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This paper studies I/O-efficient algorithms for the triangle listing problem and the triangle counting problem,
whose solutions are basic operators in dealing withmany other graph problems. In the former problem, given
an undirected graph G, the objective is to find all the cliques involving 3 vertices inG. In the latter problem,
the objective is to report just the number of such cliques, without having to enumerate them. Both problems
have been well studied in internal memory, but still remain as difficult challenges when G does not fit in
memory, thus making it crucial to minimize the number of disk I/Os performed. Although previous research
has attempted to tackle these challenges, the state-of-the-art solutions rely on a set of crippling assumptions
to guarantee good performance. Motivated by this, we develop a new algorithm that is provably I/O and CPU
efficient at the same time, without making any assumption on the input G at all. The algorithm uses ideas
drastically different from all the previous approaches, and outperforms the existing competitors by a factor

of over an order of magnitude in our extensive experimentation.

Categories and Subject Descriptors: H3.3 [Information search and retrieval]: Search process

General Terms: Algorithms, Theory, Performance
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1. INTRODUCTION

Given a graph1 G = (V,E), where V (E) is the set of vertices (edges), the triangle listing
problem reports all the triangles in G, each of which is a clique of 3 vertices u, v, w in
G, denoted as ∆uvw. For instance, if G is the graph in Figure 1, the set of triangles is
{∆123,∆234,∆346,∆368,∆456,∆568}. The triangle counting problem, on the other hand,
aims at returning just the number of triangles, without having to enumerate them: the
output for the example of Figure 1 is a single integer 6.
The importance of these problems has long been recognized in the literatures of

databases, network analysis, knowledge discovery, and graph theory. Below we list

1Unless otherwise stated, a graph in this paper is undirected and simple.
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Fig. 1. The input graph in our running example

several representative applications; interested readers may refer to [Chu and Cheng
2012; Kolountzakis et al. 2012; Suri and Vassilvitskii 2011] for additional applications.

Dense Subgraph Mining. Given a graph G, a dense neighborhood graph (DN-graph)
[Wang et al. 2010] is a subgraph of G, where each pair of connected vertices share
at least a number of common neighbors. The most efficient known algorithm [Wang
et al. 2010] for DN-graph discovery utilizes a triangle-listing algorithm as a black box.
Hence, a faster solution to triangle listing automatically gives rise to an improved
algorithm for mining DN-graphs.

Triangular Connectivity.Let u, v be vertices in a graphG. They are triangularly con-
nected [Batagelj and Zaversnik 2007] if there is a sequence of triangles (∆1,∆2, ...,∆s)
such that u (v) is a vertex in the first (last) triangle ∆1 (∆s), and for every 1 ≤ i ≤ s− 1,
∆i shares at least one vertex with ∆i+1. In Figure 1, for instance, vertex 1 is triangu-
larly connected to vertex 5 due to the sequence (∆123,∆346,∆456). In triangular cluster-
ing [Section 5.1, [Schank 2007]], the vertices in G are divided into equivalence classes
such that, two vertices are in an equivalence class if and only if they are triangularly
connected. The computation of equivalence classes is reduced to finding connected com-
ponents after all the triangles have been obtained [Schank 2007] (hence, fast triangle
listing is again the key).

k-truss. Given a graph G, its k-truss (k ≥ 3) [Cohen 2009] is the maximum subgraph
of G where every edge appears in at least k − 2 triangles. This is a form of so-called
cohesive subgraphs that reveal characteristics of social networks [Cohen 2009; Wang
and Cheng 2012]. Not surprisingly, the state-of-the-art algorithm [Wang and Cheng
2012] for k-truss computation deploys triangle listing as an initial step.

Network Measurement. A popular approach in studying networks is to interpret
their measurements on certain key aspects. A well-known measure is clustering coeffi-
cient [Watts and Strogatz 1998]. Given a vertex v in a graph, its clustering coefficient

equals t(v)/
(

d(v)
2

)

, where t(v) is the number of triangles containing v, and d(v) is the
degree of v. Another closely related measure is transitive ratio [Watts and Strogatz
1998], which is the ratio of the number of triangles and the number of “connected
triples” (three vertices form a connected triple if there are at least 2 edges among
them). Triangle counting is a crucial step to calculate these measures.

1.1. Motivation

We consider that the input graph G does not fit in memory, and thus needs to be pro-
cessed by an external memory graph algorithm. Recently, such algorithms have re-
ceived considerable interest (see [Cheng et al. 2011; Chu and Cheng 2012; Hellings
et al. 2012] and the references therein), in response to the practical need to analyze
massive graphs whose scales exceed the memory capacity of a commodity machine. For
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example, as of 2011, the social network at Facebook contains more than 721 million
active users (a.k.a. nodes), and over 69 billion friendship edges [Bakshy et al. 2012]. If
each edge is represented by 2 integers, the entire graph occupies over 550 giga bytes
of storage (4 bytes per integer).
I/O-efficient algorithms for triangle listing have been investigated previously. Next,

we give an overview of the existing solutions (deferring a detailed coverage to Sec-
tion 3). Henceforth, let M = O(|E|) be the size of our memory, and B the size of a disk
block, both measured in number of words. The values of M and B satisfy M ≥ 2B, i.e.,
the memory contains at least two blocks. Finally, denote by K the number of triangles
in G.

External Memory Compact Forward (EM-CF) [Menegola 2010]. Incurring
O(|E| + |E|1.5/B) I/Os, this algorithm has two main defects. First, it performs at least
|E| I/Os, which is prohibitively expensive in most practical environments. Second, its
I/O cost is insensitive to M , rendering the algorithm unable to benefit from the avail-
ability of extra memory. Note that the I/O complexity of EM-CF does not depend on
K because it outputs all triangles in O(K/B) I/Os whereas in general it holds that
K = O(|E|1.5) (as will be explained in the next section).

External Memory Node Iterator (EM-NI) [Dementiev 2006]. This algorithm runs
in O(|E|1.5/B · logM/B(|E|/B)) I/Os. As with EM-CF, its I/O complexity is (almost) in-

sensitive to M , such that the dominating term |E|1.5/B receives no improvement even
when memory is abundant.

Graph Partition [Chu and Cheng 2011; 2012]. Neither of the above algorithms is
output sensitive, namely, their I/O complexity is Ω(|E|1.5/B), regardless of the output
size K. Even though the term O(|E|1.5/B) is compulsory in the worst case where K
reaches Ω(|E|1.5), the actual K in a realistic graph is far less than that extreme limit.
This makes it interesting to design output sensitive algorithms that are more efficient
when K is small.

Recently, Chu and Cheng [Chu and Cheng 2012] made some nice progress in this
direction. The crucial idea is to target an I/O complexity of O(|E|2/(MB) +K/B). The

rationale is that |E|2/(MB) < |E|1.5/B whenever |E|/M <
√

|E|. To see why this is
not a stringent inequality, note that even if the memory can hold only 1% of the edges,
the inequality is still satisfied as long as |E| > 10000. In general, if the memory can
accommodate a constant fraction of the input graph (a situation very likely in practice),
O(|E|2/(MB)+K/B) = O(|E|/B+K/B), which is asymptotically optimal because any
algorithm must read all edges at least once, and report all the triangles to the disk.
Utilizing several interesting ideas of graph partitioning, Chu and Cheng [Chu and

Cheng 2012] presented two algorithms based on graph partitioning that achieve the
desired O(|E|2/(MB) +K/B) bound under a set of assumptions. Unfortunately, as we
analyze in Section 3, if any of those assumptions is violated, their algorithms fail to
guarantee the target efficiency, and may even suffer from severe performance penalty.

Aggregating Triangles and Witnessing Algorithms. The above listing algorithms
can also be used to perform counting with the same I/O performance, by simply avoid-
ing the I/Os for writing triangles to the disk. Specifically, the algorithms of [Chu and
Cheng 2012] now finish in O(|E|2/(MB)) I/Os when their assumptions are satisfied,
whereas the I/O complexities of EM-CF and EM-NI remain O(|E| + |E|1.5/B) and
O(|E|1.5/B · logM/B(|E|/B)), respectively.

All these algorithms, when applied to counting, share a common property: they do
the counting by actually seeing every triangle in memory. We call such triangle count-
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ing algorithms witnessing algorithms. The class of witnessing algorithms possesses an
appealing feature—they directly support triangle aggregationwith respect to other ag-
gregate functions as well. In triangle counting, every triangle is implicitly associated
with a weight 1, such that the answer is merely the sum of all triangles’ weights. More
generally, the weight of a triangle can be any real number (e.g., when a triangle rep-
resents friendships among 3 individuals, its weight can be the average age of those
individuals), such that we may alternatively return the sum, average (based on sum
and count), maximum (and hence, minimum) of the weights of all triangles.
Generalizing this discussion, a witnessing algorithm can be used to return the total

aggregate of all triangles’ weights as long as the weight domainD and the aggregation
function ⊕ satisfy three conditions: (i) ⊕ is closed over D, (ii) ⊕ is associative and com-
mutative, and (iii)D has an identity element e such that e⊕e′ = e′ for any e′ ∈ D—such
pairs of (D, ⊕) are called commutative semi-groups2. Besides all the distributive aggre-
gate functions popular in database systems, numerous other functions satisfy these
conditions as well. As an example, consider D as the set of all possible bit vectors of a
fixed length, and ⊕ as the AND operator. In this case, the weight of each triangle is a
vector in D; and the total aggregate of all triangles is the AND result of their bit vec-
tors. A witnessing algorithm, by simply plugging in this aggregate function, can then
immediately be used to compute this total aggregate. Therefore, such an algorithm
finds important use in scenarios where the bit-vector (a.k.a. weight) of a triangle is a
mergeable sketch, e.g., a bloom filter [Bloom 1970], count-min sketch [Cormode and
Muthukrishnan 2005], FM-sketch [Flajolet and Martin 1983], etc.
Henceforth, we will use triangle counting as a representative of triangle aggrega-

tion. All our discussion extends to commutative semi-group aggregate functions in a
straightforward manner.

