ(n + OUT4/3) time.

Proof for c > 1.We can extend the argument to any c = O(polylogn). The crucial idea is to create
a new dataset P ′ by duplicating each object (of P ) c times. The argument then proceeds as before
except that A should be applied to the 16 instances on P ′. The property S∗j ⊆ S j is now rephrased
as: for every object o ∈ S∗j , at least one of its copies exists in S j . To understand why, note that there
must be a weight vectorw such that o hasw-rank 1 in P . Thus, if none of the c copies of o is in S j ,
the bestw-rank (in P ′) of the objects in S j underw is at least c + 1, contradicting the fact that the
algorithm must have a maximum rank regret c · k = c . The rest of the argument then runs through
with no difficulty. This completes the proof of Theorem 14.

5.6 Algorithms for Dimensions d ≥ 4
Next, we explain how to obtain a polynomial-time size-approximation algorithm for Problem 1
when d ≥ 4.

A hitting-set approach. Recall that the k-set Pw (k) of a weight vectorw contains the objects in
P with ranks at most k . A subset S ⊆ P hits a k-set Pw (k) if S ∩ Pw (k) , ∅. Problem 1 essentially
aims to find the smallest subset hitting all the k-sets.

Although the number of weight vectors is infinite, the number of distinct k-sets is finite because
different weight vectors may end up having the same k-set. Let K be the collection of all the
(distinct) k-sets {K1, ...,Ks } where s = |K |. Problem 1 then becomes a hitting set problem: find the
smallest subset S ⊆

⋃s
i=1 Ki such that S ∩Ki , ∅ for every i ∈ [1, s]. The standard greedy algorithm

runs in time Õ(sk) and guarantees a subset S of size at most OPT · (1 + lnn).
There is considerable work on bounding the number s of k-sets. Currently, the best bound is

O(nk1/3) [26] for d = 2, O(nk3/2) for d = 3 [57], and in general O(n ⌊d/2⌋k ⌈d/2⌉−cd ) for fixed d ≥ 4
[4], where cd is a tiny constant that tends to 0 very quickly as d grows. We must also account for
the time to enumerate all the k-sets. Enumeration can be done in Õ(nk + sk) expected time [32]
in 2D, Õ(nk2 + sk) expected time [2] in 3D, and O(n ⌊d/2⌋k ⌈d/2⌉ + sk) expected time [49] in fixed
d-dimensional space with d ≥ 4.

The above discussion gives:

Theorem 15. For any constant d ≥ 2, we can compute in O(n ⌊d/2⌋k ⌈d/2⌉ + sk) expected time a
subset S ⊆ H of size at most OPT · (1 + lnn) whose maximum rank regret is at most k , where s is the
number of distinct k-sets which is bounded by O(nk3/2) for d = 3 and by O(n ⌊d/2⌋k ⌈d/2⌉) for d ≥ 4.

It is interesting to compare the 3D result of Theorem 15 to that of Theorem 13. The time
complexity of Theorem 15 isO(nk5/2) at d = 3, while that of Theorem 13 is Õ(nk2). If k = polylogn,
the two time complexities are within a factor of Õ(1). For larger k , e.g., when k is a polynomial
of n, Theorem 15 actually yields a better time bound. On the other hand, Theorem 15 produces
size-approximation algorithms (i.e., the approximation ratio on size is 1; see Section 5.1), whereas
Theorem 13 can only guarantee Õ(1) approximation ratios on size and rank regret.

Remark. The hitting set instance mentioned earlier is actually an instance of the geometric hitting
set problem. By replacing the standard greedy algorithm with the re-weighting algorithm of [36]
for geometric hitting set, we can reduce the approximation ratio from 1 + lnn to O(logOPT) at the
cost of slightly higher computation time. We will not delve into further details in this paper.
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algorithm enum-kset (P)
1. Kclean = {K}, where K is an arbitrary clean k-set
2. Enqueue(K )
3. while queue is not empty do
4. K = Dequeue( )
5. for o ∈ K do
6. for o′ ∈ P \ K do
7. K ′ = K ∪ {o′} \ {o}
8. if K ′ < Kclean and K ′ is a valid k-set then
9. add K ′ to Kclean; Enqueue(K ′)
10. return Kclean

Fig. 13. The k-set enumeration algorithm

k-set enumeration. Theorem 15 requires enumerating all possible k-sets, for which purpose the
algorithms in [4, 7, 26, 57] are rather complicated. To alleviate the issue, we describe a practical
method which does not improve the complexities in Theorem 15, but is much easier to implement.
Our method is adapted from an algorithm in [7], which, however, requires the sophisticated concept
of k-set polytope (see [7] for details). Instead, we will adopt an intuitive graph perspective.

We call a k-set clean if it has size k .2 As far as the hitting set approach is concerned, it suffices to
consider the set Kclean of clean k-sets [4, 7, 26, 57]. Let us introduce the k-set graph G(V ,E) where:
• V = Kclean;
• E has an edge between two k-sets (a.k.a. vertices) K1 and K2 if and only if |K1 ∩ K2 | = k − 1.

G(V ,E) is connected, namely, it has a single connected component.
Figure 13 shows an algorithm for generating Kclean incrementally by performing a BFS (breadth

first search) on G. After finding an arbitrary clean k-set (Line 1), the algorithm adds it to a queue
(Line 2) and continues the traversal until the queue is empty (Line 3). At every iteration, the
algorithm removes a k-set K (i.e., a vertex in G) from the queue (Line 4) and generates another set
K ′ of size k by replacing exactly one object o ∈ K with an object o′ ∈ P \ K (Lines 5-7). If K ′ does
not belong to Kclean, the algorithm checks whether K ′ is a valid k-set. If so, K ′ is a neighbor vertex
of K in G and, hence, is added to Kclean and to the queue (Lines 8-9). After the BFS finishes, the
final Kclean is returned (Line 10).