1.2. Our Contributions

Our first contribution is a new algorithm that settles the triangle listing problem in
O(|E|2/(MB) +K/B) I/Os in all settings, namely, with no assumption at all. The algo-
rithm is based on ideas drastically different from those of [Chu and Cheng 2012]. As
we will see later, the term |E|2/(MB) is inevitable, namely, it is impossible to achieve
o(|E|2/(MB)) I/Os for all inputs even if M ≪ |E|.3 This stands in sharp contrast to
triangle listing in memory, where o(|E|2)-time algorithms are well known (e.g., the al-
gorithm of [Chiba and Nishizeki 1985] runs in O(|E|1.5) time). In external memory, the
I/O complexity O(|E|2/(MB)+K/B) is thus already worst-case optimal4 within only a
constant factor ( even for M ≪ |E|).
As the next step, we prove that the proposed algorithm is also CPU-efficient: it

entails O(|E| log |E| + |E|2/M + α|E|) CPU time, where α is the arboricity of the
input graph—a classic metric for measuring the density of a graph. Section 2 will
present an extended introduction to α, while for now, it suffices to note that α never
exceeds O(

√

|E|) even in the worst case [Chiba and Nishizeki 1985], and is much
smaller for graphs in reality [Lin et al. 2012]. It can be shown that both the terms
|E| log |E| + |E|2/M and α|E| are inevitable, namely, no algorithm can perform only
o(|E| log |E| + |E|2/M) or o(α|E|) CPU time for all input graphs (even for M ≪ |E|).
This indicates that our algorithm is both I/O and CPU optimal by a constant factor in
the worst case.

2In a semi-group (D,⊕), it is commonly assumed that each element in D fits in a computer word, and that
each calculation by ⊕ takes constant CPU time.
3The inevitability of E2/(MB) is trivial for M = Ω(|E|).
4The optimality is claimed with respect to parameters |E|,M , andB. Specifically, our algorithm implies the
bound O(|E|2/(MB) + |E|1.5/B) which as will be shown in Section 4.5 is tight even if M << |E|.
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Besides designing new algorithms, this paper also enhances the understanding of
existing algorithms. In this respect we present two new results. First, we prove that
the I/O cost of EM-NI can actually be bounded by O(α · SORT(|E|)), where α as men-
tioned earlier is the arboricity, and SORT(|E|) is the I/O cost of sorting |E| elements.
The finding reveals why EM-NI is very efficient when the input graph is sparse. In
particular, α = O(1) for planar graphs, in which case the I/O complexity of EM-NI
becomes O(SORT (|E|)). This phenomenon cannot be explained by the previous bound
O(|E|1.5/B · logM/B(|E|/B)) on EM-NI.
Second, we revisit an elegant algorithm in [Chu and Cheng 2012] called randomized

graph partitioning (RGP). We strengthen its analysis with a non-trivial argument to
remove a restrictive assumption that was imposed on this algorithm. The removal
reduces the remaining assumptions on RGP to some weak conditions that are almost
always fulfilled, and thereby considerably improves its applicability.
The last contributions of the paper concern the triangle counting problem. First,

our listing algorithm trivially supports triangle counting in O(|E|2/(MB)) I/Os and
O(|E| log |E|+ |E|2/M+α|E|) CPU time. Our algorithm belongs to the witnessing class,
and hence, is applicable to any commutative semi-group aggregate functions. Second,
we prove, perhaps surprisingly, that no witnessing algorithm is able to solve the trian-
gle counting problem in O(|E|/B + |E|2−ǫ/(MB)) I/Os, no matter how small constant
ǫ > 0 is5, implying that our counting algorithm is essentially I/O-optimal. It can also
be shown that the CPU time of our counting algorithm is optimal among all the wit-
nessing algorithms.

1.3. Summary of Experiments

The paper also features an experimental study that is more extensive than those of
all the previous work dealing with I/O-efficient triangle listing/counting. We are the
first to put all the known algorithms into a direct cross comparison (the papers [Chu
and Cheng 2011; 2012] that represent the state of the art unfortunately missed out
EM-CF and EM-NI, which we will show are not always the slowest methods). Our
experimentation involved both real and synthetic graphs. On the real side, we used
exactly the same datasets deployed in [Chu and Cheng 2012] to establish the efficiency
of DGP and RGP. On the synthetic side, we employed graphs of various distributions,
including ones generated from the classic small worldmodel [Watts and Strogatz 1998]
and the modern popular recursive matrix (R-MAT) model [Chakrabarti et al. 2004].
The results demonstrate that MGT outperformed all its competitors by a factor over
an order of magnitude in both I/O and CPU efficiency. Furthermore, its performance is
consistently good regardless of the graph distribution and size.

1.4. Paper Organization

Section 2 defines a set of frequent notations, and reviews some results from graph the-
ory relevant to our discussion. Section 3 analyzes the previous I/O-efficient algorithms
for triangle listing. Section 4 describes the proposed algorithm and proves its theoret-
ical guarantees. Section 5 gives our new results on EM-NI and RGP, and elaborates
on their significance. Section 6 presents our lower bound results for triangle counting.
Section 7 presents an extensive experimental evaluation to demonstrate the superior-
ity of the proposed technique over the existing solutions. Finally, Section 8 concludes
the paper with a summary of our findings.

5For example, no witnessing algorithm can guarantee an I/O complexity of O(|E|/B +
|E|1.999999999.../(MB)).
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Fig. 2. Two edge-disjoint trees covering all the edges of the graph in Figure 1

1.5. Extensions beyond the Conference Version

A short version of this paper has appeared in [Hu et al. 2013]. The current version
extends that preliminary work by proving the aforementioned I/O lower bound on tri-
angle counting. The significance of this lower bound lies in its revelation that triangle
counting suffers from an inherent quadratic I/O complexity. As shown in Section 6, this
lower bound requires an argument that is drastically different from the one used in
the short version to prove a lower bound for triangle listing. More specifically, the key
to establish the listing lower bound is to argue that the output costK/B must be large
in the worst case (see Section 4.5). This argument does not work for counting where
the output cost is trivially small—just a single value.

2. PRELIMINARIES

Basic Notations. As mentioned before, the input to the triangle listing problem is
a simple undirected graph G = (V,E), where V and E are the sets of vertices and
edges, respectively. We represent an undirected edge between vertices u and v as (u, v)
or equivalently as (v, u). For each v ∈ V , N (v) is the set of neighbors of v, where a
neighbor is a vertex adjacent to v. Define the degree of v as d(v) = |N (v)|.
We consider that G does not have any vertex v with d(v) = 0, i.e., an isolated vertex

with no incident edge. In fact, if there are such vertices, they can be removed immedi-
ately because they obviously cannot appear in any triangle. Finally, we consider that
G is given in adjacency lists, where the adjacency list of a vertex v ∈ V stores N (v) in
O(1 + d(v)/B) consecutive blocks.

Arboricity. The arboricity is an important notion in graph theory for describing the
density of a graph. Formally, the arboricity of a graph G, which is commonly denoted
as α, is the minimum number of edge-disjoint forests needed to cover the edges of G.
For example, the arboricity of the graph in Figure 1 is α = 2, because its edges can be
partitioned into 2 forests, as shown in Figure 2 (where each forest is actually a tree),
whereas no single forest can cover all the edges apparently.

It is not immediately clear from the above definition why α is a metric for graph
density. This is made explicit by a classic result due to Nash-Williams:

PROPOSITION 2.1 ([NASH-WILLIAMS 1964]). If G has at least 2 vertices, its ar-
boricity α equals:

α = max
∀G′

density(G′)

where G′ = (V ′, E′) is a subgraph of G with |V ′| ≥ 2, and

density(G′) =

⌈ |E′|
|V ′| − 1

⌉

.
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Phrased differently, the arboricity is determined by the densest subgraph of G. In
Figure 1, there is more than one densest subgraph: triangle ∆123, for instance, is one,
and has a density of ⌈3/(3− 1)⌉ = 2.
The proposition leads to the next well-known facts:

COROLLARY 2.2 ([CHIBA AND NISHIZEKI 1985]). The arboricity α of a graph G =
(V,E) satisfies:

(1) α ≤ ⌈
√

|E|⌉ in any case;
(2) α = O(1) if G is planar.

Note that α can reach Ω(
√
E) when G is dense, e.g., when G is a complete graph so

that |E| = |V |
2 (|V |−1). In practice, a graph (e.g., a social network) is much sparser than

a clique, and hence, its arboricity is much lower than
√

|E| (see [Chiba and Nishizeki
1985; Lin et al. 2012]).

Number of Triangles. As mentioned before, we denote by K the number of triangles
in the input graph G. Next, we will get some sense about how large K can possibly
be. Consider an edge (u, v) in E. Clearly, any triangle ∆uvw containing the edge must
have the property that vertex w is a neighbor of both u and v. As u and v have d(u)
and d(v) neighbors respectively, it thus follows that edge (u, v) can appear in at most
min{d(u), d(v)} triangles. We therefore have:

3K ≤
∑

(u,v)∈E

min{d(u), d(v)}. (1)

Chiba and Nishizeki [Chiba and Nishizeki 1985] observed a delicate connection be-
tween the above and arboricity:

PROPOSITION 2.3 ([CHIBA AND NISHIZEKI 1985]). The right hand side of (1) is
bounded by O(α|E|).
It thus follows that K = O(α|E|). This, in turn, suggests K = O(|E|1.5) by Corol-

lary 2.2. These bounds are tight in the worst case: when the input G is a complete

graph, K =
(|V |

3

)

= Ω(|V |3) = Ω(|E|1.5), while α = Ω(
√
E) as analyzed before.

Oriented Input. As will be clear later, it is sometimes convenient to work with an
oriented version G⋆ of G. To explain, let us define a total order ≺ on V : for any two
vertices u, v in G, define u ≺ v if

— d(u) < d(v), or
— d(u) = d(v) but u has a smaller id than v.

G⋆ is obtained by giving a direction to each edge of G that respects ≺. That is, for each
edge (u, v) of G, we direct it from u to v in G⋆ if u ≺ v. Figure 3 shows the oriented
version of the graph in Figure 1. As will become clear in Section 4, such orientation
helps to avoid outputting the same triangle twice, and facilitates the analysis of the
running time of our algorithms.
Henceforth, we will write G⋆ = (V,E⋆), where E⋆ is the set of directed edges decided

as above. An edge (u, v) ∈ E⋆ points from u to v (namely, the vertex ordering in the pair
is now important). For each vertex v,N+(v) represents the set of its out-neighbors, that
is, N+(v) = {u | (v, u) ∈ E⋆}. Define d+(v) = |N+(v)| as the out-degree of v.
G⋆ is stored in adjacency lists, where the adjacency list of a vertex v contains only

N+(v) in O(1 + d+(v)/B) consecutive blocks. For instance, in Figure 3, the adjacency
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Fig. 3. An oriented version of Figure 1

list of vertex 4 is the set {(vertex) 3, 5, 6}. G⋆ can be easily computed from G in
O(SORT (|E|)) I/Os by sorting.

3. PREVIOUS WORK ON TRIANGLE LISTING AND COUNTING

The triangle listing problem has been extensively studied in internal memory, yielding
a large number of algorithms [Chiba and Nishizeki 1985; Eppstein and Spiro 2009; Itai
and Rodeh 1978; Latapy 2008; Schank and Wagner 2005]. All of them finish in time
O(|E|1.5), which is optimal in the worst case where K = Ω(|E|1.5), because Ω(K) time
is needed just to report the triangles. However, these algorithms are not amenable
to external memory, as they entail Ω(|E|1.5) I/Os in the worst case due to memory
thrashing.
In internal memory, triangle counting can be solved in O(|V |2.376) time by resort-

ing to matrix multiplication [Coppersmith and Winograd 1990]. Alon et al. [Alon et al.
1997] gave another algorithm that runs in O(|E|1.41) time. These algorithms, whose rel-
ative superiority depends on the concrete values of |V | and |E|, remain the fastest to
date. However, it should be noted that both algorithms are specialized to triangle count-
ing, and do not support triangle aggregation in arbitrary commutative semi-groups.
For the latter purpose, the fastest algorithm is still to enumerate all the triangles
in O(|E|1.5) time. In any case, even for counting, the algorithms of [Coppersmith and
Winograd 1990] and [Alon et al. 1997] incur O(|V |2.376) and O(|E|1.41) I/Os in exter-
nal memory again due to memory thrashing, and hence, are prohibitively expensive in
practice. In this work, we are interested in precise triangle aggregation, whereas read-
ers interested in only counting and willing to accept errors may refer to [Braverman
et al. 2013; Jha et al. 2013; Tsourakakis 2008] and the references therein.
In the rest of this section, we extend the description in Section 1 about the existing

I/O-efficient algorithms. Focus will be devoted to the solutions of [Chu and Cheng 2012]
since they are the state of the art.

3.1. EM-CF

External memory compact forward (EM-CF) [Menegola 2010] accepts an oriented input
G⋆ = (V,E⋆). For every edge (u, v) ∈ E⋆, it reports a triangle ∆uvw for each w ∈
N+(u)∩N+(v). For example, given edge (4, 6) in Figure 3, it outputs ∆463 because
vertex 3 is the only common vertex in N+(4) = {3, 5, 6} and N+(6) = {3, 8}.

Menegola [Menegola 2010] proved that N+(u)∩N+(v) can be obtained with O(1 +
√

|E|/B) I/Os. Thus, the total I/O overhead is O(|E| + |E|1.5/B).

3.2. EM-NI

External memory node iterator (EM-NI) [Dementiev 2006] also takes an oriented input
G⋆ = (V,E⋆). It executes in two steps:

(1) Obtain the set L of all pairs (u, {v, w}) such that (u, v) ∈ E⋆ and (u,w) ∈ E⋆.
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Fig. 4. Extended subgraphs

(2) For each (u, {v, w}) ∈ L, check whether E⋆ has an edge between v and w, and if so,
report ∆uvw .

For example, given the input of Figure 3, the first step returns L =
{

(1, {2, 3}),
(2, {3, 4}), (4, {3, 6}), (4, {5, 6}), (4, {3, 5}), (5, {6, 8}), (6, {3, 8}), (7, {2, 5}), (9, {7, 8})

}

,
where each number is a vertex id. The second step then verifies that every pair pro-
duces a triangle except (4, {3, 5}), (7, {2, 5}) and (9, {7, 8}).
Dementiev [Dementiev 2006] showed how to perform the two steps in O(|E|/B +

|L|/B · logM/B(|E|/B)) I/Os. Menegola [Menegola 2010] further proved |L| = O(|E|1.5).
It thus follows that EM-NI terminates in O(|E|1.5/B · logM/B(|E|/B)) I/Os.

3.3. Graph Partition

Chu and Cheng [Chu and Cheng 2011; 2012] proposed an algorithmic framework,
which we call graph partition (GP), for triangle listing. As explained shortly, instan-
tiation of the framework gives rise to different concrete algorithms.

The Framework. Given an input graph G = (V,E) (not its oriented version), the
framework divides V into disjoint partitions V1, ..., Vp. The value of p and the partition-
ing strategy are precisely what are to be instantiated later. Every triangle ∆uvw in G
can now be classified into one of the following:

—Type-I: the three vertices u, v, w belong to the same partition.
—Type-II: two vertices are in the same partition, while the remaining vertex is in a

different partition.
—Type-III: the three vertices are in distinct partitions.

For example, assume G to be the graph in Figure 1. Let p = 3 and V1 = {1, 2, 3}, V2 =
{4, 5, 6}, and {7, 8, 9}. Then, ∆123, ∆234 and ∆368 are of type-I, -II, and -III respectively.
Next, the GP framework reports all the type-I and -II triangles, by resorting to the

concept of extended subgraph, each of which is a subgraph Gi (1 ≤ i ≤ p) constructed
from a partition Vi. Specifically, Gi is the subgraph induced by the edges adjacent to
the vertices of Vi. Figure 4 demonstrates G1, G2, G3 in the aforementioned example on
Figure 1. Note that an extended subgraph Gi may contain some vertices absent in Vi.
For example, the white vertices 4, 6, 7, 8 are not in V1, but appear in G1 because each of
them is a neighbor of a vertex in V1.
Every triangle of type-I and -II exists in a unique extended subgraph. Making an

assumption:

A1: Each extended subgraph fits in memory

the GP framework finds those triangles by loading each Gi into memory, and invoking
an in-memory triangle listing algorithm.
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It remains to report type-III triangles. The framework achieves this goal by con-
verting type-III triangles to the previous types. Observe that a type-III triangle does
not use any intra edge, i.e., an edge with both endpoints in the same partition (e.g.,
the edges between black vertices in Figure 4). Motivated by this, the GP framework re-
moves all intra edges, and repeat the above on the remaining edges ofG, i.e., launching
another iteration. In a new iteration, the vertices are partitioned differently, so that a
type-III triangle of a previous iteration may now become type-I or -II, and hence can
be reported.
The partitioning strategy should guarantee Ω(M) intra edges in every iteration.

Therefore, after O(|E|/M) iterations, the left-over edges of G will fit in memory, at
which point an in-memory algorithm is deployed to find all the missing triangles.

Deterministic Graph Partitioning (DGP). This algorithm, an instantiation of the
above framework, adopts a deterministic strategy to partition V into V1, ..., Vp. Assum-
ing:

A2: |V | ≤ M .

DGP first finds an independent dominating set D of V . Specifically, D is a maximal set
of vertices such that (i) no two vertices in D are adjacent, and (ii) every vertex in V is
either in D, or adjacent to a vertex in D. For example, in Figure 1, such a set can be
D = {1, 4, 7, 8}. Then, DGP generates p = min{|D|,Θ(|E|/M)} partitions based on D
(see [Chu and Cheng 2012] for details).

Randomized Graph Partitioning (RGP). As another instantiation, RGP sets p =
Θ(|E|/M) and generates V1, ..., Vp with a randomized approach: each vertex in V is
independently assigned to Vi, where i is chosen uniformly at random from 1 to p.

Discussion on the Assumptions. The efficiency of the GP framework relies on As-
sumption A1. If A1 does not hold, the in-memory algorithm that the framework uses
to find triangles in an extended subgraph Gi will incur memory thrashing, and thus
suffer from heavy performance penalty.
Unfortunately, the assumption will definitely be violated on DGP in the worst case.

To see this, consider that G is a complete graph such that |V | < M ≪ |E| =
(|V |

2

)

. It
is easy to verify that D can contain only 1 vertex in this case. As a result, p = 1, and
hence, the extended subgraph G1 obtained from V1 is exactly G itself, which does not
fit in memory.
On the other hand, the question whether A1 holds on RGP (with sufficiently high

probability) was left open in [Chu and Cheng 2012], and still remains unanswered. In
this paper, we will close the issue by proving a positive answer based on a non-trivial
analysis in Section 5.2.
Chu and Cheng [Chu and Cheng 2012] showed that under the assumption:

A3: p = O(M/B), that is, M = Ω(
√

|E| · B)

DGP and RGP ensure I/O complexity6 O(|E|2/(MB) + K/B), given the simultaneous
satisfaction of Assumption A1 and (for DGP) A2.
It is worth mentioning that A3 is necessary to generate p extended subgraphs in

O(|E|/B) I/Os (because a block of memory needs to be reserved as the output buffer for
each extended subgraph). This assumption can be removed by turning to sorting, but
at the expense of increasing the I/O complexities of DGP and RGP to O(|E|2/(MB) ·
logM/B(|E|/B) +K/B).

6The complexity is expected for RGP.
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pivot edge

v

w

u

cone vertex

Fig. 5. A triangle in G⋆ and its pivot edge (u ≺ v ≺ w)

4. A NEW TRIANGLE LISTING ALGORITHM

This section presents a new algorithm called massive graph triangulation (MGT),
which settles triangle listing with O(|E|2/(MB) + K/B) I/Os in all circumstances,
namely, needing no assumption at all. In the meantime, MGT entails only
O(|E| log |E| + |E|2/M + α|E|) CPU time, where α is the arboricity of the input graph
(see Section 2). Both the I/O and CPU complexities are worst-case optimal as we will
prove later.

4.1. Guaranteeing I/O-Efficiency

We will first describe MGT by focusing only on I/O efficiency, i.e., pretending that all
CPU operations were for free. The algorithm accepts an oriented input G⋆ = (V,E⋆)
as defined in Section 2, which can be computed from the original input G = (V,E) in
O(SORT(|E|)) I/Os.