Deciding whether K ′ is a k-set can be done through linear programming. Specifically, the answer
is yes if and only if there exist a weight vectorw and a real value τ such that
• o ·w > τ for every object o ∈ K ′;
• o ·w < τ for every object o ∈ P \ K ′.

Motivated by this, we construct a linear program that has d + 2 variables:w[1], ...,w[d],τ , and д:
maximize д subject to:
1. д ≥ 0
2. ∀o ∈ K ′: o ·w − τ ≥ д
3. ∀o ∈ P \ K ′: o ·w − τ ≤ −д

The above program never returns a negative д (because settingw = 0 and τ = д = 0 gives a feasible
solution). The requiredw and τ exist if and only if the returned д is positive.

2The size may be greater than k due to a tie in score among multiple objects.
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algorithm random-kset(P)
1. K = ∅

repeat
2. generate a weight vectorw following D
3. obtain the k-set Pw (k)
4. if Pw (k) < K then add Pw (k) to K

/* note: if Pw (k) ∈ K , we say thatw is captured */
5. until slen = O(logn) queries are captured in a row
6. return K

Fig. 14. The random-kset algorithm

6 LEVERAGING A KNOWN QUERY DISTRIBUTION
In this section, we assume a known distribution D for the user-specified weight vector w and
present a simple algorithm to complement Theorem 15.

Recall that the main deficiency of Theorem 15 lies in enumerating all the k-sets. The random-kset
algorithm in Figure 14 alleviates the issue by utilizing the knowledge of D. At the beginning, the
algorithm initializes an empty K (Line 1), which at the end will contain the k-sets found. In each
iteration, it samples a weight vectorw from D and retrieves its k-set Pw (k) (Lines 2-3). If Pw (k)
is already in K , we say thatw is captured; otherwise, we add Pw (k) to K (Line 4). The algorithm
terminates after the current K captures slen weight vectors in a row (Line 5). The K returned at
Line 6 is then fed to the hitting set approach to compute the final representative S.

By setting slen = (lnn)/ln 1
1−δ ≈

1
δ lnn, the following holds with probability at least 1 − 1/n:

Prw∼D[S ∩ Pw (k) , ∅] ≥ 1 − δ . (4)

To see why, suppose that (4) is not true, namely, Prw∼D[S ∩ Pw (k) = ∅] ≥ δ . Remember that S
hits all the k-sets in the K returned by random-kset. Thus, S ∩ Pw (k) = ∅ implies Pw (k) < K .
By combining all these, we know that K fails to capture a w drawn from D with probability at
least δ . However, in that case, the probability for K to capture slen independent weight vectors
continuously should be very slim. Indeed, the probability is at most 1/n under our choice of slen.

7 A SPACE PARTITION ALGORITHM
This section will present a heuristic algorithm for finding a k-rank-regret representative in any
dimensionality. The algorithm is built on a rank sum lemma that generalizes Lemma 9 and is
interesting in its own right. We will first present this lemma in Section 7.1 and then explain the
algorithm in Section 7.2.

7.1 A Rank Sum Lemma in Arbitrary Dimensions
We will consider Problem 2. Recall that the input is a set H of planes in Rd ; and the query space Q
includes all (d − 1)-dimensional vectors q such that q[i] ≥ 0 for every i ∈ [1,d − 1]. We want to
find an S ⊆ H such that, for every query q, S contains a plane h satisfying rankq(h) ≤ k .

The rest of this subsection serves as a proof of:

Lemma 16. Fix an arbitrary plane h ∈ H . Consider a simplex ∆ in the (d − 1)-dimensional query
space Q. Let q1,q2, ...,qd be the query vectors at the d vertices of ∆. Then, for any query q in ∆:

rankq(h) ≤

(
d∑
i=1

rankqi (h)

)
− (d − 1). (5)
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Note how Lemma 16 generalizes Lemma 9: the interval [q1,q2] in Lemma 9 is a simplex ∆ in
one-dimensional space.

Proposition 2. Fix an arbitrary plane h ∈ H . Consider a segment q1q2 in the (d − 1)-dimensional
query space Q. Then, for any query q on the segment, rankq(h) ≤ rankq1 (h) + rankq2 (h) − 1.

Proof. The proof uses the same ideas as in the proof of Lemma 9. Each query q corresponds
to the point (q[1], ...,q[d − 1],−∞) at the bottom of the dual space Rd . Denote by ℓq the line
parallel to dimension d and passing (q[1], ...,q[d − 1],−∞). Define (i) pq as the intersection point
between h and ℓq , and (ii) ρq as the open downward-shooting ray that emanates from pq but
does not include pq . Let Sq be the set of lines in H intersecting with ρq . |Sq1

| = rankq1
(h) − 1 and

|Sq2 | = rankq2 (h) − 1. We will prove that, for any q on the segment q1q2, any plane h′ ∈ Sq must
belong to either Sq1 or Sq2 . This indicates |Sq | ≤ |Sq1 | + |Sq2 |, from which the lemma will follow.

q1

q2

ρq1 ρq2

pq1

p′q1

q

query space Q

h′

h

p′q2

pq2

Fig. 15. Proof of Proposition 2

Let p ′q1
(or p ′q2

) be the intersection point between h′ and ℓq1 (or ℓq2 , resp.); Figure 15 illustrates
this for d = 3. Assume that h′ belongs to neither Sq1 nor Sq2 , which means that p ′q1

and p ′q2
must

be on or above h. Hence, the entire segment p ′q1
p ′q2

must be on or above h. Therefore, the q-rank of
h′ cannot be lower than that of h, contradicting h′ ∈ Sq . □

Proposition 3. Fix an arbitrary plane h ∈ H . Consider anym ≥ 2 queries q1, q2, ..., qm in Q. For
any query q that is a convex combination of q1, q2, ..., qm , rankq(h) ≤ (

∑m
i=1 rankqi (h)) − (m − 1).

Before proving the proposition, we would like to remind the reader thatq is a convex combination
of q1, q2, ..., qm if and only if q =

∑m
i=1 αiqi form real values α1, ...,αm in [0, 1] satisfying

∑m
i=1 αi =

1.

Proof. We will prove the proposition by induction on m. The base case of m = 2 is simply
Proposition 2. Assuming correctness onm = t ≥ 2, next we prove the claim onm = t + 1.
Let us write q as

∑m
i=1 αiqi where α1, ...,αm are real values in [0, 1] such that

∑m
i=1 αi = 1. We

consider 0 < αm < 1 (otherwise, the claim holds by the inductive assumption). Introduce:

q′ =
m−1∑
i=1

αi
1 − αm

qi
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algorithm space-partition (H )
1. S = ∅

2. Enqueue(Q)
3. while queue is not empty do
4. R = Dequeue( ) /* R is a rectangle in Q */
5. if R is protected by a plane in S then continue
6. if ∃ a plane h ∈ H that protects R then
7. add h to S (if multiple such h’s exist, add the one with the lowest aggregated rank on R)

else
8. split R into two rectangles of the same size on the dimension where R has the

longest extent; call Enqueue on both two rectangles
9. return S

Fig. 16. The space-partition algorithm

Since q′ is a convex combination of q1, ...,qm−1, by the inductive assumption we know rankq′(h) ≤

(
∑m−1

i=1 rankqi (h)) − (m − 2). Notice that q = (1 − αm)q′ + αmqm . By Proposition 2, we have
rankq(h) ≤ rankq′(h) + rankqm (h) − 1 ≤ (

∑m
i=1 rankqi (h)) − (m − 1). □

Lemma 16 now follows from the above proposition, using the well-known fact that any vector q
inside a simplex ∆ can be expressed as a convex combination of the d vertex vectors of ∆.

7.2 Algorithm
Our algorithm attacks Problem 2 and takes a set H of planes in the dual space as the input.

Rectangle protection. Let R be a hyper-rectangle in the query space Q and q1, q2, ..., q2d−1 be
the query vectors at the corners of R. Consider an arbitrary plane h ∈ H . Define r1, ..., rd as the d
greatest values in

{rankq1 (h), rankq2 (h), ..., rankq2d−1
(h)}.

We say that h protects R if
d∑
i=1

ri ≤ k + d − 1. (6)

The sum
∑d

i=1 ri is the aggregated rank of h on R.

Lemma 17. If h protects R, h has a q-rank at most k for any query q inside R.

Proof. Any pointq in R must be covered by at least one simplex that is defined by d corners of R.
Let those corners beq′

1,q′
2, ..., andq′

d . By Lemma 16, rankq(h) ≤ (
∑d

i=1 rankq′
i
(h))−(d−1). By the

definition of r1, ..., rd , we know
∑d

i=1 rankq′
i
(h) ≤

∑d
i=1 ri . Therefore, rankq(h) ≤

∑d
i=1 ri −(d−1) ≤

k + (d − 1) − (d − 1) = k , where the second inequality used (6). □

Space partition. Lemma 17 inspires us to divide Q into non-overlapping (d − 1)-dimensional
rectangles each protected by a plane in H . The space partition algorithm in Figure 16 starts with
an empty S (Line 1) and a queue storing only one rectangle, i.e., Q itself. In each iteration, the
algorithm removes a rectangle R from the queue (Lines 3-4) and checks whether R is protected
by a plane in S (Line 5). If not, it adds to S a plane h ∈ H that protects R (Lines 6-7). If such an h
does not exist, the algorithm splits R into two equi-size rectangles on the dimension where R has
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the longest extent and enqueue both. When the queue is empty, every possible query falls in a
protected rectangle, making it safe to return S as a k-rank-regret representative (Line 9).

When Q is finite, the algorithm is guaranteed to terminate due to two observations. First, each
split creates strictly smaller rectangles. Second, when a rectangle R contains only one query q, the
plane h ∈ H with q-rank 1 definitely protects R (in this case, r1 = r2 = ... = rd = 1 and, hence, (6)
holds). Q is finite in practice because a weight representation has a bounded precision (e.g., 64 bits)
in a computer.

8 EXPERIMENTS
After providing the algorithms and rigorous theoretical analysis, in this section we present compre-
hensive experiments to evaluate our proposal in practical scenarios. To do so, using real datasets,
we first provide a proof-of-concept experiment that highlights the motivation of finding rank-
regret representatives. We will then turn our attention to evaluating the performance of different
algorithms under various settings.

8.1 Experiments Setup

Datasets. We used real datasets in the experiments. All values were normalized into the range
[0, 1] and discretized into granularity of 0.01.
• BlueNile (BN) dataset3: Blue Nile is the largest online diamond retailer in the world. We
collected its catalog that contained 116,300 diamonds at the time of our collection. We
considered the scalar attributes Carat, Depth, LengthWidthRatio, Table, and Price. For all
attributes, except Price, higher values were preferred. The value of diamonds is sensitive
to these measurement such that small changes in scores may mean a lot in terms of the
quality of the jewel. For example, while the listed diamonds at Blue Nile range from 0.23
carat to 20.97 carat, minor changes in the carat affect the price. We considered two similar
diamonds, where one was 0.5 carat in weight and the other was 0.53 carat. Even though all
other measures were similar, the second diamond was 30% more expensive than the first
one. This is also true for Depth, LengthWidthRatio, and Table. The phenomenon that slight
changes in the scores may dramatically affect the value (and the rank) of the items highlights
the motivation of rank-regret.
• US Department of Transportation (DoT) flight dataset4: This database is widely used by third-
party websites to identify the on-time performance of flights, routes, airports, and airlines.
After removing the records with missing values, the dataset contains 457,892 records, for all
flights conducted by the 14 US carriers in the last months of 2017; we consider the scalar
attributes Dep-Delay, Taxi-Out, Actual-elapsed-time, Arrival-Delay, Air-time, and Distance

for our experiments.
As mentioned, BN and DoT datasets are 5D and 6D in their entirety. We generated d-dimensional

versions (where d ∈ [2, 5] for BN and d ∈ [2, 6] for DoT) of each dataset by including the first d
attributes in the order mentioned earlier.