Pivot Edge. Let us make an observation about how a triangle ∆uvw of G appears in
the oriented graphG⋆. Recall that there is a total order≺ on the vertices of V . Assume,
without loss of generality, that u ≺ v ≺ w. Thus, the edges of ∆uvw have directions as
illustrated in Figure 5. In particular, u, v and w have 2, 1 and 0 outgoing edges in the
triangle, respectively. We refer to the outgoing edge of v as the pivot edge of ∆uvw , and
u as the cone vertex of ∆uvw .

Algorithm. MGT runs in iterations, each performing two steps:

(1) Load into memory the next cM edges in E⋆, where c < 1 is a constant to be decided
later. Let Emem be the set of those edges.

(2) Report all the triangles whose pivot edges are in Emem .

MGT correctly finds all triangles because (i) Step 1 ensures every edge of E⋆ to ap-
pear in Emem in a unique iteration, and (ii) for any triangle ∆, Step 2 guarantees its
discovery in the iteration where Emem contains the pivot edge of ∆.

Details of Step 2. Algorithm 1 shows how to implement Step 2 in O(|E|/B) I/Os, plus
the minimum cost of outputting the triangles found.
Let Vmem be the set of vertices induced by the edges in the Emem returned by Step 1.

For example, suppose that Emem consists of the solid edges in Figure 6; then Vmem =
{3, 5, 6, 8}. In this case, Step 2 ought to output ∆436, ∆456, and ∆568 because their pivot
edges (3, 6), (5, 6), and (6, 8) are in Emem .
Step 2 processes each vertex u ∈ V in turn as follows. First, define:

Nmem(u) = N+(u)∩Vmem (2)

namely, Nmem(u) is the set of out-neighbors of u that appear in Vmem . We obtain
Nmem(u) by reading the adjacency list N+(u) from the disk, while in the meantime
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ALGORITHM 1: STEP 2 (VERSION 1)

Input: G⋆ = (V,E⋆) and a set Emem of edges in memory
Output: All triangles whose pivot edges are in Emem

1 obtain Vmem from Emem ;
2 for each vertex u ∈ V do
3 read N+(u) from disk to acquire Nmem(u) in memory ;
4 S ← the set of edges from u to the vertices in Nmem(u) ;
5 find in S ∪Emem all the triangles where u is the cone vertex ;
6 release Nmem(u) and S from memory ;

7 return

1

2

3

4

5

6

7

8

9

Fig. 6. Illustration of Step 2 (solid edges are in Emem )

adding a vertex v ∈ N+(u) to Nmem(u) if v ∈ Vmem . Note that

|Nmem(u)| ≤ |Vmem | ≤ 2|Emem | ≤ 2cM.

Hence, by setting c appropriately7, Emem and Nmem(u) together occupy at most M
words of storage, and can co-exist in memory.

The knowledge of Nmem(u) essentially “augments” Emem with up to |Nmem(u)| edges
leaving u. For instance, the processing of vertex 4 in Figure 6 gives Nmem(4) = {3, 5, 6}.
Effectively,Nmem(4) permits us to “see” 3 more edges in memory: (4, 3), (4, 5) and (4, 6).
As a crucial fact, if a triangle ∆uvw (where u is the cone vertex) should be reported by

Step 2, it can now be discovered in memory. To understand, recall that Step 2 needs to
report∆uvw only if the pivot edge (v, w) ∈ Emem . This implies that v and w both belong
to Vmem , and hence, also to Nmem(u). It follows that edges (u, v) and (u,w) have been
“augmented” into memory.

For illustration, consider again vertex 4 in Figure 6. As mentioned before, Nmem(4)
reveals edges (4, 3), (4, 5) and (4, 6) in memory. At this moment, ∆463 and ∆456 (which
are the triangles of vertex 4 that Step 2 needs to report) are memory resident.
After processing u, we clear Nmem(u) from memory, and move on to handle the next

vertex of V . Note that Emem is kept in memory throughout Step 2. Algorithm 1 sum-
marizes the above in pseudocode.

I/O Complexity. Each iteration performs one scan over the adjacency lists of all ver-
tices in O(|E|/B) I/Os. The number of iterations is Θ(|E|/M) because each of them
loads Θ(M) distinct edges of E⋆ into Emem , except possibly the last iteration. This, as
well as the fact that Θ(B) triangles can be reported in one I/O, proves that the I/O cost
of MGT is bounded by O(|E|2/(MB) +K/B).

7For example, c can be 1/4 in a naive implementation where an edge requires two words to store.
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4.2. A CPU-Efficient Algorithm

The MGT algorithm described in the previous section does not achieve the desired
bound O(|E| log |E|+ |E|2/M +α|E|) on CPU time. Towards that purpose, we will mod-
ify the algorithm with extra ideas. This subsection will do so under the small-degree
assumption:

d+(v) ≤ cM/2 for all v ∈ V (3)

where c is the same constant as in our earlier description. Recall that d+(v) is the out-
degree of v in G⋆. Section 4.4 will remove this assumption, and obtain the final version
of MGT that guarantees the claimed I/O and CPU bounds in all cases.

All-or-Nothing Requirement. Previously, the Emem of an iteration is permitted to
include cM arbitrary edges of E⋆. Now we require that Emem should contain either all
the outgoing edges of v or none of it, for every v ∈ V . For instance, the set Emem in
Figure 6 satisfies this all-or-nothing requirement.
We fulfill the requirement by processing one vertex at a time in Step 1 (of MGT).

Specifically, let v be the next vertex whose outgoing edges have never appeared in
Emem . We add all its outgoing edges to Emem if the size of the resulting Emem does not
exceed cM . Otherwise, v is left to the next iteration; and Step 1 terminates here by
returning the current Emem . This can also be described in pseudocode as:

ALGORITHM 2: STEP 1

Input: G⋆ = (V,E⋆)
Output: A set Emem of at least cM/2 edges in E⋆

1 Emem ← ∅;
2 for each vertex v ∈ V whose edges have never entered Emem do
3 if |N+(v)|+ |Emem | ≤ cM then
4 add all the edges of v to Emem ;

5 else
6 break ;

7 return Emem

The above strategy may end up with an Emem with less than cM edges. However,
under the small-degree assumption, except the last iteration |Emem | must be at least
cM/2, because if |Emem | < cM/2, then Emem should have been able to take in the (at
most cM/2) outgoing edges of one more vertex.
Step 2 of MGT proceeds as described earlier. Since |Emem | is still Θ(M) except pos-

sibly in the final iteration, the I/O complexity of the algorithm remains bounded by
O(|E|2/(MB) +K/B).

CPU-Implementation of Step 2. Our description so far has ignored all the in-
memory operations, the details of which are to be filled in next. Define

V +
mem

= {v ∈ Vmem | v has an outgoing edge in Emem}
For example, in the example of Figure 6, V +

mem
= {5, 6}. Vertices 3 and 8, which belong

to Vmem , are not in V +
mem

because they have no outgoing edge in Emem .
We create hash structures on Vmem , V +

mem
, Emem so that:

—Given any vertex v, whether v ∈ Vmem and/or v ∈ V +
mem

can be decided in O(1) time.
—Given any vertices u, v, whether (u, v) ∈ Emem can be decided in O(1) time.
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Clearly, these hash structures occupy only O(|Emem |) space.
For each vertex u ∈ V , Step 2 needs to report all the triangles∆uvw where u ≺ v ≺ w

and the pivot edge (v, w) exists in Emem . Expanding the procedure in Section 4.1, we
first obtain Nmem(u) in O(|N+(u)|) time, by using constant time to check whether v ∈
Vmem for each v ∈ N+(u). We then further acquire:

N+
mem

(u) = Nmem(u)∩V +
mem

in O(|Nmem(u)|) = O(|N+(u)|) time, by checking whether v ∈ V +
mem

for each v ∈
Nmem(u). In Figure 6, for instance, when u is vertex 4, we have Nmem(4) = {3, 5, 6}
and N+

mem
(4) = {5, 6}.

Next, we use O(|N+
mem

(u)| · |Nmem(u)|) time to find the triangles of u that should be
reported in the current iteration. For each vertex pair

(v, w) ∈ N+
mem

(u)×Nmem(u) with v 6= w

check in constant time whether (v, w) ∈ Emem . If so, report ∆uvw. For instance, to
process vertex 4 in Figure 6, the algorithm probes edges (5, 3), (5, 6), (6, 3) and (6, 5) in
Emem . The second and third exist in Emem , thus spawning ∆456 and ∆463. Algorithm 3
restates the above details in pseudocode:

ALGORITHM 3: STEP 2 (DETAILS EXPANDED)

Input: G⋆ = (V,E⋆) and a set Emem of edges in memory
Output: All triangles whose pivot edges are in Emem

1 obtain Vmem and V +
mem from Emem ;

2 build hash structures on Vmem , V +
mem , and Emem ;

3 for each vertex u ∈ V do

4 read N+(u) from disk to acquire Nmem(u) in memory ;

5 obtain N+
mem(u) from Nmem(u) in memory ;

6 for each v ∈ N+
mem(u) do

7 for each w ∈ Nmem(u) do
8 if v 6= w and edge (v, w) ∈ Emem then
9 output ∆uvw ;

10 release Nmem(u) and N+
mem(u) from memory ;

11 return

The complexity O(|N+
mem

(u)| · |Nmem(u)|) may appear expensive at first glance due
to its quadratic nature. Somewhat surprisingly, when one adds up this complexity for
all vertices throughout all iterations, the sum turns out to be O(α|E|), as we analyze
next.

4.3. Bounding the CPU-Time

This subsection will analyze the CPU time of the modified MGT algorithm under the
small-degree assumption. Let us start with a useful fact:

LEMMA 4.1.
∑

v∈V

(

d+(v)
)2

= O(α|E|).
PROOF. For any v ∈ V :

(

d+(v)
)2

= d+(v)
∑

u∈N+(v)

1 =
∑

u∈N+(v)

d+(v).
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Hence:
∑

v∈V

(

d+(v)
)2

=
∑

v∈V

∑

u∈N+(v)

d+(v)

=
∑

(v,u)∈E⋆

d+(v)

≤
∑

(v,u)∈E⋆

d(v)

(by how (v, u) is directed) =
∑

(v,u)∈E

min{d(v), d(u)}

(by Proposition 2.3) = O(α|E|).