Algorithms Evaluated.We will evaluate all the algorithms proposed in this paper under different
settings. Specifically, we will present two sets of experiments for the two dimensional (2D) and
multi-dimensional cases (MD) where d ≥ 3, involving the following algorithms:

3www.bluenile.com/diamond-search?
4www.transtats.bts.gov/DL_SelectFields.asp?
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• net-extreme-skyline (2D, MD): Proposed in Section 3, this algorithm uses sampling to con-
struct an ϵ-net. It further shrinks the size of the ϵ-net by removing the dominated items.
Following Theorem 4 and Lemma 3, using a sample size of O(nk logn) the algorithm returns
a k-representative set with probability at least 1 − 1/n2.
• exact (2D): The exact 2D algorithm works based on Theorem 7 and finds an optimal k-
representative by constructing an envelop chain as a sequence of line segments in Õ(nk)
time.
• shallow-cutting (2D): The shallow-cutting algorithm, proposed in Section 5.3, provides a 2D
regret-approximation algorithm for finding a (2 + δ )k-representative of size at most OPT,
where δ > 0 can be an arbitrarily small constant, inO(n logn) time. The value of δ was set to
1, i.e., the regret approximation ratio was 3.
• k-set (2D, MD): The k-set algorithm is a size-approximation algorithm that provides a k-
representative of size at most OPT ·O(logOPT) by first enumerating the k-sets and modeling
the problem as an instance of hitting set. We will see in our experiments that this algorithm
is expected to perform well when k is small.
• rand-k-set (2D, MD): Due to the high complexity of enumerating the k-sets, the randomized
algorithm in Section 6 serves as a practical alternative for enumerating the k-sets. Algorithm
rand-k-set is the same as the k-set algorithm, except that the former uses the randomized
algorithm for enumerating the k-sets. The distributionD was set to uniformity for rand-k-set,
which essentially says that we aimed to capture all weight vectors, instead of biasing towards
particular vectors. The parameter δ for rand-k-set was set to 0.01.
• space-partitioning (2D, MD): The space-partitioning algorithm works based on the rank sum
lemma proposed in Section 7.1. As will be shown in the experiments, this algorithm is
expected to perform well as long as k is not excessively small.

We preceded each of the above methods with a preprocessing step to shrink the input P of
Problem 1. As defined in Section 3, an object o dominates another one o′ if o[i] ≥ o′[i] for all
i ∈ [1,d]. The k-skyband of P includes every object o ∈ P that is dominated by at most k − 1
other objects in P . The k-set of any weight vector must be fully contained in the k-skyband [53].
Therefore, as opposed to P itself, we can solve Problem 1 on its k-skyband instead, which is usually
much smaller. For any fixed dimensionality d , the k-skyband can be found in Õ(n) time [58].

Evaluation measurements.We will evaluate the algorithms using three measures: (i) time, (ii)
representative size, and (iii) rank-regret. Time evaluates the efficiency of an algorithm, while
representative size and rank-regret measures evaluate how effective the algorithm is in finding
good and compact representatives.

Default values. In every experiment, we vary one parameter while fixing the other parameters to
the following default values: k = 8, d = 4, and n = 116, 300 for BN and 457, 892 for DoT.

8.2 Performance Evaluation
Having provided the proof of concept, we proceed to evaluate the performance of our algorithms
under different settings.

Number of extreme points. As mentioned in Section 1, the 1-rank-regret representative of a
dataset comprises the points on the boundary of the convex hull, i.e., the extreme points, which
guarantee to contain the top choice of any linear ranking function. However, the number of extreme
points can be very large. Table 2 shows the number of extreme points in the BN and DoT datasets
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dimension BN dataset DoT dataset
d = 2 19 13
d = 3 69 56
d = 4 206 168
d = 5 553 445
d = 6 – 1012

Table 2. The sizes of extreme points at various dimensions

at various dimensionalities. As will become evident in the upcoming experiments, the number
of extreme points is usually several times the size of the rank-regret representative we find. This
further strengthens our motivation and supports the necessity of developing efficient algorithms
for discovering (small) rank-regret representatives.

2D, varying k . Henceforth, we will follow the paradigm explained in Section 8.1, namely, in every
experiment, we will study the impact of one parameter, while fixing the other parameters to their
default values.

The value of k greatly impacts the ability to reduce the size of the rank-regret representative. For
example, when k = 1, all the items on the boundary of the convex hull appear in the representative.
As the value of k increases, it gives us the freedom to have more choices for every ranking function,
hence more opportunity to find items that cover large portions of the ranking functions. Besides
the size of the representative, the running time of the algorithms may also depend on the choice of
k . Therefore, as the first 2D experiment, we vary the value of k while fixing other parameters to
their default values. The results are provided in Figures 17 to 22.

Figures 17 and 18 show the time taken by each algorithm to find a representative. First, one can
observe that the k-set algorithm was significantly slower than all other algorithms and its running
time rapidly increased as the value of k increased. The reason for the algorithm’s bad running
time is that it requires enumerating all the k-sets before solving a hitting set problem. Therefore,
the running time of the algorithm significantly depends on the number of k-sets. The number of
k-sets, on the other hand, depends on the value of k . As observed in the experiments on both the
BN and DoT datasets, the increase in the value of k resulted in a significant increase in the number
of k-sets, causing the poor running time of the algorithm. Even though the rest of the algorithms
did not have running times as bad as k-set, still rand-k-set had a worse running time and it got
worse as k increased. The main reason why rand-k-set outperformed k-set in the running time
is that, compared to the graph enumeration approach for finding the k-sets, rand-k-set used a
more efficient randomized algorithm for the same purpose. We also note that, at least theoretically,
rand-k-set may miss the k-sets of certain weight vectors, resulting in a potentially smaller number
of k-sets in some cases. Among other algorithms, the exact 2D algorithm, even though initially fast,
took noticeably more time than the others as k increased. Net-extreme-skyline (labeled nes in the
legend) had a stable running time (but not the fastest) for different values of k . The shallow-cutting
and space-partitioning algorithms (labeled sc and sp in the legend) had similar running time
and both were significantly faster than all other algorithms across all values of k . We note that
shallow-cutting is an algorithm specifically designed for 2D, while space-partitioning works for
arbitrary dimensionalities.
Figures 19 and 20 show the size of the output (representative set) found by each algorithm,

while Figures 21 and 22 show the rank-regret of the output. Please note that the exact algorithm
guarantees to the optimal set (i.e., minimum size), while the output of the other algorithms is
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Fig. 17. BN, 2D: impact of varying k on time
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Fig. 18. DoT, 2D: impact of varying k on time
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Fig. 19. BN, 2D: impact of varying k on output size
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Fig. 20. DoT, 2D: impact of varying k on output size
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Fig. 21. BN, 2D: impact of varying k on output rank
regret
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Fig. 22. DoT, 2D: impact of varying k on output rank
regret

approximate. Among the approximation algorithms, net-extreme-skyline consistently returned the
largest sets but its output always satisfied the rank-regret of k . The outputs of all other algorithms
were very close to optimality, a strong indication that they are effective in finding compact sets.
The k-set and space partitioning algorithms always guarantee the rank-regret of k , rand-k-set and
net-extreme-skyline ensure the guarantee with very high probability, and shallow cutting was
parameterized for a 3-approximate assurance on rank-regret. By comparing the exact algorithm
with all other algorithms in Figures 21 and 22, one can notice that, interestingly, except shallow-
cutting, the output of all algorithms satisfied the rank-regret of k . In fact, the same is nearly true for
shallow-cutting whose rank regret was always bounded by k , except in a single case (BN, k = 64),

2D, varying the dataset size (n). Rank regret representatives are compact representatives that
are intended to be significantly smaller than the dataset size. The connection to ϵ-nets (Section 3)
provides an upper-bound on the size of the representative set which, however, needs to be 1/k
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Fig. 23. BN, 2D: impact of varying n on time
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Fig. 24. DoT, 2D: impact of varying n on time
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Fig. 25. BN, 2D: impact of varying n on output size
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Fig. 26. DoT, 2D: impact of varying n on output size
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Fig. 27. BN, 2D: impact of varying n on output rank
regret
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Fig. 28. DoT, 2D: impact of varying n on output rank
regret

of the original dataset. Therefore, our earlier results in Figures 19 and 20 suggest that traditional
sampling approaches for finding an ϵ-net are not necessarily effective in practical scenarios. Our
objective is to find the minimal set that satisfies the rank regret constraint. Recall that Section 3
also gave a lower-bound n/k on the size of any ϵ-net in the worst case. Despite this negative result,
Figures 19 and 20 indicate that this lower bound can be excessively pessimistic on real data. To
further demonstrate these phenomena, in the next experiment, we varied the dataset size, while
observing the algorithms performance, rank-regret, and the output size for each algorithm and
setting.
The results are provided in Figures 23 to 28. For every dataset, we controlled n by randomly

selecting 20%, 40%, 60%, 80%, and 100% of the data. First, as in Figures 23 and 24, the running time
of the algorithms was stable as the value of n increased. Among different algorithms, k-set had the
longest running time and shallow-cutting had the least. Figures 25 and 26 show the output size for
the BN and DoT datasets, while Figures 27 and 28 show the rank-regret of the generated results
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Fig. 29. BN, MD: impact of varying k on time
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Fig. 30. DoT, MD: impact of varying k on time

k-set nes rand-k-set sp

0

20

40

60

80

1 2 4 8 16 32 64

re
p
re
se
n
ta
ti
v
e
si
z
e

k

Fig. 31. BN, MD: impact of varying k on output size
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Fig. 32. DoT, MD: impact of varying k on output size
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Fig. 33. BN, MD: impact of varying k on rank regret
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Fig. 34. DoT, MD: impact of varying k on rank regret

obtained by different algorithms. Similar to the previous experiments, the output of net-extreme-
skyline had the maximum size, while the others were close to the optimum (the output size of
the exact algorithm). Furthermore, all algorithms returned representatives achieving a rank-regret
of k , except shallow-cutting, which guaranteed 3-approximation. These observations imply that
all algorithms except shallow-cutting found near-optimal solutions. A perhaps more important
observation is that even though the theoretical lower bound from the ϵ-net interpretation suggests
that the output size should be only a constant factor smaller than the dataset (recall k = 8, the
default value, here), in practice this number may be only a handful and hardly increase with n.

MD, varying k . After evaluating the 2D solutions, we now turn our attention to MD where d ≥ 3.
In the upcoming experiments, we study the impact of varying the value of k on the performance of
different MD algorithms. Figures 29 to 34 show the results across different settings for the BN and
DoT datasets.
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Fig. 35. BN, MD: impact of varying d on time
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Fig. 36. DoT, MD: impact of varying d on time
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Fig. 37. BN, MD: impact of varying d on output size
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Fig. 38. DoT, MD: impact of varying d on output size
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Fig. 39. BN, MD: impact of varying d on rank regret
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Fig. 40. DoT, MD: impact of varying d on rank regret

First, looking at the running time of the algorithms in Figures 29 and 30, net-extreme-skyline was
the fastest across different cases, while k-set did not scale well with k . An interesting observation,
however, is that while the running time of k-set and rand-k-set monotonically increased with k , that
of space-partitioning actually decreased as k went up. The reason for the increase in the running
time of k-set and rand-k-set is that (assuming k < n/2) the number of k-sets escalates as k increases.
This forces both algorithms to spend more time enumerating the k-sets and solving the hitting
set problem. For larger k , however, the space-partitioning algorithm finds more opportunity to
prune the search space, simply because it essentially looks for common elements in larger sets,
which are the top-k results (which are supersets of the results of smaller k). These observations
together indicate that (rand-)k-set and space partitioning are complimentary algorithms for finding
rank-regret representatives in different settings.