By the discussion of the previous subsection, in an iteration of MGT, Step 2 spends

O(|N+(u)|+ |N+
mem

(u)| · |Nmem(u)|)
= O(|N+(u)|+ |N+

mem
(u)| · |N+(u)|) (4)

time on each vertex u ∈ V . The terms |N+(u)| of all u ∈ V add up to exactly |E⋆| = |E|.
Hence, the total contribution by this term throughout all the Θ(|E|/M) iterations is
O(|E|2/M). Henceforth, we will focus on the second term |N+

mem
(u)| · |N+(u)|.

Let h = Θ(|E|/M) be the number of iterations actually performed by MGT. Denote
byN+

mem
(u, i) the content ofN+

mem
(u) in the i-th iteration, for 1 ≤ i ≤ h. In other words,

the total contribution (to the CPU time) of the second term in (4) across all nodes u
and all iterations i is at most

h
∑

i=1

∑

u∈V

O(|N+
mem(u, i)| · |N+(u)|). (5)

Our all-or-nothing requirement (see Section 4.2) ensures:

LEMMA 4.2. N+
mem

(u, 1), ..., N+
mem

(u, h) are mutually disjoint.

PROOF. The all-or-nothing requirement guarantees that each vertex v ∈ V belongs
to V +

mem
in a unique iteration. In other words, the sets V +

mem
of all iterations are mutu-

ally disjoint. The lemma then follows from the fact N+
mem

(u, i) is a subset of the V +
mem

of iteration i, for 1 ≤ i ≤ h.

As N+
mem

(u, i) ⊆ N+(u) for each i, the lemma implies:

h
∑

i=1

|N+
mem

(u, i)| ≤ |N+(u)| = d+(u).

Hence:

h
∑

i=1

(

|N+
mem

(u, i)| · |N+(u)|
)

≤
(

d+(u)
)2
. (6)
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u

w1

v

w2

w3 w4

w5

Fig. 7. Illustration for the conversion algorithm (S consists of the solid edges)

Therefore:

(5) =
∑

u∈V

h
∑

i=1

O
(

|N+
mem

(u, i)| · |N+(u)|
)

(by (6)) =
∑

u∈V

O
(

d+(u)
)2

(by Lemma 4.1) = O(α|E|).
Finally, recall that the input to the triangle listing problem is an undirected graphG,

from which the oriented version G⋆ is computed by sorting, which (when implemented
as the standard external sort [Aggarwal and Vitter 1988]) takes O(|E| log |E|) CPU
time. We thus have proved that MGT entails O(|E| log |E| + |E|2/M + α|E|) CPU time
overall.

4.4. Removing the Small-Degree Assumption

This subsection presents the last component of our MGT algorithm, which deals with
the case where the oriented inputG⋆ does not satisfy the small-degree assumption (see
(3)). In other words, there is at least one vertex v such that d+(v) > cM/2.

MGT handles the case by working on the original (undirected) inputG, instead of the
oriented version G⋆. It removes certain edges of large-degree vertices, while ensuring
that all the triangles involving those edges have been reported. The edge removal
turns G into another graph G′, whose oriented version G′⋆ satisfies the small-degree
assumption. G′⋆ is then fed into the algorithm in Section 4.2 to report the remaining
triangles.

Converting G to G′. Given G = (V,E), we carry out the conversion as follows:

(1) Identify a vertex u ∈ V with d(u) > cM/2. If u does not exist, the conversion
terminates with G′ = G.

(2) Load a set S of cM/2 edges8 of u into memory.
(3) Report all the triangles that involve at least one edge in S.
(4) Remove the edges in S from E. Repeat from Step 1.

We refer to an execution from Step 1 to 4 as an iteration. The number of iterations
is bounded by Θ(|E|/M) because Θ(M) edges are removed by an iteration. Next, we
explain how to implement Step 3 efficiently.
The edges of S form a 2-level tree where u is the root, as shown in Figure 7 where

the solid edges constitute S. Let T be the set of leaf vertices of this tree, e.g., T =
{w1, w2, ..., w5} in Figure 7. Clearly, any triangle∆ involving at least an edge in S must
have u as a vertex. Furthermore, ∆ must be one of the types below:

8The value cM/2 is chosen to facilitate understanding. In practice, one can load as many edges of u as the
memory can accommodate. The algorithm still works the same way as described subsequently.
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—Type-1: 2 vertices of ∆ are in T .
—Type-2: Only 1 vertex of ∆ is in T .

In Figure 7, for instance, ∆uw1w2 and∆uvw5 are of type-1 and -2 respectively (note that
u /∈ T ).
We create a hash structure on T to permit testing whether v ∈ T in constant time

for any v ∈ V . Both types of triangles can be found easily by a single scan on E. This
is in fact obvious for type-1: for every edge (v, w) ∈ E, report ∆uvw if and only if both v
and w belong to T .
To find type-2 triangles, we process the adjacency list N (v) of each vertex v 6= u as

follows. First, check whether u ∈ N (v), and if not, we are done with v and move on to
the next vertex. Otherwise, obtain T (v) = N (v) ∩ T (e.g., T (v) = {w3, w5} in Figure 7).
So far we need to readN (v) from the disk once, and spend O(|N (v)|) CPU time. Finally,
for every vertex w ∈ T (v), output a triangle ∆uvw; this requires O(|T (v)|) = O(|N (v)|)
CPU time.
It is thus clear that each iteration of our conversion algorithm performs O(|E|/B)

I/Os, and entails O(|E|) CPU time, plus the minimum output cost. Therefore, the
overall algorithm has an I/O complexity O(|E|2/(MB) + K/B) and CPU complexity
O(|E|2/M +K) = O(|E|2/M + α|E|) (recall from Section 2 that K = O(α|E|)).

Putting Everything Together. The graph G′ has the property that every vertex v ∈
V has degree at most cM/2. Hence, its oriented version G′⋆ satisfies the small-degree
assumption due to the obvious fact d+(v) ≤ d(v). We can now apply the algorithm of
Section 4.2 to find the remaining triangles. It is easy to verify that every triangle in G
is reported exactly once. This completes the whole MGT algorithm, which brings us to
this paper’s first main result:

THEOREM 4.3. The MGT algorithm solves the triangle listing problem in
O(|E|2/(MB) +K/B) I/Os and O(|E| log |E|+ |E|2/M + α|E|) CPU time.

As a remark regarding the usage of our algorithm in practice, the component de-
veloped in this subsection is mainly of theoretical interest because with the memory
capacity of today’s machines, it seems rather unlikely that a vertex will have a degree
as high as Ω(M).

4.5. Worst-Case Optimality

We now explain why it is impossible to design an algorithm with I/O complexity
o(|E|2/(MB)) even when M = o(|E|). Consider that the input G is a complete graph,

and M ≥ |V | = Θ(
√

|E|). The number of triangles equals
(|V |

3

)

= Ω(|V |3). Therefore,
any algorithm must incur

Ω(|V |3/B) = Ω(|E|1.5/B)

= Ω(|E|2/(|V |B)) = Ω(|E|2/(MB))

I/Os just to report the triangles. This argument shows that the term |E|2/(MB) is
compulsory in the worst case. Note that Theorem 4.3 implies that the MGT algorithm
performs O(|E|2/(MB) + |E|1.5/B) I/Os even in the worst case, which is therefore al-
ready optimal up to a constant factor with respect to parameters |E|, M , and B. Note
that this optimality result holds for any M satisfying M ≥ |V |, that is, as long as all
the vertices (but not edges) can be stored in memory.
The above finding also implies a lower bound of Ω(|E|2/M) on CPU time because

Ω(|V |3) = Ω(|E|2/M) time is needed just to output triangles. This immediately rules
out any algorithm with o(|E| log |E|) CPU time because |E| log |E| = o(|E|2/M) when

M = Θ(
√
E). Given also the necessity of the term α|E| (see Section 2), it follows that
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any algorithm must incur Ω(|E| log |E| + |E|2/M + α|E|) CPU time in the worst case,
matching the upper bound in Theorem 4.3.

5. FINDINGS ON KNOWN ALGORITHMS

This section will strengthen the current understanding about two existing algorithms
for triangle listing: EM-NI and RGP, as reviewed in Section 3. For EM-NI, we will
reveal for the first time why the algorithm is especially efficient on sparse graphs. For
RGP, we will remove a restrictive assumption imposed on its applicability.

5.1. EM-NI

We now prove:

THEOREM 5.1. The EM-NI algorithm solves the triangle listing problem in O(α ·
SORT(|E|)) I/Os.

PROOF. As mentioned in Section 3, the previous work has shown that EM-NI per-

forms O( |E|
B + |L|

B logM/B
|E|
B ) I/Os. Below, we will show that |L| = O(α|E|) which there-

fore will establish the theorem because SORT(|E|) = Θ(|E|/B · logM/B(|E|/B)).

Let G⋆ = (V,E⋆) be the oriented input to EM-NI. Recall that L is the set of all such
pairs (u, {v, w}) that (u, v) and (u,w) are both in E⋆. For each u ∈ V , there are exactly
(

d
+(u)
2

)

such pairs, where d+(u) is the out-degree of u. Therefore:

|L| =
∑

u∈V

(

d+(u)

2

)

≤
∑

u∈V

(

d+(u)
)2

which is O(α|E|) by Lemma 4.1.