Next, we studied the output size (Figures 31 and 32) and rank-regret (Figures 33 and 34) for the
BN and DoT datasets. Recall that, in theory, the space partitioning and k-set algorithms guarantee
the rank-regret of k , while rand-k-set and net-extreme-skyline guarantee the same with very high
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Fig. 41. BN, MD: impact of varying n on time
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Fig. 42. DoT, MD: impact of varying n on time
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Fig. 43. BN, MD: impact of varying n on output size
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Fig. 44. DoT, MD: impact of varying n on output size
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Fig. 45. BN, MD: impact of varying n on rank regret
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Fig. 46. DoT, MD: impact of varying n on rank regret

probability. However, in all settings across the two datasets, every algorithm managed to find
k-rank representatives. The net-extreme-skyline algorithm, in spite of being fast, failed to find
compact representatives, especially as k increases. The rand-k-set and k-set algorithms generated
the smallest outputs, and their representative sizes decreased as k increased. In particular, for all
settings with k > 10 in both datasets the output size was always less than 10, fully echoing the
motivation of rank-regret representatives.

MD, varying the number d of dimensions. In this experiment, we evaluate different MD algo-
rithms for different values of d . The results are provided in Figures 35 to 40.
Let us first look into the running time of the algorithms across different settings (Figures 35

and 36). The k-set algorithm failed to scale beyond four dimensions because the exact (graph-
traversal) algorithm in Section 5.6 for enumerating the k-sets did not finish within the time budget
(20,000 seconds). In contrary, the rand-k-set algorithm (being efficient in finding the k-sets) scaled
much better with respect to d . The time performance of the space-partitioning algorithm worsened
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as d became larger, due to the curse of dimensionality, i.e., significant enlargement in the search
space. The net-extreme-skyline had the best time performance but, as discussed next, it failed
to find compact representatives. Figures 37 and 38 show the output size, and Figures 39 and 40
show the rank-regret of the generated output for the BN and DoT datasets. Similar to the previous
experiments, all algorithms were able to ensure the rank-regret of k = 8 across different settings.
Evidently, the representative sets of net-extreme-skyline were fairly large, especially as d increased,
while (rand-)k-set managed to secure small representatives in all cases.

MD, varying the dataset size n. Finally, we conclude our experiments by studying the impact
of varying the dataset size on the performance of different algorithms. To do so, similar to the
corresponding 2D experiments, we selected 20% to 100% of the BN and DoT datasets for the default
values of k = 8 and d = 4. The results are provided in Figures 41 to 46.

Looking at Figures 41 and 42, one can see that, even as the value of n increased, all algorithms
had a stable running time for all values of n. Also, looking at Figures 45 and 46, one can see that the
output of all algorithms satisfied the rank-regret requirement (k = 8) in all settings, as is consistent
with the previous experiments. As shown in Figures 43 and 44, the output of net-extreme-skyline
was the largest, while (rand-)k-set could find representatives with size around 10 in all the scenarios.

9 RELATEDWORK
The problem of finding preferred items of a data set has been extensively investigated in recent
years, and research has spanned multiple directions, most notably in top-k query processing [40]
and skyline discovery [13]. In top-k query processing, the approach is to model the user preferences
by a ranking/utility function which is then used to preferentially select tuples. Fundamental results
include access-based algorithms [15, 33, 34, 46] and view-based algorithms [24, 39]. In skyline
research, the approach is to compute subsets of the data (such as skylines and convex hull points) that
serve as the data representatives in the absence of explicit preference functions [11, 13, 55]. Skylines
and convex hull points can also serve as effective indexes for top-k query processing [10, 21, 62].

Efficiency and effectiveness have always been the ch6allenges in the above studies. While top-k
algorithms depend on the existence of a preference function and may require a complete pass
over all of the data before answering a single query, representatives such as skylines may become
overwhelmingly large and ineffective in practice [8, 37]. Studies such as [17, 61] are focused towards
reducing the skyline size. In an elegant effort towards finding a small representative subset of the
data, Nanongkai et al. [51] introduced the regret-ratio minimizing representative. The intuition
is that a “close-to-top” result may satisfy the users’ need. Therefore, for a subset of data and a
preference function, they consider the score difference between the top result of the subset versus
the actual top result as the measure of regret, and seek the subset that minimizes its maximum
regret over all possible linear functions. Since then, works such as [3, 8, 16, 41, 43, 50, 54, 63]
studied different challenges and variations of the problem. As discussed in Section 4.1, Chester et
al. [22] generalize the regret-ratio notion to k-regret ratio, and Agarwal et al. [3] prove that the
k-regret minimizing set problem is NP-complete even when d = 3. For the case of two dimensional
databases, [22] proposes a quadratic algorithm. The cube algorithm and a greedy heuristic [51] are
the first algorithms proposed for regret-ratio in dimensionality d ≥ 3. Recently, [3, 8] independently
propose similar approximation algorithms for the problem, both discretizing the function space
and applying the hitting set, thus, providing similar controllable additive approximation factors.
The major difference is that [8] considers the original regret-ratio problem while [3] considers the
k-regret variation. It is important to note that the above prior works consider the score difference
as the regret measure, making their problem setting different from ours, since we use the rank
difference as the regret measure.
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We now review results relevant to the geometric notions that were used in this paper to develop
new algorithms. Such notions include ϵ-net (for the net-extreme-skyline algorithm, Figure 4),
(≤ k)-level in 2D space (for the 2D exact algorithm, Figure 7), shallow cutting (for the 2D and
3D shallow cutting algorithms, Figure 12 and Theorem 13), and k-set (for the k-set enumeration
algorithm, Figure 13).

Haussler andWelzl [38] proved that a random sample (with replacement) of sizeO(dϵ log
1
δϵ ) from

ad-dimensional points set P is an ϵ-net (for halfspaces) with probability at least 1−δ . We utilized this
result in designing the net-extreme-skyline algorithm. For certain dimensionalities (in particular, 2
and 3), it is possible to produce even smaller ϵ-nets; we refer the reader to [6, 14, 19, 42, 44, 60] for
details.

The notion of (≤ k)-level, defined on a set H of lines, is fundamental in computational geometry.
Recall from Section 4.2.1 that the (≤ k)-level is partitioned into non-overlapping polygons using
the lines in H . In the special case of k = n (where n = |H |), the set of polygons that constitute the
(≤ n)-level is called the arrangement of H . The arrangement can be computed in Õ(n2) time (the
algorithm is easy to implement; see [25]). Another special case worth mentioning is k = 0. The
(≤ 0)-level (namely, the 0-level) consists of a single polygon, whose boundary is called the lower
envelope and can be computed in O(n logn) time (again, the algorithm is easy to implement; see
[25]). For general values of k , Alon and Gyori were the first to prove that the (≤ k)-level has O(nk)
boundary edges (recall that a boundary edge is an edge of a polygon in the (≤ k)-level); the bound
is tight in the worst case, meaning that the number of boundary edges can reach Ω(nk). Clarkson
and Shor [23] provided an alternative (somewhat simpler) argument to prove the same bound. To
establish Theorem 7, we leveraged anO(n logn +nk)-time algorithm for computing the (≤ k)-level;
the algorithm was due to Everett et al. [32].
The algorithm of [32] is a bit complicated and difficult to implement. There exist heuristic

methods for finding the (≤ k)-level which, although not attractive in worst-case time complexity,
are much simpler to implement. One such method is Onion [21]. Next, we illustrate the Onion
approach for k = 1 because the extension to higher k values is straightforward. Let H be a set
of lines whose (≤ 1)-level is to be computed. First, find the set L0 of lines that define the lower
envelope of H (which, as mentioned before, takes O(|L0 | log |L0 |) time). Then, we remove L0 from
H (as if peeling off the out-most layer of an onion) and obtain H1 = H \ L0. In the same fashion, we
find the set L1 of lines that define the lower envelope of H1. All the lines relevant to the (≤ 1)-level
of H must be in L = L0 ∪ L1. We can now compute the arrangement of L (which, as mentioned
before, takes Õ(|L|2) time) and then derive the (≤ 1)-level of H from the line arrangement. For
small k , the size of L is considerably smaller than n, thus allowing the method to terminate fast.

Shallow cuttings were introduced by Matousek [47] as a tool for halfspace range reporting. He
[47] gave a polynomial-time algorithm to compute a shallow cutting in any constant-dimensional
space. Later, Ramos [56] presented randomized algorithms for 2D and 3D space, both of which run
in O(n logn) expected time (where n is the number of planes in the input). Also focusing on 2D
and 3D, Chan and Tsakalidis [20] discovered deterministic algorithms that finish in O(n logn) time.
The specific form of shallow cuttings we used in Section 5.2 is a refined version of Matousek’s and
was proposed by Afshani and Chan [1]. They also showed [1] that, in 2D and 3D space, all the
aforementioned algorithms designed to compute Matousek’s version can be used to compute the
refined version with the same time complexity.

There is a simpler method to compute a (λ,k/n)-shallow cutting whose size may not be bounded
by O(n/(1 + k)) but is often sufficiently small for practical use. Imagine sweeping a vertical line
ℓ from left to right and, in doing so, trace out a prism ∆ continuously. Specifically, ∆ is 2-sided:
its left and top edges have been decided, but its right edge is aligned with ℓ and is still moving
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towards right along with ℓ. The prism’s right edge is finalized at the current ℓ when, if ℓ continues
to move, ∆ will violate the conditions of (λ,k/n)-shallow cutting. After that, we create another
2-sided prism ∆′ right away. Specifically, the left edge of ∆′ is aligned with ℓ, while its top edge is
the (1 + λ/2)k-th lowest line (in the input set) at the current position of ℓ. The process then repeats
until the end.
Lovasz and Erdos [31, 45] appeared to be the first to formally investigate how many k-sets can

be induced by a set of 2D points. Their work motivated a fruitful line of research on bounding the
number of k-sets. See [26, 29, 30, 52, 59] for results on dimensionalitiy d = 2 and [4, 27, 28, 57, 59]
for results on d ≥ 3. The problem of enumerating all k-sets has been studied in [32] for 2D and in
[4, 7, 26, 57] for higher dimensionalities. A practical algorithm for enumerating k-sets has been
described in Section 5.6.

10 CONCLUSIONS
In this paper, we proposed a rank-regret measure that is easier for users to understand, and often
more appropriate, than regret computed from score values. We defined rank-regret representative as
the minimal subset of the data containing at least one of the top-k of any possible ranking function.
Our systematic study contains an optimal polynomial time algorithm in 2D space, an NP-hardness
proof in 3 or more dimensions, approximation algorithms of various dimensionalities under different
approximation schemes, a randomized algorithm utilizing the knowledge of query distribution, and
a space-partition algorithm leveraging an interesting rank-sum lemma. In addition to theoretical
analyses, we conducted empirical experiments on real data that verified the effectiveness and
efficiency of our techniques. The proposed algorithms nicely complement each other and together
constitute an adequate set of solutions covering a great variety of practical scenarios.

Our work initializes several directions for future research. Recall that in 2D space we developed
a bi-criteria approximation algorithm with running timeO(n logn). Currently, it remains elusive to
design a bi-criteria approximation algorithmwith the same time complexity in 3D space. Likemost of
the research in the skyline literature, this paper focused on low and medium dimensionalities. When
the dimensionality is very large such that it can no longer be considered a constant, our algorithms
would not work well. How to overcome this issue is another exciting topic for investigation. The
last direction we want to mention concerns updates. In this work, we have assumed the input
set of points to be static. It would be nice to have algorithms that can maintain a rank-regret
representative efficiently along with the insertions/deletions on the input.
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APPENDIX
PROOF OF LEMMA 1
Clearly, MRR(S) ≥ maxw ∈W[d ],0 RRw (S) because W[d ],0 ⊂ W . The subsequent discussion will show
maxw ∈W[d ],0 RRw (S) ≥ MRR(S), which will establish the lemma.
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Set r = MRR(S); and suppose that maxw ∈W[d ],0 RRw (S) < r . There must exist w∗ ∈ W with
w∗[d] = 0 such that RRw ∗ (S) = r .5 Let o∗ ∈ S be an object that has the highestw∗-score in S ; clearly,
rankw ∗ (o∗) = r . P must have r − 1 objects o1,o2, ...,or−1 outside S such that the w∗-score of oj
(j ∈ [1, r − 1]) is strictly larger than that of o∗.