Previously, the I/O-complexity of EM-NI was understood as O(|E|1.5/B ·
logM/B(|E|/B)) (see Section 3). Hence, Theorem 5.1 is separated from the old result

whenever α = o(
√

|E|). Moreover, Theorem 5.1 clearly indicates that the I/O efficiency
of EM-NI depends linearly on α, which as discussed in Section 2 measures the graph
density. In particular, when G is planar, α = O(1) (see Corollary 2.2), in which case
EM-NI finishes in O(SORT (|E|)) I/Os. In fact, there are other graph families (e.g., ran-
dom graphs of the preferential attachment model) where the graphs are known to have
constant arboricities [Goel and Gustedt 2006].
Theorem 5.1 makes it possible to compare EM-NI and our MGT algorithm in a more

sensible manner. Interestingly,EM-NI never has a better complexity as long asM ≥ |V |.
To see this, first notice that:

α ≥ |E|
|V | − 1

. (7)

The above inequality results directly from the definition of α as the minimum number
of edge-disjoint forests needed to cover all the edges of E: as each forest has at most
|V |−1 edges, at least |E|/(|V |−1) forests are needed to cover all the |E| edges. Therefore,
when M ≥ |V |,

α > |E|/|V | ≥ |E|/M
which makes

|E|2/(MB) < α|E|/B < α · SORT(|E|)
namely, the I/O complexity in Theorem 5.1 is never better than that in Theorem 4.3.
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5.2. RGP

Recall from Section 3 that the graph partition framework [Chu and Cheng 2012],
which is the state of the art, relies on a key assumption A1 to attain its I/O efficiency.
Chu and Cheng [Chu and Cheng 2012] instantiated the framework into the DGP and
RGP algorithms. As explained in Section 3, unfortunately, Assumption A1 is inherent
in DGP and thus impossible to remove. However, it remains open whether the assump-
tion can be eliminated on RGP. The rest of the subsection will answer this question
almost in all scenarios.
We will need the following Chernoff bound:

PROPOSITION 5.2 ([ALON AND SPENCER 2000]). Let X1, ..., Xn be independent
random variables between 0 and 1. Let X =

∑n
i=1 Xi and µ =

∑n
i=1 E[Xi]. Then:

Pr[X ≥ 2µ] ≤ exp(−µ/3).

The remainder of this subsection will follow the notations in Section 3.3. In addition,
let dmax be the largest degree of the vertices in the input graph G = (V,E). We now
present the last main result of this paper:

THEOREM 5.3. Under the condition:

A4: M ≥ 24dmax ln |E|,
Assumption A1 holds with probability at least 1− 1/|E|.

PROOF. Set p = c|E|/M where c is a constant to be decided later. For each vertex
v ∈ V and each i ∈ [1, p], define

Xi(v) =

{

d(v) if v ∈ Vi

0 otherwise

As v is assigned to Vi with probability 1/p, E[Xi(v)] = d(v)/p.
Let Xi =

∑

v∈V Xi(v), namely, Xi is the sum of the degrees of all vertices in Gi. Let
Yi be the number of edges in the extended subgraph Gi obtained from Vi. We observe:

Yi ≤ Xi. (8)

The inequality holds because every edge in Gi is counted at least once by Xi. Clearly:

E[Xi] =
∑

v∈V

E[Xi(v)] =
∑

v∈V

d(v)

p
=

2|E|
p

=
2M

c
.

The random variables Xi(v) of different v ∈ V are mutually independent. Further-
more, Xi(v) ≤ dmax. Hence, applying Chernoff bound (Proposition 5.2) on the random
variables Zi(v) = Xi(v)/dmax of all v ∈ V gives:

Pr

[

∑

v∈V

Zi(v) ≥
4M

c · dmax

]

≤ exp

(

− 2M

3c · dmax

)

⇒

Pr

[

Xi ≥
4M

c

]

≤ exp

(

− 2M

3c · dmax

)

(9)

When M ≥ 3c · dmax ln |E|, it holds that

exp

(

− 2M

3c · dmax

)

≤ 1

|E|2 <
1

|E| ·
M

c|E| =
1

p|E|
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with which (9) gives:

Pr

[

Xi ≥
4M

c

]

≤ 1

p|E| (10)

Gi can be stored in at most 2Yi words, which by (8) is at most 2Xi words. Setting
c = 8, (10) shows that 2Xi ≥ M occurs with probability at most 1/(p|E|) when M ≥
24dmax ln |E|, namely, the probability for Gi not to fit in memory is at most 1/(p|E|).

Therefore, whenA4 holds, by union bound the probability that any of G1, ..., Gp does
not fit in memory is at most 1/|E|, thus completing the proof.

For a massive input graph G with a massive E, Theorem 5.3 shows that A1 holds
with extremely high probability as long as the memory is not too small9. Note that
condition A4 is tight up to only a logarithmic factor, because when M < dmax, A1 can
never be satisfied such that not only RGP but also the graph partition framework itself
will not be able to function. To see this, let v be the vertex in G with degree dmax, and
suppose that v ∈ Vi, for some i ∈ [1, p]. Then, the extended subgraph Gi created from
Vi must contain at least dmax edges, and therefore, does not fit in memory.
Theorem 5.3 has reduced the assumptions on RGP’s applicability to onlyA3 and A4,

both of which appear reasonable given the memory capacity of today’s machines. Per-
haps more important is the fact thatA3 andA4 can be checked efficiently, by scanning
the input graph at most once to glean |E| and dmax. In contrast, there does not appear a
way to check the original assumption A1, except for letting the algorithm run anyway.

6. AN I/O LOWER BOUND ON TRIANGLE COUNTING

The MGT algorithm we described in Section 4 can be trivially adapted to perform
triangle counting in O(|E|2/(MB)) I/Os and O(|E| log |E| + |E|2/M + α|E|) CPU time
(for this purpose, it suffices to simply ignore the part of the algorithm that outputs the
discovered triangles to the disk, but instead, increments a counter whenever such a
triangle is seen). As we will see, this is essentially the best efficiency attainable by the
class of witnessing algorithms.
We model a witnessing algorithm as follows. At the beginning, the input graph G is

stored in O(|E|/B) blocks in the disk; and the memory is empty. At any moment, the
algorithm is allowed to keep at most M edges in memory. An I/O operation brings at
most B edges into the memory. The algorithm maintains a counter of the number of
distinct triangles that have ever existed in memory (i.e., all 3 edges of such a triangle
were memory resident simultaneously). It terminates as soon as the counter equals
the total number of triangles in G.
It is easy to show that no witnessing algorithm can improve the bound O(|E| log |E|+

|E|2/M + α|E|) on CPU time—in fact, as far as witnessing algorithms are concerned,
triangle counting takes just as much CPU work as triangle listing. Therefore, the same
lower bound argument in Section 4.5 still holds on CPU time. What is challenging,
however, is prove a tight lower bound on the I/O cost. The I/O argument in Section 4.5
falls short for this purpose. Recall that the crux of that argument is to show that the
output cost Θ(K/B) can be as large as Ω(|E|2/(MB)). This approach no longer works
for triangle counting, where the output cost is trivially small: just a single I/O to output
the count.
Based on an entirely different argument, we give in the rest of this section a proof

for the following theorem:

9It is worth mentioning that the constant 24 in Theorem 5.3 can be reduced by resorting to stronger forms of
Chernoff bounds (see the appendix of [Alon and Spencer 2000]) and more careful mathematical derivation.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: January 2014.



I/O-Efficient Algorithms on Triangle Listing and Counting 1:21

v

u1

u2 v

u1

u2

(a) Type 1 (b) Type 2 (c) Type 3

Fig. 8. Three types of new triangles

THEOREM 6.1. No witnessing algorithm can guarantee solving the triangle count-
ing problem in O(|E|/B + |E|2−ǫ/(MB)) I/Os, no matter how small constant ǫ > 0 is.

This theorem thus implies that our MGT algorithm is already optimal within a tiny
factor.

6.1. A Weaker Lower Bound

In this subsection, we will prove a lower bound of Ω(|E|/B + |E|1.5/(MB)) on triangle
counting. This result is weaker than the final lower bound needed to establish Theo-
rem 6.1, but nonetheless illustrates some ideas behind our methodology.
The crucial question to ask is: how many new triangles can an algorithm witness by

performing an I/O? Next we show that this number is O(MB). To prove this claim, let
us denote by Smem the set of edges already in memory before the I/O, and let Sio be the
set of edges loaded into the memory by the I/O. Clearly, |Smem | ≤ M and |Sio | ≤ B. If a
triangle ∆ appears in the memory for the first time after the I/O—namely, ∆ is a new
triangle—then∆ must use at least an edge from Sio . To understand why, notice that if
all 3 edges of a triangle are in Smem , then this triangle was already memory resident
before the I/O (and hence, is not new). It thus follows that every new ∆ must belong to
one of the types below:

—Type 1: ∆ uses 2 edges from Smem , and 1 edge from Sio .
—Type 2: ∆ uses 1 edge from Smem , and 2 edges from Sio .
—Type 3: ∆ uses 3 edges from Sio .

See Figure 8 for an illustration of the three types of triangles, where edges from Smem

and Sio are dashed and solid, respectively.
Denote by Vmem the set of vertices of the edges in Smem , and likewise, by Vio the set

of vertices of the edges in Sio . It is clear that |Vmem | ≤ 2M and |Vio | ≤ 2B. There can be
at most 2MB type-1 triangles because every such triangle uniquely corresponds to a
pair (v, (u1, u2)) ∈ Vmem × Sio (see Figure 8a), whereas Vmem × Sio has only 2MB such
pairs in total. Similarly, 2MB is also an upper bound on the number of type-2 triangles
because every such triangle uniquely corresponds to a pair (v, (u1, u2)) ∈ Vio × Smem

(see Figure 8b). Finally, there can be O(B1.5) type-3 triangles because they can be
formed only using the B edges in Sio , whereas in general, any graph with B edges can
have at most O(B1.5) triangles (as explained in Section 2).
Now we know that by performing one I/O, an algorithm can witness O(MB+B1.5) =

O(MB) (applying M ≥ 2B) new triangles. This fact holds for arbitrary graphs. There-
fore, for any graph having Ω(|E|1.5) triangles, a witnessing algorithm must perform
Ω(|E|1.5/(MB)) I/Os to see all triangles at least once. Combining with the trivial fact
that every algorithm must perform Ω(|E|/B) I/Os to read all the edges, we obtain an
I/O lower bound Ω(|E|/B + |E|1.5/(MB)).
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6.2. Number of New Triangles Witnessable in t I/Os

The lower bound obtained in the previous subsection is unfortunately too loose for
establishing Theorem 6.1. The looseness arises because our earlier argument assumes
that every I/O would allow the algorithm to see Θ(MB) new triangles. It turns out
that this is too optimistic. Intuitively, after a “productive I/O” that brings into memory
a great number of new triangles, the algorithm would need to perform several “non-
productive I/Os” to replace many edges in memory before another productive I/O can
occur. Next, we validate this intuition with a formal argument.
Our approach is to analyze how many new triangles can be witnessed in memory

by any sequence of t ≥ 1 consecutive I/Os. Specifically, we will deal with the following
problem. First choose any moment of the algorithm. Let Smem be the set of edges cur-
rently in memory, and c1 be the number of distinct triangles that have been seen in
memory so far. Then, the algorithm performs t I/Os of its choice, after which we denote
by c2 the number of distinct triangles that have been seen at this moment. The objec-
tive is to analyze how large δ = c2 − c1 can be, namely, how many new triangles can be
witnessed in memory due to the t I/Os.