Construct w ′ ∈ W[d ],0 where w ′[i] = w∗[i] for each i ∈ [1,d − 1] and w ′[d] = δ where δ > 0
is infinitesimally small. As oj ·w∗ > o∗ ·w∗ for every j ∈ [1, r − 1], a sufficiently low δ ensures
oj ·w ′ > o∗ ·w ′. In other words, thew ′-rank of o∗ is at least r .

By the assumption maxw ∈W[d ],0 RRw (S) < r , we know RRw ′(S) ≤ r − 1. Hence, S must have an
object o′ whosew ′-rank is at most r − 1. This object must have aw ′-score higher than that of o∗,
namely: (

d−1∑
i=1

o′[i] ·w∗[i]

)
+ o′[d] · δ >

(
d−1∑
i=1

o∗[i] ·w∗[i]

)
+ o∗[d] · δ .

Using the definition of o∗ and δ being infinitesimally small, we can assert
∑d−1

i=1 o
′[i] · w∗[i] =∑d−1

i=1 o
∗[i] ·w∗[i], namely, o′ and o∗ have the samew∗-score.

Given oj ·w∗ > o∗ ·w∗ = o′ ·w∗ for every j ∈ [1, r − 1], we conclude that oj ·w ′ > o′ ·w ′ for a
sufficiently small δ > 0. This means that P has at least r − 1 objects whosew ′-scores are strictly
higher than that of o′, which contradicts rankw ′(o′) ≤ r − 1.

PROOF OF THEOREM 13
We use Lemma 8 to obtain a (δ , (k − 1)/n)-shallow cutting Ξ. For each ∆ ∈ Ξ, define XY∆ as the
xy-projection of ∆. Each plane h ∈ H∆ (where H∆ is the conflict set of ∆; see Section 5.2) intersects
∆ into a polygon, whose xy-projection is represented as XYh(∆).

The polygons XYh(∆) of all h ∈ H∆ induce an arrangement, which is a set A∆ of O(k2) polygons
in the xy-plane satisfying
• the union of all the polygons in A∆ is XY∆, and
• for every h ∈ H∆ and every polygon A ∈ A∆, XYh(∆) either entirely covers A or is non-
overlapping with A.

Define

A =
⋃
∆∈Ξ

A∆.

The polygons in A are non-overlapping; and their union is precisely R2.
Given a plane h ∈ H , define Ξ(h) as the set of prisms in Ξ intersecting with h, i.e., Ξ(h) = {∆ ∈

Ξ | h ∈ H∆}. Define:

Zh =
{
A ∈ A

��� ∃∆ ∈ Ξ(h) such that A ∈ A∆

}
.

Lemma 18. For any plane h ∈ H and any query q covered by Zh , rankq(h) ≤ (1 + δ )k .

Proof. As before, denote by ℓq the vertical line in Rd that is parallel to dimension d and passes
(q[1], ...,q[d − 1],−∞). Let p be the intersection between h and ℓq . Since q is covered by Zh , we
know that p must be covered by a prism in Ξ. Since the union of all the prisms of Ξ is covered
by the (≤ (1 + δ )(k − 1))-level of H , the level of p must be at most (1 + δ )(k − 1). This means that
rankq(h) ≤ (1 + δ )k . □

5Otherwise, every weight vector w achieving RRw (S ) = MRR(S ) must fall in W[d ],0, implying maxw ∈W[d ],0 RRw (S ) ≥
MRR(S )).
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Consider any optimal solution S∗ to Problem 2. We have:

Lemma 19.
⋃

h∈S∗ Zh covers Q.

Proof. Assume, on the contrary, that the union fails to include a query q ∈ Q. By definition of
S∗, there exists a plane h ∈ S∗ whose q-rank is at most k . Let p be the intersection point between
h and ℓq . By rankq(h) ≤ k , the level of p is at most k − 1. Now, consider the prism ∆ ∈ Ξ whose
xy-projection covers q. We assert that p must fall inside ∆; otherwise, p falls outside the union of
all the prisms of Ξ, contradicting the fact that the union must contain the (≤ k − 1)-level of H .
However, ∆ covering p implies that XYh(∆) covers q, which in turn indicates the existence of an
A ∈ Zh covering q, giving a contradiction. □

We now find a small S ⊆ H such that
⋃

h∈S Zh covers Q; the existence of S is guaranteed by
Lemma 19. It is rudimentary to apply a greedy set cover algorithm over {Zh | h ∈ H } to find an S

with size at most |S∗ |O(logn) = OPT · O(logn). As every query must be covered by the Zh of at
least one h ∈ S, Lemma 18 ensures that MRR′(S) ≤ (1 + δ )k .

To analyze the running time, we observe:∑
h∈H

|Zh |

=
∑
A∈A

number of planes h ∈ H∆ s.t. XYh(∆) covers A, where ∆ is the prism with A ∈ A∆

≤
∑
A∈A

|H∆ | where ∆ is the prism with A ∈ A∆

≤
∑
A∈A

O(k) (applying the definition of shallow cutting)

= O(|A| · k) = O(nk2)

where the last equality used |A| = O(k2) · |Ξ| and |Ξ| = O(n/k) (Lemma 8). After explicitly
generating the Zh of every h ∈ H , the greedy set-cover algorithm runs in O(nk2) time. This
concludes the proof of Theorem 13.
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