Next we prove a crucial fact:

LEMMA 6.2 (WITNESSING LEMMA). If t ≤ M/B, then δ = O(M
√
tB).

Proof of Lemma 6.2. We say that a triangle ∆ is new if it contributes to δ, namely,
∆ is brought into memory for the first time by one of the t I/Os. Let Sio be the union
of all the edges read by those t I/Os. Hence, |Sio | ≤ tB. It is clear that a new ∆ must
use at least one edge from Sio . Therefore, we can classify ∆ into type-1, -2, or -3 by the
same way as described in the previous subsection. Once again, denote by Vmem the set
of vertices of the edges in Smem , and by Vio the set of vertices of the edges in Sio .
We will bound the numbers C1, C2, and C3 of type-1, -2, and -3 triangles (defined as

before), respectively. Let us start with type-1. We denote by v1, ..., v2M the (at most) 2M
vertices in Vmem . For each i ∈ [1, 2M ], let xi be the number of edges in Smem that are
adjacent to vi, and are used in forming type-1 triangles. Observe that vi can participate
in at most min{

(

xi

2

)

, tB} type-1 triangles because (i) every such triangle uses a pair of
those xi edges of vi, but on the other hand, (ii) every such triangle consumes a distinct
edge in Sio . Therefore:

C1 ≤
2M
∑

i=1

min

{(

xi

2

)

, tB

}

<

2M
∑

i=1

min{x2
i , tB}

≤
2M
∑

i=1

xi ·
√
tB

which is at most 2M ·
√
tB by the constraint that

∑2M
i=1 xi ≤ 2M .

Next, we analyze the number C2 of type-2 triangles with a similar approach. Denote
by v′1, ..., v

′
2tB the (at most) 2tB vertices in Vio . For each i ∈ [1, 2tB], let x′

i be the number
of edges in Sio that are adjacent to v′i, and are used in forming type-2 triangles. Observe

that v′i can participate in at most min{
(

x′

i

2

)

,M} type-2 triangles. Therefore:

C2 ≤
2tB
∑

i=1

x′
i ·

√
M
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Fig. 9. Tightness of the witnessing lemma

which subject to the constraint
∑2tB

i=1 x
′
i ≤ 2tB is at most 2tB

√
M .

Finally, the number C3 of type-3 triangles is clearly at most O((tB)1.5). Hence, when

t ≤ M/B, the number δ of new triangles is at most 2M
√
tB + 2tB

√
M + O((tB)1.5) =

O(M
√
tB). This completes the proof of Lemma 6.2.

Remarks. Setting t = 1, one can see from Lemma 6.2 that a single I/O allows an
algorithm to witness O(M

√
B) triangles, i.e., fewer than the O(MB) bound obtained

by the loose analysis in Section 6.1.
We complete the discussion of the witnessing lemma by showing that it is tight

within a constant factor. Consider the situation where the memory already has a com-
plete bipartite graph between a set of vertices u1, ..., uM/(2

√
tB) and another set of ver-

tices v1, ..., v√tB; and then, the next t I/Os load into memory all the
(

√
tB
2

)

< tB/2
edges in the clique involving vertices v1, ..., v√tB . Figure 9 illustrates the idea with

M/(2
√
tB) = 2 and

√
tB = 5; the dashed edges already exist in memory before the t

I/Os, whereas the solid edges are brought into memory by the t I/Os. At this point, the
graph in memory has M

2
√
tB

·
√
tB + tB/2 = M/2 + tB/2 ≤ M edges in total; namely,

the graph can indeed fit in memory. Furthermore, all the triangles in this graph are
new (i.e., they are witnessed for the first time during the t I/Os). As each pair of edges
adjacent to ui (1 ≤ i ≤ M/(2

√
tB)) contributes a triangle, the number of triangles is

Ω( M
2
√
tB

· (
√
tB)2) = Ω(M

√
tB).

6.3. Completing the Proof of Theorem 6.1

We now utilize the witnessing lemma to derive a tighter I/O lower bound for triangle
counting:

LEMMA 6.3. Every witnessing algorithm solving the triangle counting problem

must perform Ω(|E|/B + |E|1.5/(B
√
M)) I/Os in the worst case.

PROOF. We will focus on proving the necessity of the term |E|1.5/(B
√
M). Consider

running a witnessing algorithm on a graph with Ω(|E|1.5) triangles. Let H be the num-
ber of I/Os it performs. Let us divide the sequence of H I/Os into ⌈H/t⌉ disjoint subse-
quences, each of which has exactly t I/Os, except possibly the last subsequence which
can have less than t I/Os, where t is a value falling in [1,M/B] to be fixed later. By the
witnessing lemma, the number of new distinct triangles that can be witnessed in each
subsequence is at most cM

√
tB for some constant c > 0. It thus follows that
⌈

H

t

⌉

cM
√
tB = Ω(|E|1.5).

Therefore,H = Ω( |E|1.5
√
t

M
√
B

), which is Ω(|E|1.5/(B
√
M)) by setting t = M/B.
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We are now ready to prove Theorem 6.1. Suppose, on the opposite, that there exists a
witnessing algorithm solving the triangle counting problem in O(|E|/B+ |E|2−ǫ/(MB))
I/Os for some constant ǫ > 0. Note that this bound must hold for any value of M ∈
[2B, |E|]. Now consider M = |E|1−ǫ. In this case, the algorithm guarantees finishing

in O(|E|/B + |E|2−ǫ

|E|1−ǫB ) = O(|E|/B) I/Os. However, Lemma 6.3 says that any algorithm

must perform Ω(|E|/B + |E|1.5
B
√

|E|1−ǫ
)) = Ω(|E|1+ǫ/2/B) I/Os. We thus have arrived at a

contradiction.

7. EXPERIMENTS

In this section, we experimentally compare the proposed algorithm against the previ-
ous methods for triangle listing in external memory. The next subsection will explain
the environments where our experiments were performed. Then, Section 7.2 (7.3) eval-
uates the efficiency of alternative solutions on real (synthetic) datasets.

7.1. Environmental Setup

All the experiments were performed under Linux (specifically Ubuntu 12.04) on a ma-
chine that was running an Intel 3GHz CPU (dual core) and was equipped with 8 giga
bytes of memory. The block size B, which was fixed by the operating system, was equal
to 4k bytes.
We compared our MGT algorithm against the existing I/O-efficient solutions to tri-

angle listing, namely, EM-CF, EM-NI, DGP and RGP, all of which have been reviewed
in Section 3. We implemented all the algorithms in C++, using the gcc compiler with
the optimizer option O3. Our implementation is fully memory conscious. Namely, the
binary executable of each algorithm accepts (among others) a parameter M that spec-
ifies in number of bytes how much memory can be used. It is guaranteed that the al-
gorithm makes full use of the allocated memory, but its memory usage at any instant
never exceedsM .
We measured the cost of an algorithm in two aspects: number of I/Os, and overall

running time. The former was counted by strictly adhering to the standard external
memory model [Aggarwal and Vitter 1988], namely, an I/O reads a block from the disk
into memory, or conversely, writes B words in memory to a disk block. The total run-
ning time, on the other hand, was measured as the amount of wall-clock time elapsed
during the algorithm’s execution.
In all cases, the input graph was given in adjacency lists without orientation. This is

precisely the format assumed by DGP and RGP. If an algorithm (i.e., MGT, EM-CF, and
EM-NI) requires an oriented version of the graph (as defined in Section 2), it carried
out the orientation on the fly. For these algorithms, each cost we report later has always
included the overhead incurred from performing the orientation. Finally, we exclude
the output cost (i.e., the time to report the triangles found) because it is identical for all
algorithms as they must return exactly the same set of triangles. Viewed differently,
the performance we report for each algorithm can also be interpreted as its cost for
triangle counting.

7.2. Performance on Real Data

Datasets and Methodology. We deployed five real datasets named LJ, USRD, BTC,
WebUK and SubDomain, respectively. All the datasets except SubDomain, which is
new dataset introduced in this paper, are exactly the same ones used in [Chu and
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Cheng 2012] where state-of-the-art DGP and RGP were developed. The meta informa-
tion of the datasets is displayed in Table I10.

Table I. Meta data of real graphs

LJ USRD BTC WebUK SubDomain
|V | 4,846,609 23,947,347 164,660,997 62,338,347 89,247,739
|E| 42,851,237 28,854,312 386,411,047 938,715,528 1,940,007,864

|E|/|V | 8.84 1.20 2.35 15.06 21.74
maxv∈V d(v) 20,333 9 1,637,619 48,822 3,032,590
maxv∈V d+(v) 686 4 645 5,692 10,695

disk size 364 M 403 M 4.1 G 7.5 G 15.1 G

More specifically, LJ represents a social network (see http://www.livejournal.com)
where a vertex corresponds to an individual, and an edge indicates friendship between
two persons. USRD, on the other hand, is a part of the US road network, where a
vertex (edge) is a road junction (segment). BTC is an object relational graph where a
vertex is a real-world object, and an edge reflects a certain relationship between two
objects (e.g., a person owns an item). This graph was obtained from the RDF dataset
of the Billion Triple Challenge 2009 (http://vmlion25.deri.ie).WebUK captures the hy-
perlinks (i.e., edges) among a set of web pages (i.e., vertices) gathered for investigation
of web spam (http://barcelona.research.yahoo.net). Finally, SubDomain was extracted
from the Common Crawl 2012 web corpus, where each node represents a subdomain
in the web, and each edge represents the existence of hyperlinks between two subdo-
mains (http://webdatacommons.org/hyperlinkgraph/).
Clearly, the amountM of memory allocated to an algorithm is the most crucial factor

behind its efficiency. If M is so large that the entire input graph fits in memory, all
algorithms will behave similarly because they essentially degenerate into in-memory
triangle listing. The key to evaluating an external memory algorithm lies in examining
how well it performs when only a fraction of the dataset fits in memory. Motivated by
this, for each input graph, we varied M from 1% of the graph’s disk size (see Table I)
to 25%, and in the meantime, compared the performance of different algorithms.

Results. Figure 10 presents all the results of the experiments on the real graphs. In
the first row, Figure 10a plots the I/O cost of each algorithm on dataset LJ as a function
of the memory size. Let the I/O speedup of MGT over another algorithm X be defined
as the ratio between the numbers of I/Os entailed by X and MGT, respectively (e.g., an
I/O speedup 2 means that MGT needs half as many I/Os as X). Figure 10b shows the
I/O speedups of MGT over the other algorithms as the memory grows. Figures 10c and
10d demonstrate the corresponding results on the overall running time, noticing that
wall-clock speedup of MGT is defined by extending I/O-speedup straightforwardly to
wall-clock time. The second, third, fourth and last rows of Figure 10 present the out-
come of the same experiments on USRD, BTC, WebUK and SubDomain, respectively.
In Figures 10a-p, EM-CF and EM-NI are sometimes omitted from a “speedup dia-

gram” if MGT achieves an exceedingly high speedup over them. For example, EM-CF
is absent from Figure 10b because it incurred over 100 times more I/Os than MGT (as a
result, the inclusion of EM-CF would destroy the diagram’s clarity). On the other hand,
the disappearance of DGP from a diagram is always due to its inapplicability. Recall
that this algorithm is subject to several assumptions as discussed in Section 3.3. If any
of Assumptions A1, A2 and A3 is violated, DGP fails to execute. In fact, DGP failed in

10The graph sizes listed here are different from those provided in [Chu and Cheng 2012], which, however, is
due to the errors in [Chu and Cheng 2012], as has been verified by our communication with the authors of
[Chu and Cheng 2012].
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MGT DGP RGP EM-NI EM-CF

(a) I/O cost (b) MGT I/O speedup (c) Overall cost (d) MGT overall speedup
(LJ) (LJ) (LJ) (LJ)

(e) I/O cost (f) MGT I/O speedup (g) Overall cost (h) MGT overall speedup
(USRD) (USRD) (USRD) (USRD)

(i) I/O cost (j) MGT I/O speedup (k) Overall cost (l) MGT overall speedup
(BTC) (BTC) (BTC) (BTC)

(m) I/O cost (n) MGT I/O speedup (o) Overall cost (p) MGT overall speedup
(WebUK) (WebUK) (WebUK) (WebUK)

(q) I/O cost (r) MGT I/O speedup (s) Overall cost (t) MGT overall speedup
(SubDomain) (SubDomain) (SubDomain) (SubDomain)

Fig. 10. Efficiency comparison on real graphs
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at least one setting on every dataset: specifically, M ≤ 5%, ≤ 20%, ≤ 15%, ≤ 5% and
= 1% for LJ, USRD, BTC, WebUK and SubDomain, respectively. All failures were due
to violation of AssumptionA2 with only one exception: the failure onWebUK (M = 5%)
was due to A1. RGP failed in fewer occasions than DGP: M = 1% for LJ and USRD
due to A3, and M = 1% for BTC due to A1. Finally, on the largest dataset SubDomain,
some experiments did not terminate within 48 hours: EM-CF (for all M ), EM-NI (for
all M ) and RGP (M = 1%). Their results are hence excluded from Figures 10q-t.
other hand, never failed in any of our experiments. This is perfectly explainable: our

analysis in Section 5.2 has reduced its assumptions to A3 and A4, both of which were
easily satisfied in our settings.
It is evident from Figure 10 that MGT exhibited by far the best performance overall.

In a majority of cases, it significantly outperformed all its competitors in both I/O and
CPU efficiency. Further observe that, against every other method, MGT was faster
in overall execution time by a factor of over an order of magnitude in at least one
experiment. These findings confirm the high effectiveness of the proposed techniques
in practice, in addition to their rigorous theoretical guarantees which have already
been established in earlier sections.
Regarding the other algorithms, EM-CF is clearly the worst-performing solution.

This is not surprising because, as mentioned in Section 3.1, its I/O complexity is even
greater than Ω(|E|), which is already prohibitively expensive in reality. EM-NI, on
the other hand, is very sensitive to the graph density, as predicted by our analysis
in Section 5.1. When the density is low, this algorithm can be fairly efficient, as can
be seen from its performance on USRD (which is nearly planar). Unfortunately, with
the increase of density, the cost of this algorithm grows dramatically, in fact to such
an extent that it can be even more expensive than EM-CF (see Figure 10o). DGP is a
capable method in the sense that, when it did not fail, it demonstrated acceptable per-
formance (although still several times slower than MGT). Finally, RGP, which enjoys
the same I/O complexity as MGT, apparently has a much larger hidden constant in its
complexity.

7.3. Performance on Synthetic Data

Datasets and Methodology. Having established the superiority of our MGT algo-
rithm on real data, we now proceed with a set of controlled experiments that aims at
comparing the competing algorithms on different types of graphs, and evaluating their
scalability with the graph size. Towards this purpose, we generated graphs of three
distributions:

—Random (RAND): Given a pair of values n and m, we generated a random graph
with n vertices by creating m edges, each of which connects a vertex pair chosen
uniformly at random. This was followed by a clean-up process to eliminate duplicate
edges between the same pair of vertices.

—Recursive Matrix (R-MAT): Proposed by Chakrabarti et al. [Chakrabarti et al.
2004], this model has gained considerable popularity due to its simplicity and ability
to emulate a large variety of graphs in reality. It captures the fact that the vertex
degree distribution of a real graph often resembles but is not exactly a power law.
Given a pair of n andm, we created an R-MAT graph of n vertices andm edges using
the generator published at http://www.cse.psu.edu/∼madduri/software/GTgraph
with its default parameters (the same R-MAT parameters were also used in the
experiments of [Tai et al. 2011; Zhao et al. 2011]). Finally, duplicate edges were
removed by a clean-up process.
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MGT DGP RGP EM-NI

(a) I/O cost (RAND) (b) I/O cost (R-MAT) (c) I/O cost (S-WORLD)

(d) Overall cost (RAND) (e) Overall cost (R-MAT) (f) Overall cost (S-WORLD)

Fig. 11. Efficiency comparison on synthetic graphs

—Small World (S-WORLD): This classic model was first described by Watts and Stro-
gatz [Watts and Strogatz 1998]. Given n and m where m is a multiple of 2n, an
S-WORLD graph was obtained as follows. First, imagine putting n vertices on a
circle where each vertex v is connected to its m/(2n) nearest neighbors on the left
and right, respectively11. This creates m edges in total. Then, independently with
probability p, each edge of v is replaced by an edge that connects v to another vertex
chosen randomly. At the end, a clean-up process was invoked to remove duplicate
edges. We set the model parameter p to 1%, as this was the median value in the
experiments of the seminal work [Watts and Strogatz 1998].

We set m = 16n in all experiments. For each distribution, we generated 5 graphs by
varying n from around 16 to 80 million. The following table gives the meta data of all
the synthetic graphs after duplicate removal (these figures apply to all distributions):

Table II. Meta data of synthetic graphs (all distributions)

|V | 16 ×220 32 ×220 48 ×220 64 ×220 80 ×220

|E| 2.7 ×108 5.4 ×108 8.1 ×108 10.7 ×108 13.4 ×108

disk size 2.1 G 4.2 G 6.4 G 8.5 G 10.6 G

For each graph, we inspected the efficiency of all algorithms by fixing the amount of
allocated memory to 1 giga bytes. The only exception was EM-CF, which was omitted
from further inspection due to its huge uncompetitive running time.

Results. Figure 11 demonstrates the comparison results of MGT, DGP, RGP and EM-
NI on synthetic graphs, by focusing on the I/O and wall-clock time in the first and

11The 1st left neighbor of v is the vertex immediately to the left of v on the ring, the 2nd neighbor is the
vertex further to the left, and so on.
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second rows, respectively. DGP has no results on S-WORLD graphs when |V | ≤ 32×220

because it failed due to the violation of A1.
The relative superiority of different algorithms generally follows the patterns ob-

served earlier from real datasets. In every experiment, MGT outperformed all its com-
petitors by a wide margin in both I/O and CPU efficiency. This phenomenon nicely com-
plements the results of the preceding subsection in showing the robustness of MGT’s
performance, regardless of the graph distribution and the graph size.

8. CONCLUSIONS

Triangle listing and counting are important classic problems on graphs that have nu-
merous applications in different domains. Although they have been well studied in
internal memory, solving them I/O-efficiently on massive graphs exceeding the mem-
ory capacity still remains as a challenging task. Previously, there have been several
attempts to tackle the challenge. However, even the state-of-the-art algorithms still
entail lengthy execution time, and even so, are haunted by various assumptions that
limit the applicability of those algorithms.
In this paper, we have presented a new algorithm named MGT based on fresh ideas

drastically different from the previous approaches. The proposed algorithm does not
rely on any assumption, and outperformed every other alternative solution by a factor
up to at least an order of magnitude in our extensive experimental evaluation. Fur-
thermore, the MGT algorithm is based on a solid theoretical foundation, which proves
its excellent efficiency in all settings, regardless of the graph distribution and size. In
particular, we have shown that the I/O and CPU complexities of MGT are optimal in
the worst case with respect to parameters |E|, M , and B.

9. POST ACCEPTANCE REMARK

The I/O optimality claimed in this paper holds for triangle listing when M = Ω(
√

|E|).
Recently, Pagh and Silvestri [Pagh and Silvestri 2014] considered a more general prob-
lem called triangle enumeration, where the goal is to witness each triangle once in
internal memory without writing it to the disk (in other words, the cost Θ(K/B) of
reporting the triangles need not be counted). By leveraging our MGT algorithm as a
building brick, they managed to achieve an I/O complexity (for triangle enumeration)
that is better than ours for general values of |E|, M , and B. They also independently
developed the same witnessing lower bound as in Lemma 6.3. Our paper was submit-
ted to ACM TODS on 27 Sep 2013, whereas the paper [Pagh and Silvestri 2014] first
appeared on Arxiv on 3 Dec 2013.
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